Erratum

Preclinical investigation of ovatodiolide as a potential inhibitor of colon cancer stem cells via downregulating sphere-derived exosomal β-catenin/STAT3/miR-1246 cargoes: Am J Cancer Res. 2020; 10(8): 2337-2354

Yan-Jiun Huang^{1,2,3}, Tse-Hung Huang^{4,5,6}, Vijesh Kumar Yadav^{7,8}, Maryam Rachmawati Sumitra⁹, David TW Tzeng¹⁰, Po-Li Wei^{1,2}, Jing-Wen Shih^{9,11,12,13}, Alexander TH Wu^{11,13,14}

¹Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan; ²Department of Surgery, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; ³School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; ⁴Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan; ⁵School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 204, Taiwan; ⁶School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 23741, Taiwan; ⁷The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; ⁸Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University of Hong Kong, Hong Kong, China; ¹¹The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; ¹²Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei Medical University, Taipei 110, Taiwan; ¹³Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan; ¹⁴Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan

Received November 4, 2020; Accepted November 12, 2020; Epub December 1, 2020; Published December 15, 2020

The legends in **Figure 4B** were incorrectly labeled. The dotted lines were labeled as HCT116 (+Exo^{sp}_OV) and HT29 (+Exo^{sp}_OV), respectively. They should have been HCT116 (+Exo^{sp}) and HT29 (+Exo^{sp}).

Address correspondence to: Dr. Jing-Wen Shih, Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology,

Taipei Medical University, Taipei 110, Taiwan. Tel: +886-2-2697-2035 Ext. 158; E-mail: shihjw@tmu. edu.tw; Dr. Alexander TH Wu, The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan. Tel: +886-2-2697-2035 Ext. 112; E-mail: chaw1211@tmu.edu.tw

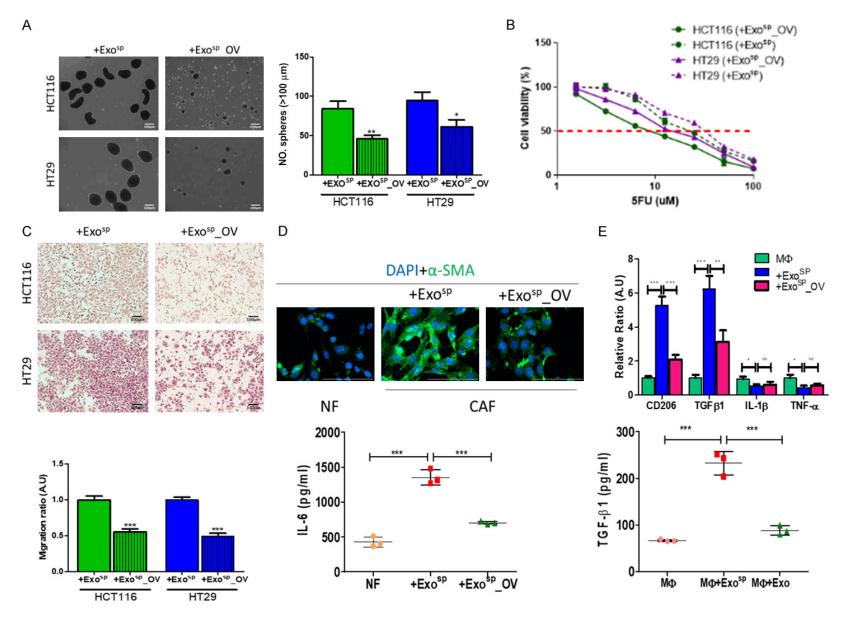


Figure 4. Ovatodiolide treatment resulted in less oncogenic exosomes produced by colon cancer tumorspheres. Exosomes, isolated from tumorspheres generated from ovatodiolide-treated (Exo^{sp}) HCT116 and HT29, showed a significantly reduced ability to promote tumorsphere formation (A), 5-FU resistance (B), and migra-

Ovatodiolide suppresses colon cancer stem cells

tion (C) when co-cultured with parental HCT116 and HT29 cells. (D) Exo^{sp} cultured normal fibroblasts (NF) showed a lower a-SMA expression (upper panel) and reduced amount of IL-6 released (lower panel) as compared to their Exo^{sp} cultured counterparts. (E) Real-time PCR analysis of M1 M2 markers post macrophages co-cultured with Exo^{sp} and Exo^{sp} (upper panel). Comparative ELISA of TGF- β 1 released by macrophages after co-cultured with Exo^{sp} and Exo^{sp} (lower panel). M Φ , uncommitted macrophages; M1 TAM markers, TNF- α , IL-1 β ; M2 TAM markers, CD206, TGF- β 1. a, P<0.001; b, P<0.01; NS, no significant difference (all compared to M Φ). *P<0.05; **P<0.01; ***P<0.001.