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Abstract: As an important hallmark of metabolic reprogramming in cancer, a disruption in fatty acid metabolism con-
tributes to tumor proliferation, cell migration and invasion, and other tumor cell behaviors. In recent years, more and 
more studies have been conducted on fatty acid desaturase 2 (FADS2), the first rate-limiting enzyme for the biosyn-
thesis of polyunsaturated fatty acids. These studies have found that FADS2 is abnormally expressed in cancers of 
the breast, lung, liver, and esophagus; melanoma; leukemia; and other malignant tumors. Furthermore, its expres-
sion is significantly correlated with tumor proliferation, cell migration and invasion, clonal formation, angiogenesis, 
ferroptosis, resistance to radiotherapy, histological grade, metastasis to lymph nodes, clinical stage, and prognosis. 
The abnormal expression of FADS2 results in an imbalance of cell membrane phospholipids, which disrupts the 
fluidity of the membrane structure and the transmission of signals and promotes the production of proinflammatory 
factors and arachidonic acid (AA) metabolites, ultimately harming human health. This article aims to systematically 
review the structural characteristics of FADS2; its function, expression, and mechanism of action; and the factors 
affecting its activity. This review also provides new ideas and strategies for the development of treatments aimed at 
the metabolic reprogramming of tumors.
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Introduction

Cancer is the most severe public health prob-
lem and the leading cause of death worldwide 
[1]. There are approximately 4.3 million new 
cancer cases and 2.9 million new cancer 
deaths every year in China, and, compared with 
the United States and the United Kingdom, 
China has a lower cancer incidence but a 30% 
and 40% higher cancer mortality [2]. Despite 
significant advances in the treatment and diag-
nosis of cancer, the overall survival and progno-
sis remain poor. Therefore, the identification of 
new biomarkers and signaling pathways is cru-
cial to the treatment of cancer.

A common phenomenon of tumor cells is me- 
tabolic reconstruction, which produces build- 
ing blocks and energy for tumor cells to grow, 
divide, and survive. Several studies have 
reported that disruptions in glycolysis, as well 
as amino acid (mainly glutamine, serine, and 

glycine) and lipid metabolism promote the 
behavior of various malignant tumors by induc-
ing cell proliferation, antiapoptosis, invasion, 
and metastasis [3], These findings have inspired 
researchers to explore new strategies for the 
treatment of various malignant tumors by tar-
geting the metabolism of cancer cells. The 
breakdown of lipids provides sufficient building 
blocks and energy for tumor cells to synthesize 
the cell membrane and to perform other related 
functions during proliferation [4]. Studies have 
found that the key enzymes involved in lipid 
metabolism in tumor cells are acetyl-CoA car-
boxylase (ACC), fatty acid synthase (FASN), ATP-
citrate lyase (ACLY), and fatty acid desaturase 
(FADS). The dysregulated expression and activ-
ity of these key enzymes directly affects the bio-
synthesis of fatty acids by tumor cells, which in 
turn interferes with tumor progression [4, 5]. 

As enzymes for fatty acid desaturation, the 
main function of FADS family is to catalyze the 

http://www.ajcr.us


FADS2 in human cancer

4099	 Am J Cancer Res 2020;10(12):4098-4111

conversion of lipids to regulate the metabolic 
balance of lipids. In mammals, the FADS family 
includes FADS1, FADS2, FADS3, FADS4 (SCD5), 
FADS5 (SCD1), FADS6, FADS7 (DEGS1), and 
FADS8 (DEGS2). Their amino acid sequences 
include three common conserved motifs 
(HX3H, HX2HH and HX2HHXFP), and the differ-
ences between them are substrates and sites 
of action. Among them, SCD has been proven 
to play an important role in tumor malignant 
behaviors through the YAP/TAZ pathway, the 
EGFR/PI3K/AKT pathway, EMT or ferroptosis 
[6-8], and it has been systematically summa-
rized in several reviews [9, 10]. In addition, it 
has been shown that the common feature of 
many tumors is increased AA metabolites  
and increased synthesis of eicosanoids [11]. 
Omega-6 (n-6) polyunsaturated fatty acids, like 
arachidonic acid and its metabolites, play an 
important role in cell activity and physiological 
functions as components of the microenviron-
ment. Among them, prostaglandin E2, leukotri-
enes, cyclooxygenase 2, etc. can promote the 
occurrence and progression of tumors through 
various mechanisms [12]. FADS2 among the 
members is a key enzyme that catalyzes the 
production of such polyunsaturated fatty acids, 
and changes in the expression and activity of 
FADS are related to hypertension, metabolic 
disorders, type 2 diabetes, cardiovascular dis-
eases, inflammation, multiple sclerosis, neuro-
logical and mental diseases, and malignancy 
[13-15]. Although some reports have shown its 
important functions in cancers, there are few 
systematic reviews on it. There are fewer stud-
ies on other members of the FADS family in 
cancers. Therefore, the structure and physio-
logical function of FADS2, as well as the role of 
FADS2 in human cancer, are systematically 
reviewed in this article.

Gene location and structural characteristics of 
FADS2

Fatty acid desaturase 2 (FADS2, D6D, des6, 
llcdl2, fadsd6, tu13, delta-6-desaturase, delta 
(6) fatty acid desaturase) is encoded by the 
FADS2 gene on chromosome 11 (11q12-q13.1) 
[16]. The FADS2 gene has been identified in 
more than 200 species, including bacteria, 
fungi, plants, and animals (Table 1) [17-49]. 
Human FADS2 is a membrane-binding protein 
of 444 amino acids with a molecular weight of 
52.2 kDa; it contains a cytochrome b5-like 
domain, two transmembrane domains, and 

three histidine-rich domains (regions I, II, III). 
Regions I (HX3H) and II (HX2HH) are located 
between the two transmembrane domains,  
and region III (HH) is located at the C-terminus 
(Figure 1) [18]. FADS2 is expressed in the brain, 
liver, lungs, heart, and other tissues in humans 
[18]. 

Physiological functions of FADS2

FADS2 plays both physiological and pathologi-
cal roles in different organisms. Wang et al. 
studied Antheraea pernyi and reported that 
FADS2 biosynthesis is involved in the mating 
and communication of these insects [36]. In 
mice, FADS2 inhibition reduces AA synthesis, 
thereby reducing inflammation [50], Further- 
more, FADS2 gene knockout eliminates the 
first enzymatic step of the polyunsaturated 
fatty acid (PUFA) cascade, leading to sexual 
dysfunction and infertility in male and female 
mice [51]. Another study has reported that 
FADS2 regulates the synthesis of PUFAs and 
the breakdown of triglycerides in dairy goat 
mammary glands [52]. FADS2 overexpression 
in zebrafish not only increases the production 
of PUFAs, but also stimulates antibacterial and 
anti-inflammatory activity [53]. 

FADS2 mainly plays a role in desaturation by 
introducing a double bond at the δ6 position of 
the fatty acid chain, and this is the first rate-
limiting enzyme for the conversion of upstream 
fatty acids into PUFAs (AA and eicosatetraenoic 
acid). In baboons, a recent study has revealed 
that in addition to δ6-dehydrogenase activity, 
FADS2 also possesses δ8-dehydrogenase ac- 
tivity in the desaturation of 20:3n-3 and 20:2n-
6 to stearidonic acid (SDA) and γ-linolenic acid 
(GLA) [54]. FADS2 exhibits desaturase activity 
toward at least seven substrates (18:2n-6, 
18:3n-3, 20:2n-6, 20:3n-3, 24:4n-6, 24:5n-3, 
16:0) [55], the major metabolic processes that 
FADS2 is involved in are shown in Figure 2A. 
Presently, there is no unified standard for repre-
senting the activity of FADS2. Cho et al. used 
the ratio of ETA/α-linolenic acid (ETA/ALA) and 
AA/linoleic acid (AA/LA) to represent FADS2 
activity [18]. Pender-Cudlip et al. and Gardiner 
et al. used the ratio of total metabolites of lin-
oleic acid (GLA; DGLA, dihomo-γ-linolenic acid; 
AA) to LA to express the activity of FADS2 [56, 
57]. FADS2 activity has also been estimated 
from the ratio of the percentage of DGLA to the 
percentage of LA (i.e. % DGLA/% LA) [3] and the 
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Table 1. FADS2 in different species
Species name Amino acid length coded by ORF Reference
Cyanobacteria PCC6803 359 [19]
Spirulina platensis 368 [20]
Glossomastix chrysoplasta 465 [21]
Phaeodactylum tricornutum 477 [22]
Mortierella alpina 457/458 [23-25]
Mucor rouxii 523 [26]
Mucor circinelloides 467 [27]
Pythium irregulare 459 [28]
Borago officinalis 448 [29]
Echium plantagineum 448 [30]
E. gentianoides and E. pitardii 438 [31]
Anemone rivularis 446 [32]
Marchantia polymorpha 481 [33]
Primula farinosa 453 [34]
Primula vialii 453 [34]
Caenorhabditis elegans 443 [35]
Antheraea pernyi 316 [36]
Physcomitrella patens 525 [37]
Ceratodon purpureus 520 [38]
Oncorhynchus mykiss 454 [39]
Sparus aurata 445 [40]
Cyprinus carpio 445 [41]
Psetta maximus 445 [41]
Pleuronectiformes 445 [41]
Cyprinus carpio 444 [41, 42]
Gadus morhua 447 [43]
Siganus canaliculatus 445 [44]
Dicentrarchus labrax L. 445 [45]
Anguilla japonica 444 [46]
Epinepheluscoioides 445 [10]
Rachycentron canadum (Linnaeus) 247 [9]
Eriocheir sinensis 442 [47]
Mus musculus 444 [48]
Homo sapiens 444 [18]
Capra hircus 444 [49]

ratio of GLA to LA (GLA:LA) [58]. In addition, 
many factors influence FADS2 activity. These 
factors are related to different physiological 
and pathological conditions, such as aging, diet 
(high alcohol intake; high cholesterol level;  
deficiencies of zinc, magnesium, and vitamins 
C, B3, B5, B6; and high trans fatty acid levels), 
hypertension, diabetes, cardiovascular disea- 
se, cancer, viral infections, hormone levels, and 
allergic dermatitis. FADS2 activity can also be 
affected by other regulatory genes and single 
nucleotide polymorphisms, as well as radiation 
[58-62], (Figure 2B).

Role of FADS2 in cancer

FADS2 and breast cancer

Lane et al. detected FADS2 expression in 
breast cancer cells and tissues and reported 
that FADS2 was expressed in the breast cancer 
cell line MCF-7 but not in the highly invasive tri-
ple-negative breast cancer cell MDA-MB-231. 
In addition, FADS2 expression in breast cancer 
tissues was significantly lower than that in 
paracancerous tissues (6.2 ± 2.1 copies/50 ng 
RNA vs. 15.4 ± 8.2 copies/50 ng RNA, P < 
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Figure 1. The structure of human FADS2. The blue area is the cytochrome b5-like domain, the red area is the trans-
membrane domain, and the green area is the histidine-rich domain (region I, II, and III).

0.05), and it was even lower in breast cancer 
patients with poor prognoses [63], suggesting 
that FADS2 is weakly expressed in breast can-
cer, and low FADS2 expression is significantly 
correlated with poor prognosis. Vriens et al. 
found that stearoyl COA destruction (SCD) 
inhibitor significantly inhibited the proliferation 
of breast cancer cells MDA-MB-468 and T47D, 
and FADS2 overexpression restored prolifera-
tion. However, FADS2 expression in these two 
breast cancer cell lines was significantly lower 
than that in the normal breast epithelial cell 
line MCF-10A (P < 0.005) [64]. 

In contrast to the aforementioned results, Zhao 
et al. analyzed gene expression in human 
breast cancer and normal tissues by microar-
ray analysis, and the FADS2 mRNA level was 
more than two times higher in breast cancer 
tissues than in normal tissues [65]. Pender-
Cudlip et al. also showed that FADS2 activity 
was significantly higher in breast cancer tis-
sues than in paracancerous tissues (1.18 vs. 
0.78, P < 0.001), and it was significantly higher 
in ER− breast cancer tissues than in ER+ breast 
cancer tissues (1.87 vs. 0.98, P < 0.01), sug-
gesting that the FADS2 expression level may be 
related to the ER expression level in breast can-
cer. The discrepancy in the results reported by 

Lane et al. and others may be attributed to dif-
ferences in detection methods. Proinflammatory 
factors, such as PEG2, produced during meta-
bolic processes can alter the inflammatory sta-
tus of the tumor microenvironment, thereby 
promoting tumor progression. Pender-Cudlip et 
al. reported that the amount of PGE2 produced 
in breast cancer tissues was significantly  
higher than that in paracancerous tissues 
(30.81 vs. 6.33 ng/g, P < 0.001), and the 
amount in ER-breast cancer tissues was signifi-
cantly higher than that in related paracancer-
ous tissues (P < 0.01). However, in different 
ER-responsive breast cancer tissues, there was 
no significant difference in the amount of proin-
flammatory factors [56], therefore, proinflam-
matory metabolites are associated with higher 
FADS2 activity and higher PGE2 expression in 
more aggressive ER-breast cancer. In conclu-
sion, abnormal FADS2 expression in breast 
cancer may result in metabolic disorders, which 
may impact the development and progression 
of breast cancer. 

FADS2 and melanoma

In a mouse model, He et al. reported that 
FADS2 mRNA and protein levels, as well as its 
activity, were significantly higher in melanoma 
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Figure 2. The metabolic pathways cat-
alyzed by FADS2 in organisms (A) and 
the factors affecting FADS2 activity (B).
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B16 tissues than in paracancerous tissues (P < 
0.01). FADS2 protein was hardly detected in 
paracancerous tissues, whereas the FADS2 
mRNA level, as well as its activity, were posi-
tively correlated with the size of B16 tu- 
mors (ETA/LA: P = 0.0015, R2 = 0.58; AA/LA: P 
= 0.0025, R2 = 0.55; mRNA: R2 = 0.93, P = 
0.0017). The content of AA in B16 tumors was 
four times higher than that in paracancerous 
tissues, and suppression of FADS2 activity  
with an inhibitor (SC-26196) or by RNA interfer-
ence significantly suppressed the growth of 
B16 tumors (P < 0.01) and significantly reduced 
the AA content (P < 0.01). Furthermore, protu-
mor metabolite levels derived from AA also 
decreased by 80%-95%, and the levels of 
angiogenesis-related genes and inflammatory 
factors (IL-6 and TNF-α) in B16 tumors were 
also significantly inhibited. These results indi-
cate that FADS2 is a key factor in the progres-
sion of melanoma, and it regulates the release 
of inflammatory factors and the synthesis of 
proinflammatory metabolites in the tumor 
microenvironment [66]. 

FADS2 and lung cancer

He et al. suggested that FADS2 mRNA and pro-
tein levels, as well as activity, were significantly 
higher in mouse Lewis lung cancer (LCC) tis-
sues than in paracancerous tissues (P < 0.01), 
and FADS2 protein was undetectable in para-
cancerous tissues. Furthermore, the FADS2 
mRNA level and the enzyme activity were posi-
tively correlated with the size of LCC tumors 
(ETA/LA: P = 0.0001, R2 = 0.70; AA/LA: P = 
0.0017, R2 = 0.54; mRNA: P = 0.0139, R2 = 
0.81). The content of AA in LCC was two times 
higher than that in paracancerous tissues, and 
the suppression of FADS2 activity with an inhib-
itor (SC-26196) or by RNA interference signifi-
cantly suppressed the growth of LCC tumors (P 
< 0.05). Furthermore, the synthesis of AA and 
AA-derived protumor metabolites in LCC tumors 
was reduced (P < 0.05), and the levels of angio-
genesis-related genes and inflammatory fac-
tors were also inhibited [66]. Jiang et al. showed 
that FADS2 knockdown significantly sup-
pressed lung cancer growth (P < 0.001), there-
by resulting in a significant increase in the lev-
els of Fe and lipid reactive oxygen species in 
lung cancer cells and a significant decrease in 
the levels of ferroptosis-related genes, which 
ultimately induces ferroptosis. Survival analy-

sis showed that FADS2 expression is related to 
the overall survival of lung cancer patients, 
whereas another mechanistic study found that 
the expression of LSH in lung cancer positively 
regulated the expression of the target gene 
FADS2, and WDR76 increased the expression 
of FADS2 via epigenetic modifications that 
require dependence on LSH [67]. Vriens et al. 
measured the expression of FADS2 in 10 pairs 
of non-small cell lung cancer/paracancerous 
tissues and found that the expression of FADS2 
in 8 pairs of lung cancer tissues was significant-
ly higher than that in the corresponding para-
cancerous tissues [64]. In addition to the criti-
cal role that FADS2 plays in lung cancer, the 
circular RNA-circFADS2 produced by abnormal 
splicing also plays a vital role in lung cancer. 
Zhao et al. found that the expression of circ-
FADS2 in non-small cell lung cancer tissues 
and cells was significantly upregulated (P < 
0.05), and its high expression was significantly 
related to poor prognosis, high TNM grade, 
lymph node metastasis, and poor differentia-
tion of non-small cell lung cancer (P < 0.05). 
Another study revealed that circFADS2 pro-
motes lung cancer development by regulating 
miR-498 expression [68]. These findings indi-
cate that the effects of FADS2 on lung cancer 
cell growth and ferroptosis are regulated by 
other factors. 

FADS2 and brain cancer

Researchers have examined human tissues  
by microarray and reported that the FADS2 
mRNA level in brain tumor tissues was twice  
as high as that in normal brain tissues [69].  
The FADS2 level was also related to the radio-
therapy sensitivity of tumors. Wang et al.  
demonstrated that FADS2 inhibitor SC-26196 
decreased the proliferation rate by >45%, 
decreased the colony formation rate by >40%, 
and increased the apoptotic rate by 30%-40% 
for U-87 MG and LN-229 cells under radiother-
apy in vitro, and significantly increased the lack 
of response of tumor growth to radiotherapy in 
xenograft tumor in mice (66.8 ± 28.3 mm3 vs. 
151.6 ± 15.1 mm3). Another study revealed 
that SC26196 reverses the radioresistance of 
PGE2-ID1-dependent glioblastoma by blocking 
the synthesis of AA and PGE2 [70], indicating 
that FADS2 may be involved in the develop-
ment of tumor resistance.
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FADS2 and liver cancer

Vriens et al. reported that FADS2 mRNA and 
protein levels are significantly higher in HUH7 
liver cancer cells than in normal cells, and the 
FADS2 level was higher in three out of four 
pairs of liver cancer tissues than in paracancer-
ous tissues [64]. SCD is a key regulator of vari-
ous processes such as tumor growth, pro-
grammed cell death and carcinogenesis [7]. 
Vriens et al. also demonstrated that the growth 
of certain cells was not inhibited when SCD  
was blocked, and the authors classified the 
tumor cells as SCD-independent, partially SCD-
dependent, and SCD-dependent. The FADS2 
level in SCD-independent and partially SCD-
dependent tumor cells was significantly higher 
than that in SCD-dependent tumor cells. In a 
mechanistic study, liver cancer cells that do not 
rely on SCD desaturase could synthesize sapi-
enate through FADS2, which is an alternative 
fatty acid desaturation pathway, to support bio-
film synthesis during tumor cell proliferation. 
This complemented the reduction of fatty acid 
desaturation caused by the decrease of SCD 
activity and promoted the proliferation of can-
cer cells [64], indicating that the FADS2 desatu-
ration pathway plays a key role in promoting the 
behaviors of certain cancers. However, Horrobin 
et al. reported no FADS2 expression in human 
liver cancer [71]. 

FADS2 and colon cancer

After SC-26196 treatment, tumors in ApcMin/1 
mice were reduced by 36%-37%, and the size of 
primary tumors arising from colon cancer cell 
HT-29 xenografts in nude mice were reduced  
by 35% (P < 0.05). Moreover, the LA level in  
the phospholipids of tissues was significantly 
increased, and the AA level was decreased. 
Furthermore, AA supplementation in the diet 
could eliminate the effects of SC-26196 on the 
fatty acid composition and tumorigenesis of 
ApcMin/1 mice, indicating that the effect of this 
FADS2 inhibitor on the fatty acid composition of 
these two types of intestinal cancer cell are 
related to the synthesis of AA [72]. 

FADS2 and esophageal adenocarcinoma

Wang et al. reported that FADS2 mRNA and pro-
tein levels were significantly higher in esopha-
geal adenocarcinoma tissues than in paracan-
cerous tissues (P < 0.05), and the high expres-

sion of FADS2 in esophageal adenocarcinoma 
was significantly correlated with late stage, 
lymph node metastasis, and poor prognosis (P 
< 0.001). In vitro, FADS2 overexpression signifi-
cantly promoted esophageal adenocarcinoma 
cell proliferation (P < 0.05), and enhanced 
anchorage- independent colony formation (P < 
0.05), and migration and invasion (P < 0.001) 
[59], indicating that FADS2 may serve as a bio-
marker of esophageal adenocarcinoma.

FADS2 and other cancers

The results of microarray analysis of human tis-
sues show that the FADS2 mRNA level in cervi-
cal cancer tissue is twice as high as that in nor-
mal cervical tissue [73]. Vriens et al. reported 
that FADS2 mRNA and protein levels in the 
prostate cancer cell line DU145 were signifi-
cantly higher than those in normal prostate 
cells [64]. FADS2 activity in renal cell carcino-
ma was significantly higher than that in healthy 
renal tissue [74]. Apart from the aforemen-
tioned solid tumors, Agatha et al. found a sig-
nificant increase in FADS2 indexes of mem-
brane phospholipids in children with acute lym-
phoblastic leukemia (1.21 ± 0.39 vs. 0.27 ± 
0.04; P < 0.001). However, there was no signifi-
cant difference in FADS2 indexes of membrane 
phospholipids in children with acute myeloge-
nous leukemia (0.26 ± 0.08 vs. 0.27 ± 0.04). 
FADS2 activity related to n-6 and n-3 pathways 
in blood cells of patients with acute lympho-
blastic leukemia increased by 3.8-fold and 2.5-
fold compared to the healthy control group, 
respectively. However, there was no significant 
change in FADS2 activity in blood cells of 
patients with acute myelogenous leukemia 
[75]. In addition to the abnormal expression in 
leukemia cells, inhibition of FADS2 could sup-
press the growth of various leukemia cells [76]. 
These data indicate that changes in FADS2 
expression and activity in cervical cancer, pros-
tate cancer, renal carcinoma, and acute lym-
phoblastic leukemia may be related to the 
development and progression of tumors.

Discussion and conclusion

The studies reviewed in this article indicate 
that FADS2 overexpression promotes tumor 
proliferation, clonal formation, migration and 
invasion, and lymph node metastasis, and it is 
related to the tumor microenvironment, poor 
prognosis, radiotherapy resistance, and ferrop-
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tosis. However, some researchers have report-
ed that inhibition of the FADS2 level in tumor 
cells in vitro cannot suppress the proliferation 
of tumor cells. For example, in the study con-
ducted by He et al., tumor cell growth was not 
suppressed after inhibition of FADS2 by 
SC-26196 and RNA interference in B16 mela-
noma and LCC lung cancer, which may be 
attributed to the fact that inhibiting FADS2 is 
not directly toxic to tumor cells. Instead, it may 
affect the behavior of tumor cells by regulating 
the production of metabolites in the tumor 
microenvironment or altering the phospholipid 
composition of the tumor cell membrane [66]. 
Vriens et al. indicated that silencing FADS2 in 
HUH7 cells promotes proliferation, which may 
be the result of an alternative pathway of 
FADS2 fatty acid metabolism in tumor cells 
[64]. This article also summarizes studies in 
which FADS2 activity was up- or downregulat-
ed, and studies in which the expression in  
certain cancers, such as breast cancer and 
liver cancer, resulted in different conclusions 
(Table 2). Discrepancies may be related to the 
timespan between specific studies and avail-
able detection methods at the times they were 
performed.

Thus far, there are two main mechanisms of 
action of FADS2 in cancer: (1) Metabolite-
related mechanisms in which FADS2 modu-
lates the tumor microenvironment or the fluidity 
of cell membranes by regulating the synthesis 
of PUFAs during fatty acid metabolism. For 
example, Scanferlato et al. found that the pro-
duction of sapienic acid is related to apoptosis 
and necrosis in colon cancer cells CaO2 [78]. 
Furthermore, FADS2 supports the synthesis of 
cell membranes during tumor cell proliferation 
by catalyzing the conversion of palmitic acid  
to sapienate and its extended product, cis-
8-octadecenoic acid [64]. FADS2 inhibitors  
can reverse PGE2-ID1-dependent radioresis-
tance in glioblastoma cells by blocking the syn-
thesis of AA and PGE2 [70]. Pender-Cudlip et al. 
suggest that the AA synthesis pathway (AA and 
PGE2 production), which involves FADS2, may 
be related to breast cancer [56]. He et al. dem-
onstrate that FADS2 may impair the tumor 
microenvironment by regulating the synthesis 
of AA and AA-derived eicosanoids (PGs, LTs, 
EETs), and thus affects tumor growth [66]. 
PUFAs can also regulate the expression of vari-
ous transcription factors, including PPAR α/β/

γ1/γ2, SREBP-1c, HNF-4α/γ, RXRα, LXRα,  
and NF-κB by directly binding transcription  
factors or regulating signal transduction path-
ways that control expression, phosphorylation, 
ubiquitination, or proteolysis in the liver [79]. 
Furthermore, AA-derived products such as 
prostaglandins, thromboxane, leukenoic acid, 
and 5-hydroxyeicosapentaenoic acid play im- 
portant roles in cancer and other diseases [12]. 
(2) Molecular regulation-related mechanisms in 
which FADS2 expression or activity is regulated 
by other factors. Wy14643, an activator of tran-
scription factor PPARα, synergistically induces 
FADS2 transcription [80]. WDR76 and WD40 
proteins can increase the expression of FADS2 
through the epigenetic modification of the TSSs 
of the FADS2 promoter [67]. SREBP-1 and 
PPAR-α are involved in fatty acid biosynthesis 
by regulating FADS2 transcription [81, 82]. As a 
key transcription factor in fatty acid metabo-
lism, SREBP can be activated by mTOR signal-
ing [83], and HIF-1α can stimulate SREBP-1c 
expression under hypoxia [84]. PUFAs, metabo-
lites of FADS2, can also regulate the nuclear 
abundance of SREBP-1 and PPARα in liver  
and regulate the expression of FADS2 through  
a feedback mechanism [85, 86]. He et al. 
hypothesized the possible molecular regulatory 
mechanism of FADS2 expression in cancer, 
namely, hypoxia/reactive oxygen species-HIF-
1α-SREBP-1c-FADS2 [66]. Recently, a research 
showed that SREBP-1/2 and mTOR signaling 
can regulate the expression of FADS2 and the 
production of its metabolite sapienate in can-
cer cells, just as we guessed [87]. The molecu-
lar mechanism of FADS2 in tumors needs fur-
ther experimental exploration.

This review illustrates the important roles  
of FADS2 in the development, progression, 
metabolism, and death of various cancer  
cells. However, in studies on the relationship 
between FADS2 and cancer, the mechanisms 
by which FADS2 regulates tumor cells are rarely 
addressed. Thus, the expression, function, and 
specific mechanism of FADS2 in specific can-
cers need to be further explored. The regula-
tion of FADS2 may have potential anti-inflam-
matory and antitumor effects in different path-
ological conditions. Therefore, it is important to 
explore the association between FADS2 and 
other clinicopathological factors in cancer 
patients such as age, lifestyle, menopause sta-
tus, histological grade, and genotypes. Drug 
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Table 2. The association between FADS2 expression and the malignant tumors and its functions
Cancer type FADS2 expression level Function Reference
Breast cancer Downregulated (mRNA and activity) Low FADS2 expression was related to poor prognosis of breast cancer patients and high 

TNM grade of tumor.
[63, 64, 77]

Upregulated (mRNA and activity) High expression promoted the synthesis of the pro-inflammatory metabolite PGE2 in breast 
cancer, which may promote the occurrence of inflammation.

[56, 65]

Melanoma Upregulated (mRNA, protein and activity) High expression promoted the growth of B16 melanoma and could lead to enhanced n-6 AA 
and AA-derived tumor, promoting metabolites production, as well as the gene expression of 
angiogenesis and inflammatory factors.

[66]

Lung cancer Upregulated (mRNA, protein and activity) High expression promoted the growth of lung cancer and could lead to enhanced n-6 AA and 
AA-derived tumor, promoting metabolites production, as well as the gene expression of an-
giogenesis and inflammatory factors. Inhibiting FADS2 could induce ferroptosis by increas-
ing the level of Fe and lipid ROS in lung cancer cells. Patients with high FADS2 expression 
had poorer prognosis.

[64, 66, 67]

Brain cancer Upregulated (mRNA) Inhibition of FADS2 could improve the sensitivity of tumor cells to radiotherapy and block 
the synthesis of AA and PGE2 in vitro and in vivo.

[69, 70]

Liver cancer Loss -- [71]
Upregulated (mRNA and protein) FADS2 promoted the proliferation of cancer cells by synthesizing sapienate and used it for 

membrane biosynthesis of cancer cell.
[64]

Colon cancer -- Inhibition of FADS2 could inhibit the growth of colon cancer and the synthesis of AA. [72]
Esophageal carcinoma Upregulated (mRNA and protein) High expression was related to clinicopathological parameters such as late stage, lymph 

node metastasis, and poor prognosis. High expression promoted tumor cell proliferation, 
non-anchored clonal formation, migration and invasion.

[59]

Cervical cancer Upregulated (mRNA) -- [73]
Prostate cancer Upregulated (mRNA and protein) -- [64]
Renal cell carcinoma Increased (activity) -- [74]
Acute lymphoblastic leukemia Increased (activity) High activity promoted the growth of different types of leukemia cells. [75, 76]
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research and nutritional interventions for the 
breakdown of fatty acids, which is catalyzed by 
FADS2, may provide new strategies for cancer 
prevention and treatment. 
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