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Abstract: The human microbiome, often termed as “the forgotten organ”, is an aggregation of microorganisms and 
their genomes that forms a mutualistic complex with the host. Recent research has shown the symbiotic merits of 
a microbiome ecosystem and its crucial role in the hosts’ physiological functions. Disruption of this symbiotic rela-
tionship is prone to cause a broad spectrum of ailments, including cancer. The compositional and environmental 
factors that tip the scales from beneficial co-existence to the development of malignancy is actively investigated. 
Herein we review the latest research in knowledge regarding the association between the vaginal microbiomes and 
oncogenesis, with a particular focus on ovarian carcinoma.
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Introduction

The human microbiota is a consortium of bac-
teria that reside within different body sites and 
ecological niches, whereas the human microbi-
ome is the collective genomes of all microbial 
species and their environment [1]. The plurality 
of these microbiotas subsists in a mutualistic 
association with their human host. Human 
microbiota has demonstrated a crucial role in 
our body’s immunity, metabolism, and endo-
crine [2, 3]. Given the emphasis on microbi-
omes in gastrointestinal disease development 
[4], recent studies are beginning to support  
the interactive role of vaginal microbiomes in 
gynecological diseases. For example, Prevo- 
tella species are often associated with bacteri-
al vaginosis and cervicitis [5, 6], while vaginal 
bacterial communities dominated by Lactoba- 
cillus gasseri are correlated with increased 
clearance of HPV infection [7]. Lactobacillus 
iners are linked to an increased risk for Chla- 
mydia trachomatis infection and also prevails 
in the occurrence of HPV infection and cervical 
intraepithelial neoplasia (CIN) [8-10]. Despite 
progress in understanding the role of the  
microbiomes in cervical cancer, investigations 
regarding the role of microbiome in ovarian 
cancers are limited. Ovarian cancer is the fifth 

most commonly diagnosed cancer among 
women in the United States [11]. Among them, 
ovarian cancer accounts for more death than 
any other reproductive cancer, with an estimat-
ed 22,530 new cases and nearly 13,980 death 
in 2019. Despite the high prevalence and public 
health significance, the etiology of this disease 
remains largely elusive. 

Microbiomes are essential in the prevention of 
pathogen invasion; therefore disruption of the 
dynamics between the microbiome and the 
host vaginal ecosystem is prone to cause vagi-
nal tract infection and cancer [12]. In this 
review, we discuss the possible roles of vaginal 
microbiota in carcinogenesis, highlighting the 
relationship of micro-organisms and viral infec-
tion in ovarian cancer.

Vaginal microbiota: an overview

Although the physiological role of the gut micro-
biota has been explored for decades [13], 
investigations of microbial compositions have 
recently extended to the female reproductive 
system (Table 1). Through molecular amplifica-
tion techniques such as qPCR and DNA 
sequencing, studies have identified lactic acid-
producing Lactobacillus crispatus, L. gasseri, L. 

http://www.ajcr.us


Vaginal microbiomes and ovarian cancer: a review

744	 Am J Cancer Res 2020;10(3):743-756

Table 1. Summary of major microbiome studies involving gynecological cancers 
Author Disease Microbiome specimen Year Microbiome evaluation Microbial change 
Shannon HPV infection Endocervical cytobrushes 2017 16S rRNA sequencing ↑Anaerobes

↓L. gasseri, Fusobacterium nucleatum

Brotman HPV infection Midvaginal swabs 2014 16S rRNA sequencing ↓Lactobacillus spp.

Chao HPV infection Posterior vaginal fornix 2019 16S rRNA sequencing ↑Leptotrichia and Prevetella 
↓ Lactobacillus spp.

Lee HPV infection Endocervical brush 2013 16S rRNA sequencing ↑Sneathia spp.

Paola HPV persistence Cervico-vaginal samples 2017 16S rRNA sequencing ↑Atopobium spp., G. vaginalis

Wu HPV persistence Cyto-brush 2018 16S rRNA sequencing ↑Prevotella, Dialister

Adebamowo HPV persistence Mid-vaginal swabs 2017 16S rRNA sequencing ↑Mycoplasma hominis

Piyathilake HSIL Merocel ophthalmic spong-
es placed in cervical os

2016 16S rRNA sequencing ↑L. iners

Kwasniewski LSIL Cervical swabs 2018 16S rRNA sequencing ↑L. acidophilus, L. iners 
↓L. crispatus

Kwasniewski HSIL Cervical swabs 2018 16S rRNA sequencing ↑G. vaginalis , L. acidophilus 
↓L. crispatus, L. taiwanensis, L. iners

Oh CIN Cervical Sampler Brush 2015 16S rRNA sequencing ↑A. vaginae, L. iners, G. vaginalis 
↓L. crispatus

Godoy-Vitorino CIN Cervical samples (poste-
rior fornix)

2018 16S rRNA sequencing ↑A. vaginae, G. vaginalis

Bhatla Cervical cancer Cytobrush 2013 16S rRNA sequencing ↑C. trachomatis

Zhao Ovarian cancer Fresh ovarian cancer 
tissues 

2019 16S rRNA sequencing and 
qPCR

↑Proteobacteria, Firmicute

Banerjee Ovarian cancer Ovarian cancer tissue 2017 PathoChip Array ↑Proteobacteria, Firmicutes, Brucella, 
Chlamydia, Mycoplasma

Emara Ovarian cancer Ovarian cystic fluid and 
ovarian cancer tissue

2007 ovarian cystic fluid culture ↑Brucella

Shanmughapriya Ovarian cancer Fresh ovarian tissues 2012 nested PCR-based assay ↑Chlamydia

Chan Ovarian cancer Human ovarian cancer 
tissue

2012 PCR-ELISA ↑Mycoplasma

Trabert Ovarian cancer Serum samples 2018 multiplex, fluorescent bead-
based assay 

↑C. trachomatis

Di Giovanni Ovarian cancer Ovarian cancer tissue 2016 Bacterialogical Culture ↑Mycobacterium spp.

Nene Ovarian cancer Cervical smear samples 2019 16S rRNA sequencing and 
qPCR

↓Lactobacillus spp.

Ness Ovarian cancer Blood samples 2003 Serologic testing for IgG 
antibodies 

↑Chlamydia

Walther Endometrial 
cancer

Vaginal and cervical swabs  2017 16S rRNA sequencing and 
qPCR

↑A. vaginae, Porphyromonas spp. 

Hokenstad Endometrial 
cancer

Vaginal and cervical swabs  2017 RT-PCR, FISH ↑Porphyromonas somerae

iners and Lactobacillus jensenii, which domi-
nate the vaginal communities of most repro-
ductive-age healthy women [14]. Besides the 
Lactobacillus genus, a heterogeneous group of 
strictly anaerobic bacteria was also reported, 
including Prevotella, Atopobium, Gardnerella, 
Dialister, Sneathia, Megasphaera, Peptoniphi- 
lus, Finegoldia, Eggerthella, and Aerococcus. 
[15]. These microbial florae were classified as 
five main community state types (CSTs) by 
Ravel et al. [15].

The vaginal microbiota is diverse in population 
and ethnicity. A healthy vagina microbiome  
was previously thought to be dominated by 

Lactobacillus species [16]. However, advanced 
technologies and additional studies using an 
ethnically diverse cohort of women have 
revealed a more complex landscape [15, 17]. 
Some studies indicated that the vaginal micro-
biomes in some healthy women are composed 
of Gardnerella, Atopobium, Prevotella, Pseu- 
domonas, or Streptococcus species rather 
than Lactobacillus [18]. A study evaluated the 
microbiota composition of the six largest ethnic 
groups (African Surinamese, Dutch, Ghanaian, 
Moroccan, South-Asian Surinamese, and Tur- 
kish) in Amsterdam, the results showed African 
Surinamese ethnicity, and Ghanaian ethnicity 
were correlated with vaginal microbiotas con-
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taining Gardnerella vaginalis, and African Sur- 
inamese ethnicity with vaginal microbiotas do- 
minated by L. iners [19]. Ravel et al. [20] studi-
ed the vaginal microbiome of 396 North Am- 
erican women from four ethnic backgrounds 
(Asian, Black, Hispanic, and White). Their study 
showed a significant discrepancy in vaginal 
microbiome composition. Vaginal bacterial co- 
mmunities dominated by species of Lactobaci- 
llus were found in 89.7% and 80.2% of White 
and Asian women, but in only 59.6% and 61.9% 
of Hispanic and black women. In contrast, a 
lower prevalence of communities dominated by 
Lactobacillus spp. was seen in Hispanic and 
black women. Another research showed that L. 
iners, L. jensenii, and G. vaginalis were preva-
lent in Canadian women [21]. Similarly, the 
study on Belgian women observed a prevalence 
of L. crispatus, L. iners, and Prevotella [22]. 
These observational reports further illuminate 
the broad spectrum of vaginal microbiota com-
position across different demographic back- 
grounds.

A healthy vaginal microbiome is considered the 
first line of defense. Lactobacillus up-regulates 
tight junction proteins that inhibit pathogen 
migration and improves epithelial integrity. The 
possibility of controlling pathogenesis by co-
aggregating Lactobacillus with pathogens and 
thereby tying up the latter’s ability to spread 
across surfaces, or by interfering with virulence 
expression such as the production of toxins, 
has also been considered [23]. In addition, L. 
crispatus and L. jensenii could minimize the 
effect of inflammation through inhibiting the 
release of pro-inflammatory mediators from 
vaginal epithelial cells [24]. The metabolites of 
the Lactobacillus species, besides lactic acid 
and other acidic compounds, hydrogen perox-
ide, and bacteriocin-like compounds, may be 
pivotal to cervicovaginal homeostasis [25].

Changes in vaginal microbiomes are associat-
ed with host reproductive fitness. A recent 
study on sub-Saharan African women found 
significant differences in vaginal community 
composition in those developing bacterial vagi-
nosis. Of these women, the composition of the 
Lactobacillus genus and Lactobacillus vagina-
lis were significantly lower, and the composition 
of G. vaginalis, A. vaginae, and P. bivia were 
higher after developing bacterial vaginosis [26]. 

Recent research also identified Mycoplasma 
genitalium as a possible cause for pelvic inflam-
matory disease (PID), a contributor to epithelial 
ovarian cancer [27]. Alterations in the vaginal 
composition are associated with bacterial dys-
biosis, which could give rise to cancer-promot-
ing virulence factors.

Vaginal microbiomes and gynecological 
cancer

Ovarian cancer

Ovarian cancer is a major threat to female 
health, ranking seventh in the most commonly 
diagnosed cancer among women worldwide 
[28]. The early stage of the disease is often 
asymptomatic, and most patients remain undi-
agnosed until advanced stages of cancer [29], 
thus finding specific biomarkers for early diag-
nosis is of utmost importance. Despite well-
characterized risk factors (e.g., family history, 
age, inflammation, reproductive factors, benign 
gynecologic conditions, and gynecologic sur-
gery) and genetic susceptibility (e.g., mutations 
in BRCA1 and BRCA2 genes) [28, 30], its etiol-
ogy is not fully understood. Recent studies 
have indicated that many microorganisms are 
involved in the development of ovarian cancer 
(Figure 1A) [31, 32]. Zhao [33] and colleagues 
compared ovarian cancer tissue sample (n = 
25) with tissues from normal distal fallopian 
tubes (n = 25) using 16s RNA sequencing. 
Comparatively, the microbiome diversity and 
richness was significantly decreased in the 
ovarian cancer samples. At the phylum level, a 
significant increase in Proteobacteria and Fir- 
micutes abundance was seen in ovarian can- 
cer tissue samples, suggesting an association 
between microbiome compositional change 
and ovarian cancer development (Figure 2). 
Similarly, in a study by Banerjee et al. [34], a 
microarray-based approach was applied to 
identify microbial signatures unique to ovarian 
cancer. Specifically, two predominant bacterial 
phyla were detected, consisting of Proteoba- 
cteria (52%) and Firmicutes (22%). Additionally, 
they detected Brucella, Chlamydia, and Myco- 
plasma in over 60% of the ovarian cancer  
sample screened. Their finding is consistent 
with previous investigations, also highlighting 
an enrichment of Brucella [35], Chamydia [36], 
and Mycoplasma [37] in ovarian cancer tis-
sues. Researches investigating the role of M. 
genitalium, C. trachomatis, or Neisseria gonor-
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Figure 1. Interactions between female reproductive tract microbiota and the development of ovarian cancer. A. 
Microbiome compositional alterations in both ovarian and cervicovaginal mircroenvironment have been shown to 
correlate with the occurence of ovarian cancer. B. HPV genotypes may contribute to ovarian cancer progression. C. 
PID is related to the etiology of ovarian carcinoma, specifically pathogens like Chlamydia are associated with higher 
risk of developing ovarian cancer. 

rhoeae in ovarian cancer suggest a relationship 
between these microbes and the development 
of ovarian cancer. A multicenter study evaluat-
ed more than 1,100 samples collected from 
the association of the serologic markers of C. 
trachomatis and ovarian cancer in two sepa-
rate populations. One is a case-control study  
in Poland containing 800 subjects, and anoth- 
er is a prospective case-control study in the 
Prostate, Lung, Colorectal, and Ovarian (PLCO) 
Cancer Screening Trial consisting of 319 sub-
jects. They found an association between dou-
bled ovarian cancer risk with Pgp3, the anti- 
bodies against Chlamydia plasmid-encoded 
protein, also the gold standard in determining 
Chlamydia infection [38]. There is also a re- 
port of endometrial tuberculosis stimulating 
ovarian cancer [39]. Nevertheless, contradic-
tory results were reported, which found no po- 
sitive indications for the presence of C tracho-
matis, N. Gonorrhoeae, M genitalium, and HPV 
from a cohort of 186 women with ovarian can-
cer, borderline tumors, or benign conditions 
[40]. The variance of the sample probably le- 
ads to inconsistent results, since ovarian can-
cer exhibits various histologic types and differs 
from pathogenesis and tumor microenviron-
ment [41]. 

More recently, Martin and colleagues, utilizing 
16s RNA, compared the cervicovaginal micro-
bial profile of patients with ovarian cancer or 
patients with BRCA1 mutations with healthy 
matched controls. Identified microorganism 
compositions were then classified based on 
Lactobacilli species proportion. Those in which 
Lactobacilli species accounted for at least 50% 
were labeled community type L, and vice ver- 
sa community type O. This study demonstrated 
that ovarian cancer or its risk factors (i.e., age 
and BRCA mutations) is significantly correlated 
with a community type O cervicovaginal micro-
biota [32]. These finds suggest cervicovaginal 
microbiota dysbiosis may play a role in ovarian 
cancer tumorigenesis. However, whether such 
dysbiosis could be altered through the re-
installment of community type L microbiome 
[32], or whether changes in microbiome com-
position could translate into ovarian cancer 
protection, remains to be investigated.

The association between ovarian cancer and 
hrHPV were extensively studied, despite incon-
sistent results (Figure 1B). HPV was found 
associated with malignant transformation of 
mature cystic teratoma (MCT) into primary 
squamous cell carcinoma (SCC) [42]. A recent 
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Figure 2. Phylogenetic tree summarizing established links between female reproductive tract microbiome and gynecological cancers. We constructed a phylogenetic 
tree using evolutionary distance with phyloT software [95] to describe the phylogenetic similarity of all microbiome reported to be associated with gynecological 
cancer in human studies. From the inside out, representing from the wider (kingdom) to the more specific (species) taxonomy. Based on the phenotype of the various 
studies included, the bacterial taxonomy is labeled according to the source of publication (colored dots) and shaded (OC = ovarian cancer, light red; CC = cervical 
cancer, light yellow; EC = endometrial cancer, light blue) based on the cancer types.
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study was conducted in Hunan province to 
investigate the prevalence of HPV infection in 
epithelial ovarian cancer (EOC). They found 
HPV18 was positive in 7.76% malignant EOC 
patients, 9.09% in benign ovarian cancers, 
while only 1.01% in healthy persons. HPV33 
was positive in 12.11% of malignant EOC sam-
ples, and 6.06% benign samples, whereas 
merely 1.51% in healthy people. These results 
showed a high correlation of HPV 18 and 33 
with the ovarian cancer development [43]. 
Another study achieved similar results that HPV 
infection was associated with advanced stages 
of ovarian cancer [44]. In this study, HPV was 
detected in 10% EOC cases, with the most 
prevalent genotypes being HPV16 and 18 fol-
lowed by HPV33. For patients infected with 
HR-HPV genotypes, they also suggested the 
CADM1, MAL, PAX1, and ADCYAP1 genes pro-
moter hypermethylation as one of the possible 
mechanisms contributing to ovarian carcino-
genesis. Sangria banerjee [34] detected mo- 
lecular signatures of both high-risk HPV16 and 
18, along low-risk HPVs in the ovarian cancer 
samples. They found only low-risk HPVs were 
related to tumor-negative controls, implicating 
that hrHPV might be the origin of cancer. 
Interestingly, they observed widespread inte-
gration of viral sequences into various intronic 
regions, or at intergenic regions within 56 kb 
upstream of numerous cancer-related human 
genes. HPV integrations of E1 or E2 regions 
were reported to inactivate the transcription. 
However, a system-level analysis is further 
needed to understand the functional interac-
tion between specific phenotypic traits of the 
microbiome in different ovarian cancer sub-
types and HPV infection. 

Pelvic inflammatory disease (PID) is widely 
established as a risk factor for epithelial ovari-
an cancer (Figure 1C) [45]. Among the organ-
isms responsible for PID onset, Chlamydia is 
the most common, followed by Nesseria gonor-
rhea [46, 47]. Previous studies have found th- 
at antibodies against Chlamydia infection are 
associated with ovarian cancer [48]. More 
recently, Trabert [38] and colleagues evaluated 
the associations between serologic markers 
and ovarian cancer risk in two independent 
populations. Specifically, in a Polish case-con-
trol study (244 ovarian cancer/566 control  
subject), antibodies against Chlamydia (Pgp3 
protein) were associated with an elevation in 

ovarian cancer risk (OR = 1.63, 95% [CI] : 1.20 
to 2.22). Similarly, in another case-control 
study in the PLCO Cancer Screening Trial (160 
ovarian cancers/159 control subjects), Pgp3 
antibodies were also found to be associated 
with increased ovarian cancer risk (OR = 1.43, 
95% [CI] : 0.78 to 2.63). However, in both stud-
ies, no associations were found between anti-
bodies against other infectious agents and 
ovarian cancer. Meanwhile, accumulated stud-
ies have ascribed PID to mixed infections by 
organisms in the vaginal, including pathogenic 
microorganisms responsible for bacterial vagi-
nosis [46, 49-51]. These microbiomes are 
linked to the etiology of PID and could thus con-
tribute to the development of ovarian cancer. 

Cervical cancer

Cervical cancer ranks second in the cause  
of cancer death in women between 20 to 39 
years old [11]. Human Papillomavirus (HPV) 
persistent infection is pivotal for cervical carci-
nogenesis. Despite being the most pervasive 
sexually transmitted infection (STI) worldwide, 
the majority of 100 subtypes of HPV are non-
carcinogenic. However, there are at least 13 
high-risk subtypes involved in the pathogenes- 
is of malignancies [52, 53]. Of these subtypes, 
HPV16 and HPV18 are the most prevalent and 
account for 70% of the cases [54]. Interestingly, 
a recent study showed that specific cervicovag-
inal microbiota composition correlated with the 
acquisition of high-risk HPV (hrHPV) types [55].

Some studies suggest that dysbiosis occurs in 
HPV infection, and a broad microbial altera- 
tion pattern was revealed a reduction of La- 
ctobacillus spp. The diminution of these com-
mensal microbes is concomitant with a loss of 
their protective capabilities and could yield a 
substantial impact on the onset and progres-
sion of the disease. The ability of commensal 
microbes to produce lactic acid is a crucial  
benefit to the women’s genital tract. Lactic acid 
acidifies the vaginal environment, benefiting 
the proliferation of Lactobacillus while inhibit-
ing the growth of infection-associated organ-
isms. In a recent study, Shannon and co-worker 
[7] studied a cohort of 65 African/Caribbean 
women to assess microbiome composition  
and structure through 16S rRNA sequencing. 
They concluded that participants with HPV 
infection are associated with a vaginal micro- 
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biome consistent with CST-IV, characterized by 
a paucity of Lactobacillus spp. and a wide array 
of anaerobes (58.8% vs. 29.4%; P = 0.043). 
They also observed a step-wise lowering in  
the relative abundance of L. gasseri, Fuso- 
bacterium nucleatum, Cornybacterium acco-
lens, Anaerococcus tetradius, Finegoldia ma- 
gna, Peptoniphilus harei, and Raoultella planti-
cola. This result is in accordance with previous 
observations that women with hrHPV infecti- 
ons have decreased the abundance of La- 
ctobacillus spp [56]. Meanwhile, another study 
carried out on Nigerian women also suggested 
a correlation between hrHPV infection and a 
decreased concentration of Lactobacillus spp 
[57]. This association is also linked with an 
increased correlation of anaerobes, particularly 
of the genera Leptotrichia and Prevotella [58]. 
The relative abundance of Sneathia spp. in per-
sons with HPV infection is increased. A Korean 
twin study by Lee et al. [59] found an abun-
dance of Sneathia spp. in HPV positive groups, 
emphasizing its potential as a biomarker for the 
prediction of HPV infection. Another study also 
identified Sneathia spp. as the most copious 
species in the cervix of women with squamous 
intraepithelial lesion and associated the pres-
ence of Sneathia spp. with HPV-positive squa-
mous intraepithelial lesion [60]. Alterations of 
these bacterial populations and concomitant 
variability of lactic acid production may have 
profound results on host regulation of inflam- 
mation.

Persistent HPV infection could result in pre- 
cancerous lesions in the female genital tract 
[61]. A recent study conducted by Paola and 
colleagues [62] used next-generation sequenc-
ing to examine cervicovaginal microbiota in 55 
HPV positive women. They found the abun-
dance of CST IV subgroup, including bacterial 
genera such as Prevotella, Gardnerella, Ato- 
pobium, Megasphoera, strongly correlated with 
HPV persistence. This study also identified 
Atopobium spp. and sialidase gene from G. vag-
inalis as feasible microbial markers for HPV 
persistence. Wu [63] also found 22 taxa to be 
associated with HPV persistence, and of these, 
5 taxa belong to Prevotella and 1 taxon belongs 
to Dialister. Likewise, another study examined 
194 Nigerian women and identified a strong 
correlation between persistent Mycoplasma 
hominis infection and persistent hrHPV (OR 
8.78, 95%, P 0.01) [64]. Only small amounts of 

women would have persistent HPV infection 
and progress to cervical lesions [65] and the 
vaginal microbiome might play a role during this 
process. HPV infection has adversary impact 
on the host’s immune defenses and mucosal 
metabolism. This leads to the dysbiosis of the 
vaginal microbiota, and thus promoting viral 
persistence and disease progression [66]. 
Further longitudinal studies are needed to 
investigate whether and how the microbiome 
helps maintain the persistent infection and 
develop to CIN or cervical cancer. 

Microbiomes also directly linked to cervical 
cancer (Figure 2). Studies to date have docu-
mented an overall increase in diversity. Mitra et 
al. [67] suggest that cervical intraepithelial 
neoplasia (CIN) progression is correlated with 
increasing vaginal microbiota diversity. This 
increased diversity was possibly because of  
the epithelial barrier rupture and the host’s 
immune dysregulation. Lactobacillus is the 
most abundant genus in vaginal microbiotas 
and can affect the host dichotomously. While 
the abundance of some Lactobacillus spp. is 
reduced in cervical cancer or precancerous  
diseases. A cervical microbiome characterized 
by a prevalence of L. iners is associated with 
high-grade cervical intraepithelial neoplasia in 
women infected with hrHPVs [8]. A more re- 
cent study observed that women with low-
grade squamous intraepithelial lesion (LSIL) 
were characterized by high prevalence of 
Lactobacillus acidophilus and L. iners, and no 
presence of L. crispatus. In contrast, women 
with high-grade squamous intraepithelial le- 
sion (HSIL) were marked with high proportion of 
G. vaginalis and L. acidophilus, and no L. cris-
patus, Lactobacillus taiwanensis, or L. iners 
detected [68]. Pathogenic bacteria, including  
A. vaginae, G. vaginalis are increasingly 
observed in CIN or cervical cancer. Oh et al. 
[69] studied the cervical microbiota of a Ko- 
rean cohort of 120 women, 70 with CIN and  
50 as the control. The investigators observed  
a predominance of A. vaginae, L. iners, G. vagi-
nalis and an accompanied dearth of L. crispa-
tus in women with high CIN risk. This result is in 
accordance with another study that enrichment 
of A. vaginae and G. vaginalis was found in 
patients with CIN3 [70]. Other pathogens, such 
as C. trachomatis, has also been identified as a 
cofactor of carcinogenesis, with a higher rate of 
infection in patients with cervical cancer [71, 
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72]. Though the results are inconsistent among 
published studies [73], partly owing to speci-
men variance or analysis methods. Associati- 
ons were established both for single and multi-
ple hrHPV genotype infections, supporting the 
hypothesis that a C. trachomatis infection  
contributes to cervical cancer, together with 
inflammation and HPV [74]. These non-com-
mensal microbiotas may induce inflammatory 
cytokines, especially in coinfection with HPV. 
However, how inflammatory cytokines induced 
by these non-commensal microbiotas are as- 
sociated with cervical cancer progression 
needs further elucidation.

Endometrial cancer

Researches have also identified potential mi- 
crobiotas contributing to the genesis of endo-
metrial cancer (Figure 2). A recently identified 
A. vaginae and Porphyromonas spp. in the 
reproductive tract in combination with a high 
vaginal pH to be statistically related to the 
occurrence of endometrial cancer [75]. It was 
further demonstrated that Porphyromonas 
spp. combined with high pH in the vagina could 
be a promising biomarker for endometrial can-
cer [76]. These findings are significant, as they 
put forth a promising biomarker for early de- 
tection and pave the way for possible primary 
preventive interventions. Molecular mechani- 
sms underlying the interaction between micro-
biome and pathogenesis of endometrial cancer 
still need elucidation.

Manipulation of the microbiome in gyneco-
logical cancer therapeutics

Chemotherapy resistance has long been a 
problem for patients with ovarian cancer. We 
previously found Helicase POLQ-like (HELQ) as 
a promising indicator of cisplatin chemo-re- 
sistance for epithelial ovarian cancer [77]. Re- 
cently, growing evidence implicates that human 
microbiomes influence cancer therapy mainly 
through two aspects: modulating cancer thera-
peutic response and mediating treatment-re- 
lated toxity [78]. In preclinical models, the 
response to oxaliplatin depends on the expr- 
ession of proinflammatory genes of the micro-
bial flora and the generation of reactive oxygen 
species by myeloid cells in the tumor microenvi-
ronment [79]. Contrarily, the response to gem-
citabine can be compromised by Mycoplasma, 
through its pyrimidine nucleoside phosphory-

lase and cytidine deaminase enzymes, which 
influences cytostatic activity [80]. For some 
patients with recurrent or persistent, metastat-
ic gynecological cancer, programmed cell de- 
ath-1/programmed cell death-ligand 1 (PD-1/
PD-L1) inhibitors are a possible choice to 
enhance the clinical outcomes [81]. Recent 
progress has emphasized the role of the mi- 
crobiome in regulating tumor responses to  
chemotherapeutic agents as well as immuno-
therapies targeting PD-L1 or cytotoxic T lym-
phocyte-associated protein 4 (CTLA-4) [82]. 
Furthermore, Routy et al. [83] showed that 
antibiotic usage is associated with abnormal 
responses to immunotherapeutic PD-1 blo- 
ckade. Through profiling samples from lung  
and kidney cancer patients, they found that 
patients nonresponding to PD-1 inhibitors had 
lower levels of the bacterium Akkermansia 
muciniphila. After oral supplementation of bac-
teria in antibiotic-treated mice, response to 
immunotherapy was restored. Matson et al. 
[84] and Gopalakrishnan et al. [85] studied 
PD-1 blockade in melanoma patients and fo- 
und a higher concentration of favorable bacte-
ria in the guts of responding patients. They also 
found an imbalance of gut flora composition  
in nonresponders, which is associated with 
impaired immune cell activity. These observa-
tions are in conjunction with the hypothesis 
that the microbiome may play an important role 
in immunotherapy. However, whether or not 
cervicovaginal microbiotas could influence the 
efficacy of chemotherapy in gynecological can-
cers still needs to be investigated. 

Manipulation of the vaginal microbiota is es- 
sential for women’s health. Probiotic L. rham-
nosus GR-1 was shown to mediate adhesion to 
the vaginal epithelium and mediates the atta- 
chment of urogenital pathogens [86]. Studies 
indicate that strains of Lactobacillus can inhi- 
bit the growth of G. vaginalis [87]. L. crispatus 
has also demonstrated potentials as a hopeful 
probiotic in preventing N. gonorrhoeae infec-
tions through counteracting N. gonorrhoeae 
viability [88]. Recently, a research implement-
ing L. rhamnosus BMX 54 in 57 women for at 
least 6 months has shown positive outcomes  
in controlling HPV infection [89]. Additional 
research shows that supernatants of L. gas-
seri, L. jensenii, and L. crispatus could inhibit 
the activity of cervical cancer cells via regula-
tion of HPV oncogenes [90]. L. gasseri and L. 
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crispatus has also been reported to exert cyto-
toxic effects on cervical tumor cells selectively, 
but not normal cells [91]. These results are tan-
talizing, but further studies are necessary to 
explore the underlying mechanisms for suc-
cessful applications in humans. Another possi-
ble application of probiotics is to restore a 
healthy genital microbial community after some 
gynecological procedures.

Conclusion and future direction

Studies to date are encouraging, despite fur-
ther research on the human microbiome and 
gynecological cancer are needed. The current 
studies have given us insights into this field,  
yet with drawbacks and contradictions. For 
instance, the studies on the HPV infection, 
ovarian cancer, and endometrial cancer show- 
ed conflicting results. One possible reason is 
the difference in detection methods. In a meta-
analysis mentioned previously [27], the meta-
regression suggested that the HPV prevalence 
was closely related to HPV DNA detection me- 
thod; racial and local differentiations are ano- 
ther reason behind these discrepancies [18]; 
individual variances might also account for the 
different results [92]. Co-factors related to an 
individual’s lifestyle, such as tobacco usage 
and hormonal contraceptives, as well as multi-
ple sex partners and early sexual activities, are 
associated with SCC [93]. The difference in 
location of the analyzed samples also accounts 
for the inconsistent results, Chen et al. [94] has 
reported the different compositions of microbi-
ota in the cervical canal, uterus, and vagina. 

Present researches have focused on the rela-
tionship between microbiota and gynecologic 
malignancy, with little regard for cause and 
effect. Some microbiome presence may facili-
tate the HPV infection, but the reverse scenario 
is also possible that HPV infection harbors a 
salubrious environment that satisfies microbial 
needs. Another quandary is although highly 
pervasive, only a small percentage of women 
with persistent HPV infection subsequently 
acquire clinically significant diseases. It remains 
to be solved what roles these microbiotas could 
play in HPV persistent infection. Investigation 
of unique microbiome signature in different 
cancers paves the way for diagnostic biomark-
ers as well as provide insights for prognosis, 
prevention, and the development of treatment. 

Current research is promising, owing to tech- 
nological advances in sequencing technology 
and improved in vitro models. New knowledge 
in this field shed light on the diagnosis for early 
detection and therapeutic potential of cancer. 
As demonstrated in this review, significant gaps 
in knowledge remain, especially regarding the 
microbiome and gynecologic cancers. To have 
a translational impact, additionally, it is cruci- 
al to develop a system-level understanding of 
health and disease by measuring biological 
components of a system using a statistical and 
metagenomics framework. Also, further investi-
gations are needed to improve treatment and 
develop new interventions for women’s health.
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