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Abstract: More and more extrachromosomal DNA (ecDNA) was found in human tumor cells in recent years, which 
has a high copy number in tumors and changes the expression of oncogenes, thus different from normal chromo-
somal DNA. These circular structures were identified to originate from chromosomes, and play critical roles in rapid 
carcinogenesis, tumor evolution and multidrug resistance. Therefore, this review mostly focuses on the biogenesis 
and regulation of extrachromosomal oncogene in ecDNA as well as its function and mechanism in tumors, which are 
of great significance for our comprehensive understanding of the role of ecDNA in tumor carcinogenic mechanism 
and are expected to provide ecDNA with the potential to be a new molecular target for the diagnosis and treatment 
of tumors.
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Introduction

Extrachromosomal DNA (ecDNA) refers to the 
extrachromosomal particles carrying genes ori- 
ginated from the chromosomal genome, which 
have been proven to be a kind of circular DNA 
molecule and participate in physiological or 
pathological processes in a special way [1-6], 
including double minutes, single body forms 
and forms lacking centromere or telomere [4]. 
As early as the 1970s, small double minutes 
were observed in the process of tumor cell divi-
sion [5, 7, 8], in addition to the complete struc-
ture of chromosomes, accounting for 30% of 
ecDNA [1]. In addition to the extrachromosom- 
al DNA formed by the shedding of proto-onco-
genes from chromosomes, the human body 
also contains mitochondrial DNA [9], and non-
organelle extrachromosomal elements (includ-
ing t-loops, 5S rDNA, spcDNA, microDNA) [5, 7, 
9-12], which are called extrachromosomal cir-
cular DNA (eccDNA), which are extrachromo-
somal particles different from ecDNA originat-

ing from chromosomes, and the circular form  
is invisible under a light microscope. The size  
of ecDNA found in tumors is 100-to-1000-fold 
larger than eccDNA and is usually in the range 
of 1-3 Mb or larger [4, 6]. EcDNA always carries 
multiple copies of oncogenes that drive tumor 
growth and survival and plays important roles 
in promoting tumor occurrence and develop-
ment [1, 2, 4]. This review mainly summarizes 
the biogenesis, regulation principles, functions 
and molecular mechanisms of extrachromo-
somal oncogene in ecDNA in tumors and ana-
lyzes its clinical value and application prospects 
in cancer.

EcDNA leads to the high expression of onco-
genes in tumor 

EcDNA is specific to tumor 

In human cells, the overexpression of oncoge- 
nes leads to the formation of malignant ones 
[3, 4]. EcDNA, which appears much more fre-
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quently than expected, may be the “culprit” 
exacerbating the process. High-throughput se- 
quencing was used to find that ecDNA is pres-
ent in nearly one-half of human tumors, includ-
ing those in neuroblastoma [13-15], colorectal 
cancer [16, 17], ovarian cancer [18, 19] and 
glioblastoma [2, 20, 21]. Its frequency varies 
with tumor type [3], but ecDNA is rarely seen  
in normal cells [1]. Similar to DNA on chromo-
somes, ecDNA guides gene transcription and 
induces gene expression to play certain tumor-
promoting functions in the formation and devel-
opment of malignant tumors [13, 16].

High copy number of oncogenes in ecDNA

Increasing data indicate that the rapid increase 
in the copy number of oncogenes in ecDNA is 
an effective and frequent gene amplification 
mechanism. For example, more than 200 onco-
genes can be copied in HL60 cell lines [22], 
and many kinds of oncogenes in ecDNA ampli-
fied (Table 1), mainly includes MYC [1-4, 6, 
22-31], MYCN [2, 4, 13-15, 32-34], EGFR [1-4, 
6, 19, 20, 24, 35-37], PDGFRA [2, 4, 22, 38], 
MET [2, 4, 21] and DHFR [39-41] and Mecom-
PIK3CA-SOX2 gene cluster [2, 4] and CDK4-
MDM2 gene cluster [2, 4, 6, 36]. In the study of 

mitochondrial organelle DNA copy number, it 
has been found that a change of mitochondri- 
al DNA copy number leads to mitochondrial 
dysfunction, thus affecting the phenotype of 
tumor cells, but no high copies of the oncoge- 
ne similar to that in ecDNA were found in mito-
chondria [42-44]. In the early stage, it was 
found that only some tumor cells show exten-
sive ecDNA replication and highly express on- 
cogenes, but it is not clear whether the mRNA 
is generated from ecDNA transcription. Pan-
cancer analyses showed that [1], the oncoge- 
nes encoded by ecDNA are among the most 
highly expressed genes in the transcriptome of 
the tumors [6]. In addition, by combining the 
data of whole genome sequencing and RNA 
sequencing, Wu and his colleague proved that 
a large amount of transcribed oncogene mRNA 
was directly derived from ecDNA, not from the 
original sites of these genes on chromosomes, 
and this finding was verified in a large number 
of TCGA clinical samples [1]. We propose that, 
compared with the oncogene amplification in 
normal chromosomes, extrachromosomal on- 
cogene amplification may increase the likeli-
hood that a subpopulation of cells express the 
oncogene, enabling tumors to adapt to variab- 
le environmental conditions effectively to maxi-

Table 1. Oncogenes expressed on ecDNA and their functions
Name of gene Function related to tumor Refs.
MYC Promote cell proliferation and inhibit apoptosis [1-4, 6, 22-31]

MYCN Promote G1/S phase progression and tumor invasion [2, 4, 13-15, 32-34]

EGFR Promote tumor growth, inhibit apoptosis, lead to tumor drug resistance [1-4, 6, 19, 20, 24, 35-37]

PEGFRA Promote tumor proliferation and increases the adaptive potential of tumor cells [2, 4, 35, 38]

Mecom-PIK3CA-SOX2 gene cluster Promote tumor metastasis and recurrence [2, 4]

CDK4-MDM2 gene cluster Promote drug resistance in tumors [2, 4, 6, 36]

REL Promote tumor cell development and proliferation [46]

ERBB2 Promote tumor growth and proliferation [1, 35]

MDR1 Promote multidrug resistance in tumors [47, 48]

CAD Promote multidrug resistance in tumors [40, 49, 50]

DHFR Promote tumor cell resistance to methotrexate [39-41]

MET Promote the proliferation of tumor cells [2, 4, 21]

CyclinD2 Promote tumor cell cycle progression and proliferation [39, 51]

GBAs Maintain the malignant features of the tumor [6]

VOPP1 Promote tumor cell survival [6]

MRPS17 By encoding mitochondrial ribosomal proteins, promoting tumor growth [6]

LANCL2 Promote multidrug resistance in tumors [6]

ZNF713 Involved in transcriptional regulation and tumorigenesis [6]

SEPT14 Regulate the proliferation or apoptosis of tumor cells [6]

CCND1 Promote tumor cell cycle progression and proliferation [1, 35]

CCND3 Promote tumor cell cycle progression and proliferation [1]

CCNE1 Promote tumor cell cycle progression and proliferation [1, 35]

ATM Promote tumor cell cycle progression, proliferation, and tumor growth [1]
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mize their proliferation and survival [22, 36, 
45]. Therefore, with the passage of time, the 
tumor gradually becomes more aggressive and 
more difficult to treat [1], and the prognosis 
becomes commensurately worse, however, ch- 
romosome amplification is difficult to achieve 
[1, 4].

Effects of ecDNA differences on tumor hetero-
geneity

EcDNA is different from normal chromosomal 
DNA in that it has no centromere structure [5, 
22], causing ecDNA to be randomly segregated 
in daughter cells, possibly through a binomial 
model [14], resulting in nonuniform inheritance 
[52]. Through interphase fluorescence in situ 
hybridization (FISH) of tumor samples and Pa- 
tient-Derived tumor Xenografts (PDXs), it was 
observed that the number of fluorescence sig-
nals in each nucleus varies greatly, ranging fr- 
om 2 to 100 [2]. This heterogeneity strongly 
suggests that tumor cells form different tumor 
cell subpopulations diverge during mitosis, and 
the targeted gene DNA copy number in each 
cell also differs. Progeny cells may inherit ec- 
DNA with a higher copy number of the driving 
oncogene, thus obtaining a proliferation ad- 
vantage affecting the oncogenic potential of 
the cells [1, 2, 35]. Scanning electron micros-
copy revealed the clustering of double minutes 
(DMs) during metaphase in some tumor cells. 
When chromatids are separated from the eq- 
uatorial plane, DM clusters adhere to chromo-
somal telomeres and are transported to spin-
dle poles through this connection [53, 54], re- 
sulting in an uneven distribution in daughter 
cells. In addition, the size of ecDNA differs,  
and for specific tumors, intercellular variation 
may also exist, leading to a rapid increase in 
genomic heterogeneity [2, 20].

The mechanism of high expression of ecDNA 
oncogene in tumors 

In tumors, oncogenes are highly expressed in 
ecDNA, and the mechanism is relatively com-
plex, not only due to the increase of copy num-
ber, but also due to the high transcriptional 
activity of ecDNA itself, of which the spatial 
structure, regulatory elements and epigenetic 
modification of ecDNA play a key role. In addi-
tion, the regulation of mRNA stability and pro-

tein levels also promote the expression of on- 
cogenes in ecDNA (Figure 1).

Regulation of copy number

The biogenesis of ecDNA is caused by the dele-
tion of chromosomal DNA, resulting in the cor-
responding deletion of chromosomal sequence, 
or by a replication mechanism. The mechanism 
that leads to a very high copy number of onco-
genes in tumors is not very clear. We summa-
rized the formation mechanism of ecDNA main-
ly from three aspects, including chromosomal 
region replication, chromosomal extra DNA rep-
lication, and extra-chromosomal DNA replica-
tion. So far, no uniform replication methods of 
ecDNA have been reported. In addition to se- 
miconservative replication, rolling-circle repli-
cation is likely to be a critical mode for ecDNA 
replication. The study of ecDNA formation and 
replication has important research value and 
clinical significance, as it may lead to the abi- 
lity to block the production of ecDNA on the 
source, and thus to treat tumors.

Replication of chromosomal regions: Currently, 
all the evidences indicate that the formation of 
ecDNA is largely related to DNA damage, es- 
pecially DNA double-strand breaks (DSBs) [19, 
24, 41, 55]. A literature reported that lagging 
chromosomes can cause chromosome disrup-
tion in micronuclei, and then, through non-ho- 
mologous end joining (NHEJ) mediated DNA re- 
pair promotes micronucleus-derived chromo-
some fragmentation to establish reconnection 
[56], thus forming ecDNA in offspring cells 
(Figure 2A). In addition to the ecDNA produced 
by DSBs caused by lagging chromosome, other 
factors, such as oxidative stress, senescence, 
carcinogens, DNA replication inhibitors and pr- 
otein synthesis inhibitors, can lead to the for-
mation of eccDNA [57-60]. It is known that 
eccDNA is different from ecDNA, and research 
on ecDNA is currently very limited. The ampli-
fied regions of DNA are derived from repeated 
and multiple replications of DNA, resulting in 
multiple copies of a particular gene [61]. In tu- 
mor cells, fragments can be amplified within 
chromosomes or they can be amplified in a 
manner that leads to the formation of ecDNA 
[3]. Some models suggest that the generation 
of ecDNA may be due to the removal of corre-
sponding fragments from chromosomes during 
the G1 or G2 phase, and the high copy number 
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Figure 1. The mechanism of high expression of ecDNA oncogene. It is summarized from DNA level, transcriptional 
level, post-transcriptional level, translation level and post-translation level.

of DMs has been explained by the replication-
excision model, which is based on chromoso- 
me regions during DNA replication [34, 62-65] 
(Figure 2B). The initial formation of extrachro-
mosomal DNA molecules is caused by the cycli-
zation of a single segment associated with in- 
trachromosomal deletion, including the ampli-
fied but larger than this sequence, and the 
fusion of several syntenic or nonsyntenic DNA 
segments without further rearrangement of the 
chromosome or genetic correction of the dele-
tion has also been observed [19, 37]. In the  
formation of loop amplicons, non-homologous 
end joining (NHEJ) [37, 57, 66, 67] and micro-
homology-mediated end-joining (MMEJ) [19, 
37] are the dominant mechanisms [24]. Anoth- 
er model suggests that circular DNA is gener-
ated by chromosome breakage on replication 
bubbles containing stalled replication forks 
[68], in which case, each circular element con-
sists of two copies of the amplified sequence 

connected in opposite directions (Figure 2C). 
Therefore, the replication of chromosome re- 
gions is the main mechanism of ecDNA pro- 
duction.

Chromosome extra DNA replication: A circular 
DNA molecule may be a product of recombi- 
nation within the chromosome or extra copies 
formed by ectopic replication resumption (Fi- 
gure 2D). Each replication starting point in eu- 
karyotic cells is generally activated only once  
in each cell cycle, however, an extra round of 
DNA replication (replicon misfiring) can occur 
within any given chromosomal region. It has 
been found that extra copies of chromosomal 
domains produced by the misfiring of replicons 
can be converted into extrachromosomal chro-
matin fragments through the general recombi-
nant enzyme system or special repair-type me- 
chanisms [69]. Oncogenes are overabundant  
in drug-resistant cells, and some of these extra 
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oncogenes are also present in ecDNA. These 
accumulated copies of oncogenes are most 
likely the result of frequently misfired repli- 
cons, with each misfiring resulting in an addi-
tional functional copy of the gene and its chro-
mosomal domain [70, 71]. A similar phenome-
non has been found in resistant cells [72]. 
Thus, chromosome extra DNA replication is al- 
so an important regulator of ecDNA high copy. 
Extra copies of genes in ecDNA are randomly 
distributed during mitosis, and as a result, so- 

me cells acquire a higher number of copies 
[69].

Replication regulation of DNA outside chro- 
mosome: DMs constitute some of the ecDNA. 
Wahl and his colleagues found that DMs are 
composed of submicroscopic circular precurs- 
ors called “episomes” [22], suggesting that 
“episomes” containing the MDR1 oncogene  
are subject to the same replication mechani- 
sm (semiconservative replication) as regular 

Figure 2. EcDNA production pattern. A. Under the pressure of replication, the double strands of chromosomal DNA 
are broken, and the extrachromosomal DNA is formed by non-homologous end joining. B. G1 or G2 chromosome 
segments are excised and cyclized to form ecDNA. Upper pathway: G2 chromosome fragment excision; lower path-
way: G1 chromosome fragment excision. Rectangle on chromosome: deletion of chromosome segments. C. Chro-
mosome breaks on replication bubbles form ecDNA. Arrows: replication fork movement direction; dotted triangles: 
replication fork position. D. Chromosome extra DNA replication (replicon misfiring). Extra copy excision produces 
ecDNA. E. A potential mechanism of ecDNA replication through the rolling ring model as eccDNA, however, it needs 
to be further confirmed in the future. 
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chromosomes, with approximately one replica-
tion per cell cycle [73]. Thus, their accumula-
tion in tumor cells is not due to disproportion-
ate DNA synthesis [54]. Structural studies of 
extrachromosomal DNA elements have shown 
that the initial amplification of extrachromo-
somal circular DNA derived from the chromo-
some may be proceed by various chromosomal 
breakage pathways. Once the initial amplicon  
is formed, it can be replicated autonomously 
[49], with an increase in copy number and a 
surge in tumor cells [74] (Figure 3A). In contrast 
to the chromosomal DNA copied at the chro- 
mosomal origin, plasmid DNA is independent  
of origin and is produced by rolling-circle repli-
cation [75]. Studies have suggested that eccD-
NA seems to replicate through the rolling ring 
mechanism [76], such as extrachromosomal 
t-loops [77], 5S rDNA [78], spcDNA [10, 79], 
and microDNA [66] (Figure 2E). Whether the 
copy number of ecDNA is increased by the roll-
ing ring mechanism as eccDNA, which need to 
be further confirmed in the future.

Regulation of transcriptional level

In the study of the small circular DNA fragments 
(kilobase sized) edited by CRISPR-Cas9 [80],  
it was found that the genes encoding the en- 
hanced green fluorescent protein were silent at 
the transcriptional level, which is quite different 
from the large fragments of ecDNA containing 
oncogenes and regulatory elements that have 
been our focus in this review. In cancer cell lin- 
es and clinical samples, the transcription le- 
vels of oncogenes amplified in ecDNA are high-
er than those of the same genes that have not 
been amplified by chromosome cyclization, whi- 
ch can increase the transcriptional abundance 
of oncogenes such that they constitute the top 
1% of the whole cancer genome [1, 2, 4, 6]. 
Therefore, the regulation of the transcriptional 
level of the oncogenes in ecDNA is an impor-
tant mechanism for their increased expressi- 
on. Specifically, the increase of oncogene tran-
scription level on ecDNA is mainly reflected in 
the following three aspects, including chroma-
tin conformation, regulatory elements and epi-
genetic modification of ecDNA.

The open conformation of ecDNA chromatin: 
Chromatin conformation also affects the acc- 
essibility of DNA to transcriptional regulatory 
mechanisms [6]. Changes in the spatial struc-

ture of chromatin, including the destruction of 
the boundary of topological associating do- 
mains (TADs), are related to the pathogenesis 
of tumors [81]. The PLAC-seq/HI-ChIP method 
was used to prove that ecDNA also forms the 
same 3D functional domain as chromosome 
DNA, which is called topologically associating 
domains (TADs) [6, 81]. In addition, virtual 4C 
and actual 4C-seq also demonstrated that cir-
cular ecDNA can produce ultra-long-range DNA 
interactions, breaking the distance limit of gene 
relationships and enhancing gene interactions, 
which often have direct impact on the expres-
sion of the whole gene, further enhancing the 
expression of ecDNA itself (Figure 3B). Both 
ATAC-seq (inserting fragments into the “open” 
region of the genome using Tn5) and MNase-
seq demonstrated that ecDNA is packaged as 
chromatin, with intact domain structures and 
composed of nucleosome units. In the ultra-
structure of DMs, fibers composed of nucleo-
somes extend as loops from the chromosome 
core [74]. However, due to the lack of an ad- 
vanced compression structure, ecDNA is more 
accessible than chromosomal DNA (Figure 3C). 
In addition, this chromatin openness is not 
dependent on the DNA sequence, only on whe- 
ther it is associated with ecDNA [6]. As a re- 
sult, almost all of the genes in the circular DNA 
can be successfully transcribed, boosting th- 
eir transcription potential. Therefore, once the 
proto-oncogenes are no longer in the chromo-
some to form ecDNA, they can be expressed in 
large quantities.

Enhancers or other regulatory elements in ec- 
DNA: The change in ecDNA expression can be 
explained by enhancer hijacking [82] or the 
destruction of cis-regulatory elements, and th- 
is circular rearrangement may lead to abnormal 
expression of tumor suppressors and proto-
oncogenes [15]. The formation of ecDNA allows 
oncogenes to interact with adjacent enhancers 
(elements that enhance gene expression) to 
enhance their expression levels or even to es- 
tablish new connections, promoting tumor de- 
velopment (Figure 3D). Under normal topolo- 
gical structure, the oncogene can be associat-
ed with only some enhancers (Figure 3D), but 
this relationship is significantly strengthened  
in ecDNA. This enhanced relationship can lead 
to the addition of new regulatory elements and 
changed the topological connections with on- 
cogenes [81]. Abnormal enhancer activity is a  
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key driver of gene expression programs that 
promote tumor formation, maintenance, and 
progression. In addition, other regulatory ele-
ments are enriched in ecDNA. Matrix attach-
ment regions (MARS) have been found in DMs. 
They are more often located in the noncoding 
regions of DNA and regulate the expression of 
target genes in vivo. Therefore, MARS can acti-
vate gene expression, determine which genes 
are transcribed, and have a strong influence  
on gene expression level [83, 84].

Epigenetic modification: Methylation is an im- 
portant modification of proteins and nucleic 
acids that regulates the expression and sup-
pression of genes and is closely related to the 
occurrence and development of tumors. It is 
one of the important research topics of epi-

genetics. The most common methylation modi-
fications include DNA methylation and histone 
methylation [85]. CpG islands usually contain 
promoters of active genes and must there- 
fore be accessible to transcription factors [86]. 
DNA methylation generally occurs at CpG site. 
Hypomethylated CpG islands are sensitive to 
nucleases added to the nucleus, while methyl-
ated CpG islands are not sensitized. Razin and 
his colleagues proposed that, in nuclease hy- 
persensitive regions, myc gene amplification is 
increased [87], the CpG methylation level of 
DMs is generally low [83], and transcription ac- 
tivity is increased. Some histone residues can 
be methylated to inhibit or activate gene ex- 
pression, forming epigenetic marks. In ecDNA, 
the activation and repression of histone marks 
in cancer cells in metaphase were analyzed by 

Figure 3. Expression regulation of oncogenes in ecDNA. A. Chromosome DNA is divides and equally allocated to 
two daughter cells during mitosis; EcDNA lacks centromeres and thus DNA is randomly assigned to daughter cells 
(dotted lines indicate a case of random assignment of ecDNA). B. EcDNA produces extremely long-distance DNA 
interactions. C. EcDNA is composed of nucleosomes and lacks the advanced compression structure of chromatin. In 
the dashed box, Δ and □ represent active histone modifications. D. In ecDNA, oncogenes interact with neighboring 
enhancers, making new connections and reinforcing existing expression patterns.
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immunofluorescence, and chromatin immuno-
precipitation based on H3K4me1 and H3K27ac 
was conducted. It was found that the frequency 
of ecDNA and histone modifications represen- 
ting active gene transcription was high, while 
the inhibitory modifications to histone H3K9- 
me3 and H3K27me3 were few [6, 39] (Figure 
3C). Studies have been conducted on the his-
tone modification of DMs [83]. Moreover, ChIP-
seq has also proved that these modifications 
are not evenly distributed throughout the who- 
le ecDNA, being found mostly in the regulatory 
regions of corresponding genes, such as at  
promoters. Therefore, epigenetic modification 
is critical for the increase of oncogene expres-
sion in ecDNA.

Regulation of mRNA stability

The regulation of the stability of eukaryotic 
mRNA is one of the main mechanisms for re- 
gulating gene expression [88]. The sequence 
components of mRNA (the 5’-cap structure, 

5’-untranslated region, coding area, 3’-untrans-
lated region, polyA tail, and 5’- and 3’-termin- 
al interactions), mRNA-binding protein (5’-cap-
binding protein, coding region-binding protein, 
3’UTR-binding protein, and polyA-binding pro-
tein), translation products of mRNA (autono- 
mic regulation), nuclease, viruses and other fa- 
ctors can regulate the stability of the mRNA. 
The study of mRNA stability regulation is help- 
ful for understanding the gene expression of 
ecDNA in more detail. Previous studies on DMs 
have indicated that DMs are related to the in- 
terchromosomal domain (ICD) in the HD-N-16 
neuroblastoma cell line, which is believed to 
contain macromolecular complexes involved  
in transcription, splicing, DNA replication and 
repair [89, 90]. Therefore, the preferential lo- 
calization of DMs on the surface of the chro- 
mosome region may be interpreted as a prefer-
ence that facilitates the entry of the amplified 
MYCN gene into the protein complex for tran-
scription and splicing [90].

Figure 4. Diagram of the mechanism by which ecDNA plays a role in tumors. A. Some of the oncogenes in ecDNA 
have kinase activity. After binding with ligands, they activate intracellular signaling pathways, promote cell prolifera-
tion and inhibit apoptosis. The presence of resistance genes in ecDNA promotes multidrug resistance in tumor cells. 
B. Oncogenes on ecDNA, such as MYCN, promote the invasiveness of tumor cells. C. There is an increase in the 
amount of extrachromosomal DNA in metastatic tumors.
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Regulation of translation level and protein 
stability

In the process of ecDNA translation, there is a 
close correlation between the copy number of 
the oncogenes in ecDNA and the level of pro-
tein expression. The initiation of protein trans-
lation in eukaryotes is a complex cellular pro-
cess that involves a series of proteins called 
eukaryotic translation initiation factors (eIFs). 
The initiation of translation in eukaryotes is ac- 
complished by the interaction between these 
eIFs and other eukaryotic initiation factors and 
ribosomes, mRNA and initiation tRNA. Eukar- 
yotic initiation factor 5A2 (eIF-5A2) is a member 
of the eukaryotic initiation factor 5A subfamily 
[91]. It has been found that eIF-5A2 exists in 
DMs, and the overexpression of eIF-5A2 is sig-
nificantly correlated with the deterioration of 
ovarian cancer and plays an important role in 
the pathogenesis of ovarian cancer [92]. When 
the double minute copy number is decreased, 
the expression level of eIF-5A2 is decreased, 
and the growth rate of tumor cells is inhibited. 
Currently, only eIF-5A2 has been found in DM, 
which does not reflect the unified mechanism 
of ecDNA translation.

The role of ecDNA in tumorigenesis and the 
development of multidrug resistance

The role of ecDNA in tumor proliferation

The high expression of oncogenes in ecDNA 
enables tumor cells to acquire greater prolife- 
ration capacity and genetic plasticity. There  
are a variety of oncogenes in ecDNA, and the 
genomic variation acquired before and during 
the whole process of tumorigenesis provides 
cancer cells with a competitive advantage over 
neighboring cells, thus improving the survival 
and proliferation rates and stronger clone for-
mation ability [35, 93]. For examples, MET [21, 
94], EGFR [37], ERBB2 [35], and PEGFRA [35, 
38] have receptor tyrosine kinase (RTK) activity 
induced by ligand binding, and they strictly reg-
ulate the stimulation of proliferation and sur-
vival through cell signaling pathways, most no- 
tably the RAS/RAF/MEK/MAPK and PI3K/Akt 
pathways, which provide the relevant upstre- 
am and downstream proliferative signal, lead-
ing to an increase in the adaptive potential of 
tumor cells [20, 35, 94] (Figure 4A). EcDNA  
carrying MET, EGFR and MYC genes has also 

been found in recurrent tumors, maintaining 
the malignant characteristics of tumors [2]. The 
oncogene c-myc is present on ecDNA, and as  
a classical nuclear transcription factor [95], its 
abnormal activation can trigger the initiation of 
a complex genomic unstable network [96-98]. 
In nasopharyngeal carcinoma (NPC), abnormal 
overexpression of c-myc alters the expression 
of target genes, many of which are carcinogenic 
genes or tumor suppressor genes, thereby sig-
nificantly promoting cell proliferation, and is 
significantly associated with a poor prognosis 
for NPC patients [99]. In addition, studies in 
vitro and in vivo have demonstrated that the 
expression of c-myc alone is not sufficient to 
induce tumorigenesis, and its function com-
bined with that of other oncogenes is needed 
[100]. In fact, the deregulated expression of  
the c-myc gene can lead to genomic instability, 
manifested as amplification of the extrachro-
mosomal gene. The extrachromosomal DNA 
produced upon c-myc overexpression is, on av- 
erage, 10-fold larger than that observed when 
c-myc is not deregulation [7, 39]. In neuroblas-
toma, most of the extrachromosomal DNA for- 
med is cycled in the region of chromosome 
1p36, and because of the growth suppressor 
genes or tumor suppressor genes in chromo-
some 1, it is thought that the malignant pheno-
type of the tumor may be related to the loss of 
tumor suppressor genes, which enables the tu- 
mor to gain an advantage [101-103]. EcDNA is 
usually derived from DSBs during DNA replica-
tion, and DSB repair involves the P53 pathway 
[104], whether there is an association between 
ecDNA and cell cycle. The abundant expressi- 
on and amplification of MDM2 in neuroblasto-
ma will counteract the transcriptional activity  
of endogenous P53, thus promoting tumor de- 
velopment by inhibiting P53 [105]. In the pro-
cess of homologous recombination (HR), the 
BRCA1 protein plays an important role in the 
HR pathway and controls the cell cycle by acti-
vating checkpoints (such as G2/M). In MTX-
resistant cells containing DMs, and the inhibi-
tion of HR activity results in a decreased nu- 
mber of copies of the DM amplification gene, 
increased sensitivity to methotrexate (MTX), 
and accelerated cell death [17]. Tumor cell pro-
liferation is often associated with poor progno-
sis and is a cause for resistance to treatment. 
Clinical staging is an important factor that af- 
fects the prognosis of patients with tumors. In 
patients with neuroblastoma, the prognosis of 
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stage I and stage II is good, while that of stage 
III and stage IV is poor. MYCN amplification has 
a strong correlation with stage III and stage IV 
[101]. The MYCN protein forms a heterodimer 
with MAX, which acts as a transcriptional acti-
vator of target genes and promotes G1/S ph- 
ase progress in the cell cycle, with a higher to- 
tal frequency of extrachromosomal amplifica-
tion [101]. REL encodes the nuclear factor-κB 
(NF-κB) transcription factor, regulates the ex- 
pression of genes and promotes the prolifera-
tion of tumor cells [46]. Therefore, it is of prog-
nostic value to identify the genes and path- 
ways that promote tumor amplification to en- 
sure that they are considered as part of the 
combination therapy.

The role of ecDNA in tumor invasion and me-
tastasis

EcDNA plays a role in the progression of tumor 
cells to a more aggressive, malignant pheno-
type. The discovery of ecDNA in human cancer 
cells has shed new light on the three-dimen-
sional structure of the tumor genome and epig-
enome. The study of DMs in tumor invasion and 
metastasis provides a mechanistic basis for 
our understanding of the roles of ecDNA. In- 
vasion is one of the ten characteristics of tu- 
mors that can turn surrounding normal cells 
into tumor cells [106]. In the same gene GBM 
cell line, the invasive phenotype of cells with 
DMs has been shown, and irradiated STIC cells 
(containing DM) have paracrine effects on the 
newly formed STIC cells that were not irradiat-
ed, thereby promoting tumor development by 
promoting cell invasion and angiogenesis [107]. 
In many neuroblastomas, ecDNA carrying the 
MYCN oncogene is also associated with inva-
sive tumor growth (Figure 4B). The cancer is 
found not only in situ but also metastasizes 
remotely [106]. There are a large number of on- 
cogenes in ecDNA. Is there a gene level trans-
fer similar to plasmid transfer? In vivo, it is dif-
ficult for cells to fall off and move to other plac-
es, either because of cell adhesion or the killing 
effect of the immune system; however, DNA 
transfer is much easier. The presence of DMs 
can be considered a repeated and overlapping 
secondary change, which is more frequent in 
metastatic lesions [108]. DMs appear in the 
secondary malignant effusion of ovarian can-
cer [108], metastatic ASML variants [109], ma- 
lignant fibrous histocytoma in bone [110], and 

recurrent GBM tumors, which show many st- 
ructural and numerical abnormalities compar- 
ed with those of the primary tumor. The chro-
mosomal morphology of metastatic tumor is 
poor, and the amplification of oncogenes in 
ecDNA is increased [109, 110] (Figure 4C).

The occurrence and metastasis of tumors are 
closely related to the internal and external en- 
vironment of tumor cells. The conditions for 
tumor survival and development can be chan- 
ged and maintained by changing the tumor 
microenvironment. Irradiated cells containing 
DMs show the ability to change their extracel-
lular microenvironment, promote the invasive-
ness of surrounding cells, and create a tumor 
microenvironment that promotes tumor growth 
[107]. In the case of changes in environmental 
conditions, the number of DMs can be regulat-
ed and even reduced to zero. For example, 
mutations and amplified genes in the ecDNA in 
primary GBM tumors are lost during cell cul-
ture, accompanied by significant phenotypic 
and transcriptional differences [9, 35, 111]. 
Amplification in the form of HSR impossiblely 
has the same mechanism as ecDNA. This ob- 
servation suggests that the selection and com-
petition between amplified DNA copies with dif-
ferent genetic backgrounds are different [35]. 
In summary, ecDNA promotes rapid diversifica-
tion of the genome and increases the possibili-
ty that cells more suitable to changing environ-
ments are selected. Differences in ecDNA in 
tumor cells in vivo and in vitro constitute a 
basis for future research, better understand- 
ing the molecular mechanisms by which ec- 
DNA drive cancers alter the tumor microenvi-
ronment to evade treatment and determining 
whether changing the relationship between 
ecDNA and the tumor microenvironment can 
inhibit tumor progression.

The role of ecDNA in drug resistance

The expression of both oncogenes and drug-
resistant genes in ecDNA increases the de- 
gree of tumor progression and drug resistan- 
ce. Oncogenes in specific ecDNA in cells also 
change with environmental changes; for exam-
ple, in glioblastoma, they often lead to carcino-
genic variation of EGFRvIII [112, 113]. Tumor 
cells can develop drug resistance through the 
amplification of oncogenes in ecDNA, and as 
many as 20 DMs containing DHFR genes can 
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be found in some methotrexate-resistant cell 
lines [41, 70, 114, 115]. DMs are usually de- 
tected in cells that are resistant to increasing 
drug concentrations, and CAD protein is a mul-
tifunctional protein that, in the presence of the 
specific inhibitor PALA, leads to the generation 
of DMs containing the CAD gene [49, 50]. In 
addition, the random distribution of ecDNA du- 
ring mitosis leads to the cells that acquire en- 
hanced mutations being more likely to transmit 
these mutations to their offspring cells, thus 
promoting tumor progression and therapeutic 
resistance [116, 117]. Extrachromosomal DNA 
is also a carrier of drug-resistant genes [29], 
and the amplification of drug-resistant genes 
may allow tumor cells to grow in the presence 
of cytotoxic drugs, which may be related to the 
overproduction of the corresponding proteins. 
An extrachromosomal copy of MDR1 was fo- 
und during the treatment of multidrug-resistant 
KB cells. The MDR1 gene encodes a mem-
brane-binding protein called p-glycoprotein, whi- 
ch is a multidrug transporter that acts as an 
ATP-dependent efflux pump for chemotherapy 
drugs, leading to drug resistance in tumor cells 
[47] (Figure 4A). In the process of drug treat-
ment to “eliminate” ecDNA oncogenes, it was 
found that, once the drug was withdrawn, ec- 
DNA revives and reappears, which was related 
to drug resistance during tumor treatment and 
could affect the efficacy of targeted therapy 
related to the oncogene [36]. Resistance to 
EGFR tyrosine kinase inhibitors (EGFR-TKIs) le- 
ads to the reoccurrence of clonal EGFR muta-
tions on the extrachromosomal DNA after drug 
withdrawal. The MDM2+ DM copy number also 
increased with increasing erlotinib treatment 
and remained elevated even after drug with-
drawal [9, 36]. After the recurrence of the dis-
ease, at least one cancer driver of ecDNA is 
retained in many tumor cells, supporting the 
idea that ecDNA can prevail after selective 
pressure is applied to anticancer therapies. 
This outcome was demonstrated by the signifi-
cantly reduced time to secondary surgery in 
patients with at least one ecDNA compared to 
patients with primary tumors without ecDNA 
[2]. These results suggest that cancer can ev- 
ade therapies for target oncogenes maintain- 
ed on extrachromosomal DNA in a highly spe-
cific, dynamic and adaptive way, elucidating  
the mechanism of drug resistance of cancer 
cells containing ecDNA, opening up new per-
spectives on drug treatment regimens, and he- 
lping us further explore ways to treat tumors.

EcDNA is expected to be a potential molecular 
target for tumor diagnosis and treatment

The value of ecDNA in diagnosis

Tissue biopsy detection of ecDNA is used for 
tumor diagnosis. The morphological character-
istics of tumor cells and the expression level of 
oncogenes can be histologically observed [20]. 
EcDNA is visible under the microscope. To dis-
tinguish the extrachromosomal circular DNA 
molecules in the normal chromosomes, histo-
logical observations together with a measure  
of the expression level of the coding oncogen- 
es in biopsied tissue samples can be used in 
combination, and ecDNA can be used in the 
diagnosis of tumors. However, tissue biopsy 
requires surgery or other means of acquiring 
biopsy materials, which may cause some de- 
gree of trauma to the subject.

Liquid biopsy can be used to detect ecDNA for 
tumor diagnosis. Liquid biopsy does not require 
surgery or puncture sampling, which can redu- 
ce the pain for patients. Compared with tissue 
biopsy, the sample requirements are lower, and 
it is easy to avoid the deviations caused by het-
erogeneity. High-throughput sequencing tech-
niques are used with liquid biopsy samples to 
identify tumor-specific linear DNA fragments 
present in serum or plasma [118]. Free DNA 
(CfDNA) has also been found in blood circula-
tion, but its content is very low and limited to 
only linear DNA [12]. Circular DNA crosses cell 
membranes relatively easy, making it more like-
ly that cancer patients will have ecDNA in their 
blood. In tumors, high expression of oncogen- 
es in ecDNA is strongly associated with clinic- 
al diagnosis, treatment, and prognosis. EccDNA 
was recently found in circulation [12, 54, 119]. 
These circular molecules are released into the 
blood circulation after cell death. Circle-seq 
can be used to purify eccDNA [55, 120]; which 
makes it possible for detecting by liquid biopsy. 
If the ecDNA detected in liquid biopsy samples 
can provide ultra early diagnosis of tumor and 
respond to treatment, then ecDNA can be used 
as a diagnostic and posttreatment evaluation 
indicator for tumor patients. For patients after 
treatment, the number of oncogenes in eCDNA 
in the tumor can be monitored to help make an 
accurate judgment on the prognosis of patients. 
However, currently, there are many eccDNAs in 
tissues, and we need to identify its source. The 
differences between eccDNA and ecDNA, as 
discussed in this paper, include size and other 
measures. The development of specific meth-
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ods to distinguish ecDNA from other extrachro-
mosomal DNA would enable disease progres-
sion to be monitored.

The value of ecDNA in tumor therapy

Understanding the underlying molecular me- 
chanisms of tumor evolution can help identify 
more effective therapies to eradicate tumors. 
EcDNA is an important mechanism driving the 
copy number variation of oncogenes, which is 
closely related to the curative effects and the 
prognosis of tumors. For example, in patients 
with non-small-cell lung cancer (NSCLC), there 
is no significant correlation between the num-
ber of mutations in tumor cells and prognosis, 
but patients with more changes in oncogene 
copy number have worse tumor efficacy and 
prognosis [121]. Moreover, ecDNA also plays 
an important biological function in the develop-
ment of tumors, which can drive the develop-
ment, invasion and metastasis of tumors and 
the formation of multidrug resistance. There- 
fore, the elimination of ecDNA or oncogenes 
amplified in ecDNA can effectively reduce the 
malignancy of tumor cells and can be the basis 
of tumor therapy. The discovery of ecDNA may 
lead to a fourth revolution in cancer treatment, 
according to Boundless Bio, which believes th- 
at the replication mechanism of ecDNA is sli- 
ghtly different from that of normal chromosom-
al DNA, leading to a way to specifically inhi- 
bit ecDNA replication directly. Another approa- 
ch Boundless Bio is exploring involves the inhi-
bition of the metabolic pathways required for 
ecDNA replication.

The frequency and amplitude of oncogene am- 
plification can be changed with various stimuli, 
and radiotherapy can destroy all cancer cells  
as much as possible. Compared with those in 
unirradiated cells, the gene copy number and 
expression level of amplified genes in the ex- 
trachromosomal DNA of irradiated cells were 
significantly reduced after exposure to relative-
ly low doses of radiation [47, 122]. Unfortunate- 
ly, these treatments are limited to the area of 
exposure, rarely leading to cures, with most 
tumors locally recrudescing within a few mon- 
ths. In addition, some drugs can effectively re- 
duce the copy number of ecDNA and thus 
achieve a certain therapeutic effect. In the pro-
cess of drug-induced differentiation of HL-60 
cells into granulocytes, c-myc expression was 
decreased and c-myc copies were lost in dou-

ble minutes [26, 31]. Low doses of hydroxyurea 
and etoposide led to the degradation of extra-
chromosomal circular DNA molecules into sm- 
aller DNA fragments [48], accelerating the loss 
of oncogene amplification (such as EGFR and 
c-myc) in ecDNA [35, 40, 47, 123-127] in a 
dose- and time-dependent manner [124]. Low 
concentrations of hydroxyurea showed preclini-
cal activity by eliminating ecDNA, reducing the 
tumorigenicity of human tumor cells [128], and 
inducing apoptosis in some cases [23], with- 
out including cytotoxic effects or overall toxicity 
[18, 40, 125, 128]. In addition, hydroxyure (HU) 
combined with cisplatin has shown enhanced 
cytotoxicity in tumor cells [129]. Gemcitabine 
was able to decrease the number of ecDNA in 
cells at a 7500-fold lower concentration than 
that used for the common cancer drug hydro- 
xyurea, and it also inhibited the growth, colony 
formation and invasion of tumor cells [130]. 
Intricate pathways in cells play different roles in 
gene amplification and may be new targets to 
improve the effect of tumor chemotherapy by 
reduced amplification [32]. CRISPRi can also 
be used to eliminate ecDNA, but whether the CR- 
ISPR technology used in research can be used 
in the clinic remains to be discerned.

Conclusions and future directions

EcDNA is an important recent discovery in the 
field of tumor research. Because of its specific 
presence in tumor tissues and cells and the 
high copy number and high expression levels  
of its oncogenes, ecDNA can greatly drive the 
occurrence and development of tumors and  
the formation of malignant phenotypes, such 
as multidrug resistance. Therefore, in-depth 
study into the formation, role and mechanism 
of ecDNA in tumor development is expected to 
lead to important breakthroughs in the study  
of tumor pathogenesis in the future, and ec- 
DNA is also expected to become an important 
molecular target for the diagnosis and treat-
ment of tumors in the future. However, at the 
same time, it must be acknowledged that ec- 
DNA lacks centromeres, and the uneven distri-
bution of ecDNA during mitosis increases the 
heterogeneity of tumors and the difficulty of 
tumor diagnosis and treatment. In recent ye- 
ars, although important advances and discov-
eries have been made in the study of the for- 
mation of ecDNA and its role and mechanism  
in tumors, many problems remain unresolved. 
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For example, is ecDNA the primary mechani- 
sm that drives tumor development? Are there 
tumor suppressor genes and normal genes in 
ecDNA, and if they exist, what are their func-
tions? Does ecDNA have a uniform replication 
mechanism? Is it the same as plasmid or ec- 
cDNA rolling ring replication? What is the uni-
form mechanism of ecDNA elimination? Can 
the results of research on DMs be applied to 
into all ecDNA? All of these questions require 
continuous exploration and research by scien- 
tists. 
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