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Abstract: There is a critical need for development of improved methods capable of accurately predicting the RAS 
(KRAS and NRAS) and BRAF gene mutation status in patients with advanced colorectal cancer (CRC). The purpose 
of this study was to investigate whether radiomics and/or semantic features could improve the detection accuracy 
of RAS/BRAF gene mutation status in patients with colorectal liver metastasis (CRLM). In this retrospective study, 
159 patients who had been diagnosed with CRLM in two hospitals were enrolled. All patients received lung and 
abdominal contrast-enhanced CT (CECT) scans prior to radiation therapy and chemotherapy. Semantic features 
were independently assessed by two radiologists. Radiomics features were extracted from the portal venous phase 
(PVP) of the CT scan for each patient. Seven machine learning algorithms were used to establish three scores based 
on the semantic, radiomics and the combination of both features. Two semantic and 851 radiomics features were 
used to predict the mutation status of RAS and BRAF using an artificial neural network method (ANN). This approach 
performed best out of the seven tested algorithms. We constructed three scores which were based on radiomics, 
semantic features and the combined scores. The combined score could distinguish between wild-type and mutant 
patients with an AUC of 0.95 in the primary cohort and 0.79 in the validation cohort. This study proved that the ap-
plication of radiomics together with semantic features can improve non-invasive assessment of the gene mutation 
status of RAS (KRAS and NRAS) and BRAF in CRLM.
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Introduction

Colorectal cancer (CRC) is the third most com-
mon and deadly tumor in males and females 
worldwide [1]. According to the World Health 
Organization (WHO), 1.8 million new cases of 
CRC were diagnosed worldwide in 2018, with 
almost 861,000 deaths. In recent years, death 
rates from CRC have progressively declined in 
many countries due to improved early detection 
and more effective primary and adjuvant thera-

pies [2, 3]. However, the overall survival (OS) in 
patients with advanced CRC remains poor. Liver 
metastasis is the main cause of death in 
patients with CRC [4]. 15%-25% of patients are 
commonly diagnosed with synchronous liver 
metastases at the time of primary diagnosis 
[5].

Several studies have reported that patient out-
comes can be improved through precise identi-
fication and stratification of patients harboring 
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specific mutant genes [6-8]. Therefore, genom-
ic characterization to optimize patient selection 
is of great research and clinical interest. With 
improvements in precision medicine, RAS and 
BRAF gene mutation status should be used to 
inform decision making in the clinic [9-11]. 
Gain-of-function mutations of RAS and BRAF 
genes resulting in continuous activation of the 
RAS-mitogen-activated protein kinase (MAPK) 
pathway have been characterized in most 
cases of CRC. KRAS mutations represent an 
early event in CRC tumorigenesis and occur in 
35-45% of CRC cases. BRAF mutations, preva-
lently c.1799T > A (V600E) mutation have been 
found in 4.7% to 8.7% of CRC [12]. For surgical 
treatment of these patients, it has been sug-
gested that a resection margin of at least 10 
mm should be obtained [13, 14]. However, 
there is no clear recommendation for the most 
optimal resection margin for CRLM patients 
harboring RAS and/or BRAF mutation as 
patients with both mutations have a higher risk 
of positive surgical margins [15]. Therefore, the 
selection of resection margin should be differ-
ent for CRLM patients harboring RAS and/or 
BRAF mutation [16, 17]. In addition, RAS and 
BRAF mutations are associated with shorter 
disease-free survival (DFS) and OS [18-20]. 
These data suggest that pre-treatment CT 
scans could potentially be used to predict the 
RAS and BRAF mutation status in patients with 
CRLM and to further guide treatments with sur-
gery and/or chemotherapy.

The detection of driver gene mutation status 
requires the analysis of specimens obtained 
from surgery or biopsy, which are invasive and 
expensive procedures. Since Lambin and his 
colleagues, first proposed the concept of 
Radiomics in 2012, this high-throughput, non-
invasive strategy has been shown to provide 
addition information that can benefit clinical 
decision making in multi-centric settings and 
many different cancers [21-32]. Radiomics 
holds great promises in representing the under-
lying differences in the molecular phenotype of 
tumors [33]. Most previous radiomics studies 
have focused on KRAS mutation status in the 
primary lesions of CRC [34, 35]. The segmenta-
tion of primary lesions is greatly affected by 
bowel movement. Little is known regarding the 
radiomics features of metastatic liver lesions 
and their relationship to the genomic character-
istics of RAS and BRAF. 

In this study, we aimed to characterize the 
radiomics and semantic features in a multi-
institutional cohort of patients with RAS- (KRAS 
and NRAS) and BRAF-mutated CRLM prior to 
any treatment. This study proved that the appli-
cation of radiomics features together with 
semantic features, using an ANN method, can 
improve the non-invasive assessment of the 
mutation of RAS and BRAF in CRLM.

Materials and methods 

Patient 

The entire cohort was acquired from the 
January 2014 to October 2019 records of the 
institutional picture archiving and communica-
tion system (PACS, Philips), which was used to 
identify patients who had confirmed CRLM his-
tologically. A total of 159 patients was con-
firmed to the criteria. The following are the 
inclusion criteria for this study: (1) the patient is 
older than 18 years; (2) the patient was con-
firmed as colorectal adenocarcinoma with 
hepatic metastasis by histopathological exami-
nation; (3) tissue samples of all primary tumors 
for the mutation analysis were acquired either 
through biopsy or surgical resection; (4) RAS 
and BRAF gene status were obtained by se- 
quencing or hybridization methods; (5) abdomi-
nal contrast-enhanced CT (CECT) images before 
chemical or radical therapy were available; (6) 
the slice thickness of CT ≤ 2 mm (to avoid data 
inconsistency); (7) the intervals between lung 
and abdominal CT examination and histopatho-
logical diagnosis were less than 31 days (range 
4-30 days). The following are the exclusion cri-
teria for this study: (1) patients with more than 
one primary tumor location; (2) poor quality  
of CT images due to patients’ breathing or 
movement artifacts; (3) patients with too 
blurred edges to delineate. Baseline demo-
graphic and clinical characteristics were col-
lected from the PACS medical records. Clinical-
pathological factors included age, sex, RAS 
(KRAS and NRAS) and BRAF status. RAS and 
BRAF genes are both in the RAS-RAF-MAPK 
pathway and previous studies had classified 
patients with any mutant RAS or BRAF genes 
into one category [36, 37]. Based on the status 
of RAS and BRAF genes, the patients were clas-
sified into two groups: the mutant group and 
the wild group. Patients with any mutant RAS or 
BRAF were classified into the mutant group (N 
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= 93), others were classified into the wild group 
(N = 66). 

This retrospective study was performed in 
accordance with the principles of the Helsinki 
Declaration and was approved by the Ethics 
Committee of the First Hospital of China 
Medical University. All of the written informed 
consent was obtained from all enrolled patients 
in this study.

CT protocol

The contrast administration of abdomen CT 
scans are patient specific and based on clinical 
guidelines [38]. All CT examinations performing 
with 64-row spiral CT scanners were acquired 
according to standardized scanning protocols 
[39]. CT manufacturers included Elscint, GE, 
Phillips, Siemens, and Toshiba. A 1.2-1.5 mL/
kg body weight bolus of iohexol was injected 
intravenously at a flow rate of 2.5 mL/s, fol-
lowed by a 20-30 mL saline flush. Patients were 
imaged in the supine position at full inspiration 
[40, 41]. Portal venous phase (PVP) was 
obtained 60-70 s after intravenous injection of 
contrast [42, 43]. The scanning parameters 
were as follows: tube voltage was 120 kVp 
(range 100-140 kVp), slice thickness was 2 
mm, matrix was 512 × 512, tube current was 
333 mA (range 100-752 mA), exposure time 
751 ms (range 500-1782 ms), a standard 
reconstruction algorithm.

All the steps are compliant to Image Biomarker 
Standardisation Initiative (IBSI) standard [44-
47]. All CT images are stored in the DICOM for-
mat. Visual inspection of each images was con-
ducted in advance to sending these images for 
radiomics analysis in order to ensure that col-
lected images are qualified for being used for 
analysis [48]. 

Segmentation

Radiomics extracts high-throughput quantita-
tive imaging features to perform subsequent 
data analysis related to target clinical outcome. 
The workflow of a typical radiomics process 
consists of four steps: tumor segmentation, 
feature extraction, score construction and 
score evaluation. 

Regions of interest (ROIs) in the portal venous 
phase (PVP) CT images were segmented with a 

three-dimensional semi-automatic segmenta-
tion method by two radiologists. Radiomics fea-
tures were extracted from within the defined 
ROI to quantify tumor intensity, shape and tex-
ture. Two semantic features (“micro-satellite” 
and the presence of metastatic lesions other 
than the liver and regional lymph nodes) were 
assessed by two radiologists. We constructed 
the semantic, radiomics and combined scores 
using seven machine learning algorithms. 
Three scores using ANN method showed the 
best predictive performance based on seman-
tic, radiomics and combined features. The per-
formances of the three constructed scores 
were assessed by the area under a receiver 
operating characteristic (ROC) curve followed 
by decision curve analysis.

PVP CT images were anonymized for all individ-
ual and institutional data and were labelled 
with a random number. Three-dimensional 
semi-automatic segmentation was performed 
by 2 radiologists with work experience of 9 
years, using the open-source 3D-Slicer soft-
ware (www.slicer.org). The metastatic liver 
lesions with the largest cross-sectional area 
and clear boundary were selected. First, the 
chosen liver lesions were contoured using soft 
tissue windows (window width: 350 HU, win- 
dow level: 40 HU) using a semi-automatic fast-
marching segmentation algorithm on all PVP 
images slice-by-slice for each patient, slightly 
along the visible borders of the lesion to include 
the entire lesion’s volume approximated [49]. 
Then the radiologists manually modified slice-
by-slice again to erase adjacent normal tis- 
sue or surrounding bile ducts. Thirdly, the final 
“ball” segmentation resulted as regions of 
interest (ROIs) were inspected by a senior radi-
ologist with 17 years of work experience. CT 
images in the DICOM format were imported into 
the 3D-Slicer software, subsequently the ROIs 
were exported into NRRD and MRML format for 
storage and further analysis [50].

Radiomics features preprocessing and selec-
tion

Radiomics features of the ROIs were extracted 
using Pyradiomics package in 3D-Slicer soft-
ware [51]. The extracted radiomics features 
could be divided into 3 kinds: first-order fea-
tures, shape-based features and textural fea-
tures. First-order features describe the distribu-
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tion of voxel intensities within the ROIs. Shape-
based features captured the direct-viewing 
characteristics of ROIs as two- and three-
dimensional size and shape. These features 
are independent from the gray level inten- 
sity distribution in the ROIs. Textural features 
were extracted based on five textural matrixes: 
(1) Gray Level Co-occurrence Matrix (GLCM),  
(2) Gray Level Size Zone Matrix (GLSZM), (3) 
Gray Level Run Length Matrix (GLRLM), (4) 
Neighbouring Gray Tone Difference Matrix 
(NGTDM) and (5) Gray Level Dependence Matrix 
(GLDM). Besides, we used a wavelet filter onto 
the original image in order to suppress noise 
and to extract detailed, high-dimensional 
radiomics feature [52].

Features with an exact same value in all 
patients, which were not discriminative, were 
excluded [53]. In order to verify the robustness 
and stability of the radiomics features, the 
intraclass correlation coefficient (ICC) and con-
cordance correlation coefficient (CCC) for every 
extracted radiomics features in 30 randomly 
selected ROIs were also calculated. To calcu-
late ICC, 2 radiologists with work experience of 
9 years performed the ROIs segmentation. 
Both of them knew about the diagnosis of 
CRLM but were blinded to the clinical or patho-
logical information. To calculate CCC, one radi-
ologist repeated the ROIs segmentation and 
radiomics features extraction twice in a two-
week period. Features with an ICC or CCC lower 
than 0.75 were excluded for subsequent 
analysis.

Semantic features

Two representative semantic features were 
also included in this study. Most of the seman-
tic features that have been reported in previous 
radomics-related studies on digestive tract 
cancers are the tumor size, whether the edges 
are clear, and whether there is a specific metas-
tasis [54, 55]. First, the tumor size has been 
included in the radiomics features that we have 
analyzed. Secondly, previous literature sug-
gested that lesions with too blurred edges 
would affect the accuracy of segmentation [49, 
56]. Therefore, based on the exclusion criteria 
in the study, we excluded patients with too 
blurred edges to delineate to maximize the 
accuracy of the segmentation. Thirdly, several 
studies have documented that the treatment 
options and prognosis are different among liver 

metastases and other metastases in colorectal 
cancer [57-61]. Therefore, we summarized the 
first semantic feature as the presence of meta-
static lesions other than the liver and regional 
lymph nodes. 

Besides, the relationship between RAS/BRAF 
mutation and positive resection margins has 
been widely investigated [15, 62]. Therefore, 
we summarized the second semantic feature, 
“micro-satellite” phenomenon, referred that a 
single large lesion is surrounded by multiple 
small lesions. Two radiologists with over 5 ye- 
ars of working experience independently re- 
viewed all pre-treatment CT images and as- 
sessed the presence or absence of two seman-
tic features.

Score construction and evaluation

Three scores were constructed to predict gene 
mutation status: a semantic score, a radiomics 
score and a combined score. The combined 
score integrated both of the radiomics and 
semantic features. In the training cohort, seven 
machine learning methods were used to con-
struct three scores predicting the gene muta-
tion status, including Artificial Neural Network 
(ANN), Gaussian Naive Bayes (GNB), K-Nearest 
Neighbors (KNN), Support Vector Machine 
(SVM), Logistic Regression, AdaBoost, Gradient 
Boost Classifier. The prediction performance of 
the three scores afforded by several methods 
was illustrated analyzing the area under the 
receiver operating characteristic (ROC) curve 
(AUC) in primary and validation datasets using 
“pROC” package in R. Delong validation was 
used to compare AUCs in different scores and 
determine whether they differed significantly. 
Besides, accuracy, sensitivity and specificity 
were calculated among different algorithms in 
primary and validation datasets. Decision curve 
analysis was performed to illustrate decision 
benefit using “Decision Curve” package in R. 
Among these seven algorithms, the algorithm 
with the best prediction performance was 
selected. 

Subgroup analysis

The subgroup analysis was conducted to 
assess whether the score had a better predic-
tive performance among a particular type of 
patient [63]. The evaluation of the algorithm 
with the best prediction performance in several 
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subgroups was conducted. Considering that 
RAS and BRAF mutations are not identical, we 
performed a subgroup analysis of patients with 
different mutant statuses in RAS and BRAF 
genes.

Analysis and comparison between different 
institutions

Since the entire cohort was acquired in mu- 
ltiple institutions, there were some differences 
which might directly affect the analysis of 
radiomics features between the two institu-
tions. Therefore, we compared the prediction 
performance among patients from the two 
institutions to evaluate the generality of the 
three scores. 

Statistical analysis

We used Pytorch (version 3.6.10) and R  
(version 3.5.3) for all statistical analysis. The 
Fisher’s exact test was used to determine 
whether the clinical-pathological and semantic 
variables differed significantly between the pri-
mary and validation sets. Two-sided p values < 
0.05 were considered statistically significant. 
Source code of statistical analysis can be 
accessed at: https://github.com/WissingChen/
DeepRadiomics.

Results

Patient characteristics

One hundred and forty-eight patients (92 men 
and 56 women, median age of 60 years, age 

summarized in Table 1. No significant differ-
ences in age, sex, mutation status of KRAS, 
NRAS and BRAF genes, micro-satellite or extra-
hepatic metastasis were detected between the 
primary and validation cohorts (P = 0.12-0.99). 
No significant differences between the wild-
type and mutant groups were found in the pri-
mary and validation datasets. Our study flow 
diagram is shown in Figure 2. 

Construction and validation of the three scores

Of the 888 extracted radiomics features, 37 
features with ICC and CCC lower than 0.75 were 
excluded from the subsequent analysis. Eight 
hundred and fifty-one features were retained 
for subsequent analysis. These radiomics fea-
tures were classified into four categories: first-
order features (N = 18), textural features (N = 
75), shape-based features (N = 14) and wave-
let features (N = 744). 

Amongst the seven machine learning methods, 
three scores (semantic, radiomics and com-
bined scores) using the ANN method showed 
the best predictive performance based on 
semantic, radiomics and combined features 
(Figures 3, S1 and Table S1). ANN fixed param-
eters of batch normalization and dropout layer, 
to reduce the possibility of overfitting and to 
guarantee the robustness of the radiomics 
features.

To evaluate the predictive performance, we 
applied the three scores based on the ANN 
algorithm in the primary and validation datas-
ets. The AUC value of the radiomics score 

Figure 1. Flow chart of the enrolled patients in the study.

ranging between 35-79 years) 
from the First Hospital of 
China Medical University and 
11 patients (5 men and 6 
women, median age of 56 
years, age ranging between 
42-75 years) from the First 
Affiliated Hospital of Jinzhou 
Medical University were re- 
cruited to the study. Figure  
1 shows the patient recruit-
ment process in this study. Of 
the 159 total patients, 124 
patients were randomly allo-
cated to the primary cohort, 
and 35 patients allocated to 
the validation cohort. The 
characteristics of the primary 
and validation cohorts are 
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reached 0.90 in the training dataset. After com-
bining the radiomics with the effective seman-
tic score, the predictive performance of the 
combined score was shown to be significantly 
improved with an AUC of 0.95 in the primary 
dataset and 0.79 in the validation dataset, 
showing the best discriminative efficacy (Figure 
4A and 4B). 

The best-performed combined score and both 
of the radiomics and semantic scores were 
compared. The DeLong’s test manifested a sig-
nificant difference in the primary and validation 
datasets with p values < 0.05, separately. The 
accuracies of the combined scores in the pri-
mary and validation cohorts were 0.87 and 

allow them to be distinguished from wild-type 
tumors. In this study, we mined and validated a 
combined score that tracks RAS (KRAS and 
NRAS) and BRAF mutant phenotypes in CRLM 
from CT image data. 

The steps used in this study attempt to strictly 
follow the radiomics quality score (RQS) pro-
posed by Lambin and colleagues [64]. We pro-
vided well-documented CT protocols, analysis 
of feature robustness, combination of semantic 
features, analysis of discrimination and calibra-
tion, and a comparison to the current gold stan-
dard. The process of semi-automatic segmen-
tation with 3D slicer was proven as a better 
substitution for manual segmentation during 

0.71, respectively. Decision cur- 
ve analysis indicated that the 
combined score could improve 
the benefit compared with the 
measures that treat all patients 
and treat no patients (Figure 4C 
and 4D).

Subgroup analysis

The performance of the com-
bined score in several subgroups 
was displayed in Table 2. The 
accuracy of the combined score 
was relatively high in these sub-
groups, especially in the patients 
with mutant status of RAS and 
BRAF genes.

Analysis and comparison be-
tween different institutions

The performances of the com-
bined score constructed using 
the ANN method were also eval-
uated amongst patients in two 
hospitals. The predictive perfor-
mances of the combined scores, 
in terms of AUC, accuracy, sensi-
tivity and specificity, were similar 
in cohorts of patients from both 
hospitals (Figure S2).

Discussion

Our analysis indicated that the 
lesions of RAS and BRAF mutant 
liver metastases exhibit radio- 
mics and semantic features that 

Table 1. Characteristics of patients in the primary and validation 
cohorts

Characteristics Primary Cohort 
(N = 124)

Validation Cohort
(N = 35) P Value

Age > .99 
    ≤ 55 45 (36.29%) 12 (34.29%)
    > 55 79 (63.71%) 23 (65.71%)
Sex 0.85 
    Woman 49 (39.52%) 13 (37.14%)
    Man 75 (60.48%) 22 (62.86%)
KRAS status > .99 
    Mutant 64 (51.61%) 18 (51.43%)
    Wild 60 (48.39%) 17 (48.57%)
NRAS status 0.12 
    Mutant 10 (8.06%) 0
    Wild 96 (77.42%) 30 (85.71%)
    NA 18 (14.52%) 5 (14.29%)
BRAF status 0.69 
    Mutant 7 (5.65%) 1 (2.86%)
    Wild 110 (88.71%) 32 (91.43%)
    NA 7 (5.65%) 2 (5.71%)
Microsatellite 0.15 
    No 83 (66.94%) 28 (80%)
    Yes 41 (33.06%) 7 (20%)
Extrahepatic Meta. 0.84 
    No 82 (66.13%) 24 (68.57%)
    Yes 42 (33.87%) 11 (31.43%)
Gene Status 0.57 
    Mutant 74 (59.68%) 19 (54.29%)
    Wild 50 (40.32%) 16 (45.71%)
Note: The p values derived from the Fisher’s exact test. “Micro-satellite” refers 
that a single large lesion is surrounded by multiple small lesions. “Extra-hepatic 
Meta”. refers to presence of metastatic lesions other than the liver and regional 
lymph nodes.
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Figure 2. Workflow of the necessary steps in this study. Regions of interest (ROIs) in the portal venous phase (PVP). CT images were segmented with a three-dimen-
sional, semi-automatic segmentation method by two radiologists. Radiomics features were extracted from the defined ROI to quantify tumor intensity, shape and 
texture. Two semantic features (“micro-satellite” and the presence of metastatic lesions other than the liver and regional lymph nodes) were assessed by two radi-
ologists. We constructed the semantic, radiomics and combined scores using seven machine learning algorithms. Three scores using the artificial neural network 
(ANN) method showed the best predictive performance based on semantic, radiomics and combined features. The performances of the three constructed scores 
were evaluated by the area under a receiver operating characteristic (ROC) curves followed by decision curve analysis.
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Figure 3. The ROC curves of the combined scores using seven methods in primary (A) and validation cohorts (B).
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quantification of radiomics features. This meth-
od of quantification could reduce uncertainty 
associated with tumor delineation and allowed 
more robust quantification of radiomics fea-
tures with reduced processing time [39, 65]. In 
recent studies, 3D image features have been 
shown to provide equivalent predictive perfor-
mance and better quantification of tumor het-
erogeneity compared to 2D image features [66-
68]. Of seven different machine learning meth-
ods, we selected a multi-layer perception, 
which constructed three scores with the best 
predictive performance. Multi-layer perception 
is a deep Artificial Neural Network (ANN) with 
modern techniques such as weight decay regu-
larization, Leaky Rectified Linear Units (ReLU) 
with batch normalization, dropout layer, 
Adaptive Moment Estimation (Adam), gradient 
clipping and learning rate scheduling. In the 
training cohort, we used a validation mode in 
PyTorch with L2 regularization to reduce the 
possibility of overfitting, and to guarantee the 
robustness of the radiomics features. Due to 
the fast convergence speed of ANN training 
and the large number of model parameters, it 
was potentially easy to overfit the data. The 
parameters with the best effect of validation 
set were selected as the saved model during 
the training process. The proposed combined 
score incorporating the radiomics and seman-
tic features exhibited favorable discrimination 
in both the primary and the validation cohorts 
which strongly supports the high reliability and 

repeatability of the data in supporting the con-
clusions from this study.

For patients with liver metastasis which may be 
resected after chemotherapy, the net benefit of 
prior chemotherapy versus prior resection 
remains uncertain, and these patients need to 
be treated individually. When balancing remain-
ing liver function and R0 resection, it is also 
unclear whether patients with CRLM harboring 
RAS and/or BRAF mutations should undergo 
chemotherapy to minimize the resection field 
and increase the resection margin whilst ensur-
ing acceptable remaining liver tissue function. 

In clinical practice, abdominal CECT is a routine 
method of evaluation for patients with CRLM. 
Thus, the combined score can be applied in 
almost any clinical setting where abdominal 
CECT is performed. Given these data, we con-
firmed the potential role of a non-invasive 
radiomics based method in aiding the subtle 
genomic evaluation in CRLM, especially for 
patients unfit for surgery or biopsy. According to 
National Comprehensive Cancer Network 
(NCCN) guidelines, the evaluation of RAS and 
BRAF mutations can be conducted on primary 
colorectal cancers or metastatic sites [69]. 
Previous studies have observed a high concor-
dance value (ranging between 96-100%) of 
RAS and BRAF mutations between primary 
colorectal tumors and corresponding liver 
metastases, as well as in multiple liver metas-

Figure 4. The ROC curves of the semantic, radiomics and combined scores using the ANN method in primary (A) and 
validation cohorts (B). Decision curve analysis for the three scores in the primary (C) and validation cohorts (D). The 
y-axis represents the net benefit and the x-axis denotes the threshold probability. 

Table 2. Performance of the combined score using the ANN method
Subset Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)
Training set 87.10 89.19 84.00 89.19 84.00
Validation set 71.43 69.57 75.00 84.21 56.25
Micro-satellite 89.58 91.18 85.71 93.94 80.00
No micro-satellite 81.08 80.95 81.25 85.00 76.47
Extra-heptic Meta. 86.79 92.11 73.33 89.74 78.57
No Extra-heptic Meta. 82.08 79.66 85.11 87.04 76.92
RAS Wild-type 78.57 21.05 100 100 77.27
RAS Mutant-type 87.50 87.50 * 100 *
BRAF Wild-type 83.10 81.71 85.00 88.16 77.27
BRAF Mutant-type 100.00 100.00 * 100 *
Note: ANN: artificial neural network; PPV: positive predictive value; NPV: negative predictive value. *According to the combined 
score, all patients were predicted to be mutant patients.
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tases [70-72]. The concordance of gene status 
was lower between primary lesion and lung 
metastases [73]. In the study, we selected a 
single liver metastasis as the ROI for analysis 
instead of the entire lesion, the primary CRC 
lesion or lung metastases. This approach could 
avoid deviation or poor repeatability caused by 
bowel movements and ensured the high con-
sistency of gene status.

Despite the advantages of using a validation 
cohort, our study had some limitations. Firstly, 
the data in this study were retrospectively  
collected. Secondly, the ANN algorithm itself 
limited the interpretability of the results. Pro- 
spective investigation using considerably larg- 
er datasets and more detailed subgroup analy-
sis is required to further validate the robust-
ness and reproducibility of our conclusions. 
Despite these limitations, we believe the find-
ings are robust and scalable to larger patient 
populations.

In conclusion, RAS (KRAS and NRAS) and BRAF 
mutated tumors show discriminative CT radio- 
mics features that, when combined with se- 
mantic features, can aid the prediction of 
tumors harboring RAS and BRAF mutations to 
ultimately improve patient stratification and 
individualized treatments. Furthermore, we aim 
to successfully translate this understanding 
into clinical practice by allowing oncologists 
and surgeons to gain critical information regard-
ing the molecular subtype of CRC, that can be 
adopted to directly inform better decision mak-
ing in the clinic. These results have promising 
implications, radiomics and semantic features 
will require further validation in larger patient 
cohorts.
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Figure S1. The ROC curves of the semantic (A, B) and radiomics scores (C, D) using seven methods in the primary 
(A, C) and validation cohorts (B, D). Note: ANN: artificial neural network; KNN: K-Nearest Neighbors; SVM: Support 
Vector Machine.
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Table S1. Performance of combined score using different methods
Methods Cohorts Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)
ANN Training cohort 87.10 89.19 84.00 89.19 84.00

Validation cohort 71.43 69.57 75.00 84.21 56.25
Bayes Training cohort 68.55 68.82 67.74 86.49 42.00

Validation cohort 54.29 55.17 50.00 84.21 18.75
KNN Training cohort 63.71 63.81 63.16 90.54 24.00

Validation cohort 62.86 60.00 80.00 94.74 25.00
SVM Training cohort 65.32 63.96 76.92 95.95 20.00

Validation cohort 60.00 58.06 75.00 94.74 18.75
Logistic Regression Training cohort 60.48 60.16 100 100 2.00

Validation cohort 57.14 55.88 100 100 6.25
AdaBoost Training cohort 73.39 70.71 84.00 94.59 42.00

Validation cohort 60.00 58.06 75.00 94.74 18.75
Gradient Boosting Training cohort 75.81 71.15 100 100 40.00

Validation cohort 57.14 56.25 66.67 94.74 12.50
Note: PPV: positive predictive value; NPV: negative predictive value; ANN: artificial neural network; KNN: K-Nearest Neighbors; 
SVM: Support Vector Machine.
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Figure S2. The predictive performance of the combined score amongst patients from different hospitals. The ROC curves of the combined score using the ANN 
method among patients from one hospital (A) and another hospital (C). (B) The accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predic-
tive value (NPV) of the combined score. The right volume refers to one hospital and the left volume represents another hospital. 


