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Review Article 
The multiple roles of deubiquitinases in liver cancer
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Abstract: Primary liver cancer ranks the second leading cause of death associated with cancer in the world and 
therefore a major public health challenge. The mortality rates of liver cancer has been increasing during the past 
decades with the reality that the alternative therapeutic drugs are not available. Although growing numbers of pro-
teins involved in liver cancer progression have been identified, many of these are not suitable drug targets, which 
hinders the development of new drugs to cure liver cancer. It is in urgent demand that novel therapeutic approaches 
should be explored. Deubiquitinases (DUBs), specifically removing ubiquitin chains from the target protein, have 
showed vital roles for protein homeostasis and quality control by rigidly regulating the balance between ubiquitina-
tion and deubiquitination in normal physiology. Recent studies have revealed deregulation or dysfunction of DUBs 
always associates with cancer and other diseases. Targeting certain DUBs, leading to degradation or loss function 
of the key oncoproteins, including undruggable ones, seems to provide a potential therapy for cancer patients. 
In liver cancer, numberous of DUBs are demonstrated to participate in hepatocarcinogenesis, metastasis and so 
on. Depending on the substrates, some DUBs may suppress liver cancers while others promote. In this review, we 
primarily summarize the roles of DUBs in liver tumors, and illustrate opportunities for the application of targeting 
DUBs for cancer therapy. 
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Introduction

Protein ubiquitination, one of the most versatile 
of post-translational modifications, plays an 
important role in regulation of both proteolytic 
and non-proteolytic process, such as protea-
somal or lysosomal degradation of targeted 
proteins, influencing protein activity, protein in- 
teractions and protein localization [1]. Ubiquitin 
modification includes the attachment of ubiqui-
tin to target proteins by ubiquitinating enzymes, 
and the reversible ubiquitin removal, which is 
mediated by deubiquitinating enzymes (DUBs) 
[2, 3]. 

Ubiquitin is a highly conserved 76-amino acid 
polypeptide, and it is universally distributed 
among eukaryotes. The ubiquitin-protein conju-
gation system constitutes by cascades of steps 
including activating ubiquitin by the ubiquitin-
activation enzyme (E1), then transfer the acti-

vated ubiquitin to the target proteins on a lysine 
residue by ubiquitin-conjugating enzymes (E2) 
and ubiquitin ligases (E3) [4, 5]. Sometimes, 
only one single ubiquitin is attached to one or 
multiple lysines (mono-ubiquitination), whereas 
in others, ubiquitin chains (poly-ubiquitination) 
is added to target proteins with each ubiquitin 
attached to the prior (Figure 1). Depending  
on the lysine for inter-ubiquitin linkages, ubiqui-
tin chains are divided into several different 
types. As reported, lysine 6, (K6), K11, K27, 
K29, K33, K48, and K63 are used for chain for-
mation. Among these, the best studyed is K63- 
and K48-linked ubiquitination. Polyubiquition 
chains linked by K48, and also K27, K6, K33, 
K11, and K29 mainly function during protea-
somal degradation [6].

Ubiquitination of targeted proteins is reversed 
by deubiquitinating enzymes (DUBs), a super-
family of metalloproteases and cysteine prote-
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ases that catalytically cleave ubiquitin-protein 
bonds [7]. Up to date, more than one hundred 
human DUBs have been identified. Based on 
sequence and conserved domain, they can be 
classified into six families including ubiquitin-
specific proteases (USPs), ovarian tumor prote-
ases (OTUs), ubiquitin carboxy-terminal hydro-
lases (UCHs), Machado-Joseph disease prote- 
in domain proteases (MJDs), JAMM/MPN do- 
main-associated metallopeptidases (JAMMs), 
and the monocyte chemotactic protein-induced 
proteases family (MINDYs) [8-11]. USPs, UCHs, 
OTUs, MJDs and MINDYs are cysteine peptidas-
es, while JAMMs are zinc metallopeptidases 
[12].

DUBs regulate proteasomal or lysosomal deg-
radation, proteins localization and recycling, 
which is crucial for protein homeostasis and 
normal functioning of the cell. Growing evi-
dence indicates dysfunction of DUBs leads to 
amounts of genetic and sporadic diseases. For 
example, BRCA1-associated protein 1 (BAP1), 
one of the UCH family member, is mutated in 
mesothelioma, melanoma and renal cell carci-

paper, we mainly focus on the role of DUBs in 
liver cancer.

DUBs involved in human liver cancer

Plenty of DUBs have displayed tumour-sup-
pressing or tumor-promoting functions, and 
therefore may represent potential drug targets 
for treatment [24]. DUBs related to liver cancer 
progression are primarily discussed below.

CYLD

CYLD, a K63 linkage-specific deubiquitinase, is 
one unique member of the USP family, whose 
zinc finger domain responsible for distal ubiqui-
tin interaction was deleted. The cylindromato-
sis gene (CYLD) was reported to suppress 
tumor, whose mutation was found in familial 
cylindromatosis (also known as Brooke-Spiegler 
syndrome), an autosomal-dominant predisposi-
tion to various tumors of the skin appendages 
[25]. 

CYLD is an essential modifier of NF-κB signaling 
and the ubiquitination state of the NF-κB-

Figure 1. Ubiquitin ligases and deubiquitinases in the ubiquitination pro-
teasomal system. Ubiquitin is firstly activated by the ubiquitin-activating 
enzyme (E1), followed by its transfer to a lysine residue on target proteins 
by ubiquitin-conjugating enzymes (E2) and ubiquitin ligases (E3). DUBs re-
verse this process by cleaving monoubiquitin or polyubiquitin chains from 
substrates, and therefore prevent proteins from degradation.

noma [13]; USP6 was reported 
to be translocated in aneu
rysmal bone cysts [14]; USP7 
has shown mutation in neuro-
logical disorders [15]; USP8 is 
found to mutate in Cushing dis-
ease [16, 17]; USP9X cause 
developmental disorders with 
mutation [18] and shows dys-
regulated expression in cancer 
[19]. CYLD, commonly mutated 
in cylindromatosis [20]; and 
USP15 is indicative of amplifi-
cation in certain glioblastoma, 
ovarian and breast cancers 
[21]. In addition, expansion of 
DNA ‘CAG’ trinucleotide re- 
peats in ataxin 3 (ATXN3) leads 
to Machado-Joseph disease 
(also called spinocerebellar 
ataxia 3) [22]. Moreover, muta-
tions in the JAMM family mem-
ber result in microcephaly-cap-
illary malformation syndrome 
[23]. More and more interest 
has been focusing on exploit-
ing the regulation of DUBs on 
vital proteins and pathways 
involved in cancers. In this 
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activating molecule NEMO [26]. During liver 
tumorigenesis, CYLD function as tumour sup-
pressor. By conditional knockout of CYLD in 
parenchymal liver cells, Bergkamen et al. 
reported the mutant CYLD in CYLDxAlbCre ani-
mals resulted in a chronic inflammatory re- 
sponse characterized by prominent ductular 
reaction and biliary fibrosis. NF-κB signaling 
was demonstrated to increase in livers of CYLD 
(FF) xAlbCre mice and may contribute to the 
fibrotic and inflammatory response. CYLD-mu- 
tant form did not contribute to spontaneous 
hepatocellular carcinomas (HCC), but showed a 
significantly increased sensitivity to liver can-
cers induced by the chemical carcinogen dieth-
ylnitrosamine (DEN), which proved to be associ-
ated with sustained c-Jun N-terminal kinase 1 
(JNK1)-mediated signaling by ubiquitination of 
TNF receptor-associated factor 2 and expres-
sion of c-MYC [27, 28]. Through regulation the 
level of hepatocyte growth factor, CYLD allevi-
ated liver damage and hepatocellular fibrogen-
esis [29]. Once expressing a deubiquitinase-
deficient form of CYLD, which has similar onco-
genic mutations in humans, it leads to sponta-
neous hepatic fibrosis and liver tumours by 
activation of c-Jun N-terminal kinase (JNK) and 
TGF-β activated kinase 1 (TAK1) [30, 31]. 
Overexpression of CYLD in hepatocytes inhibits 
both inflammation and fibrosis in mice with 
nonalcoholic steatohepatitis, whose progres-
sion lead to liver cancer finally [32]. 

In addition, CYLD is suggested to involve in the 
apoptosis resistance of hepatocellular carcino-
ma cells by enhancing NF-κB activity [33]. 
Therefore, CYLD plays key roles in liver inflam-
mation and cancer. It represents a promising 
therapeutic target for liver cancer.

UCHs

UCHs have recently drawn much attention 
because of their diverse functions in cell biolo-
gy [34, 35]. Until now, four members of UCHs 
have been identified including UCH-L1/PGP9.5 
(protein gene product 9.5), UCH-L3, UCHL5/
UCH37, and BRCA1-associated protein-1 (BA- 
P1) [36-39]. The biological effects of the four 
UCH enzymes are complicated, as these pro-
teins play quite different roles in different tumor 
progression. 

UCHL1: UCHL1 has been studied extensively. 
Yu et al. showed hypermethylation of UCHL1 

promoter CpG downregulated or silenced its 
expression in liver cancer, which provided tu- 
mor suppression evidence of UCHL1. Previous 
study has demonstrated that UCHL1 can direct-
ly interact with p53 and stabilize p53 through 
its hydrolase activity, and then decrease MDM2 
by its E3 ligase activity. Subsequently, UCHL1 
increases the p21 expression in HCC cells, 
resulting in G2/M phase arrest and hence sup-
pressing proliferation. Moreover, re-expression 
of UCHL1 activates caspase-9 and induces 
PARP cleavage, leading to cell apoptosis [40].

Recently, the methylation level of UCHL1 was 
observed higher in tumor tissues compared 
with adjacent normal tissues. Cholangiocar- 
cinoma patients with low methylation of UCHL1 
survived longer overall, indicating the methyla-
tion level of UCHL1 may represent a potential 
biomarker for Cholangiocarcinoma prediction 
[41]. Yang et al. reported upregulation of UCHL1 
gene promoted apoptosis in hepatocellular car-
cinoma cells treated with adriamycin and vera-
pamil, while UCHL1 knockdown by siRNA weak-
ened the effect, indicating UCHL1 was involv- 
ed in the reversal effect of verapamil on 
Adriamycin-resistant hepatocellular carcinoma 
cells by promoting apoptosis [42].

UCH37: UCH37 has unique isopeptidase activi-
ty of the 19S proteasome complex, which is 
special for the UCH members. As one subunit of 
the 19S regulatory particle, hRpn13 interacted 
with UCH37 via KEKE motifs in the C-terminal 
regions, then UCH37 is recruited and activated 
to show deubiquitination activity [43-47]. Fang 
et al. firstly observed higher UCH37 expression 
in liver cancer tissues than adjacent para-can-
cerous tissues, which indicated UCH37 could 
be a predictor of recurrence after radical resec-
tion in HCC patients. Moreover, UCH37 promot-
ed migration and invasion of HCC cells by deu-
biquitination of PRP19 (essential RNA splicing 
factor) [48]. By a functional proteomic analysis 
and screening, glucose-regulated protein 78 
was identified as UCH37-interacting protein in 
HCC, but how the interaction regulates HCC 
progression remains further investigation [49].

BAP1: It has been found that BAP1 associates 
with multi-protein complexes that regulate key 
cellular pathways, including the cell differentia-
tion, cell death, cell cycle, and the DNA damage 
response (DDR) [50]. Recently, Mosbeh et al. 
suggested that BAP1 may regulate the patho-
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genesis of biliary and pancreatic cancers, a 
subset of hepatocellular carcinoma. High fre-
quency of BAP1 loss in intrahepatic cholangi-
carcinoma was identified, while the frequency 
was lower in hepatocellular carcinoma and ex- 
trahepatic biliary cancer. For HCC tumors with 
decrease or loss of BAP1, expression of bile 
duct (cytokeratin 7) and hepatocytic (HepPar1) 
markers were higher than those with preserved 
BAP1 [51]. These studies all indicate BAP1 may 
be a novel therapy target. 

USP9X

USP9X, which belongs to the X-linked USP fam-
ily, can remove mono-ubiquitin and a number of 
ubiquitin chains, such as K29, K48 and K63 
linkages [52-56]. It has been found to interact 
with more than 35 proteins. By regulating the 
protein claspin during S phase [57], USP9X 
maintains DNA damage checkpoint responses 
and DNA replication fork stability. Long noncod-
ing RNA LNC473 enhanced HCC cell prolifera-
tion, invasion and epithelial-mesenchymal tran-
sition process by recruiting USP9X to survivin, 
which lead to increased survivin expression, a 
result of ubiquitination inhibition [58]. Over- 
expression of miR-26b inhibited the endoge-
nous expression level of USP9X protein, leading 
to the epithelial-mesenchymal transition inhibi-
tion of hepatocytes [59]. Above studies indicate 
USP9X may be a crutial factor involved in epi-
thelial-mesenchymal transition process of HCC. 
Also, USP9X palys roles in cell death. Zhang et 
al. reported that glycogen synthase kinase-3β 
(GSK-3β), a multifunctional kinase, suppressed 
hydrogen peroxide (H2O2)-induced cell death in 
HepG2 cells through inhibition of USP9X, and 
subsequently ubiquitination and proteasome-
dependent degradation of ASK1 [60]. HCC cells 
with p53 expression showed enhanced re- 
sponse to combined treatment with WP1130, 
inhibitor of USP9X, and doxorubicin compa- 
red with p53-deficient cells. Mechanistically, 
USP9X inhibition promoted ubiquitin-protea-
some dependent degradation of p53 [61]. Ta- 
ken together, USP9X represents another poten-
tial therapeutic target.

USP7

USP7, also known as HAUSP, is an evolutionari-
ly conserved protein that was first identified as 
a molecular partner of the herpes simplex virus 
protein, Vmw110 [62]. USP7 is required for cell 

growth, development and stress [63]. In human 
HCC tissues, the expression of USP7 is higher 
than in matched peritumoral tissues. Ectopic 
expression of USP7 promotes HCC cells grow- 
th both in vitro and in vivo. Mechanistically, 
USP7 overexpression stabilizes thyroid hor-
mone receptor-interacting protein 12 (TRIP12) 
by deubiquitination, thus constitutively inacti-
vating the tumor suppressor p14 (ARF) [64]. 
Zhu et al. identified that in HCC cells, USP7 pro-
tein level was inhibited by microRNA-205 (miR-
205), thereby impairing the p53 signaling path-
way and facilitating cell proliferation [65]. 
Moreover, by facilitating the interaction of USP7 
with p53, Abraxas brother 1 suppresses HCC 
cell proliferation and tumour formation [66]. 
Base on above, USP7 may play vital role during 
HCC development, which needs further evi- 
dence.

A20

A20, also known as TNFAIP3 (Tumor necrosis 
factor α-induced protein 3), is originally dis-
coved as a primary gene product after tumor 
necrosis factor α (TNFα) treatment in human 
umbilical vein endothelial cells [67]. A20 hydro-
lyzes K48, K11 and K63 polyubiquitin, while  
it displays enhanced activity towards K63-
polyubiquitinated substrates in cells [68-71]. It 
has been shown that A20 is an important regu-
lator of cellular inflammation signaling [72]. 
Over the past few years, growing evidence sug-
gests that A20 also plays a functional role in 
cancer development. Catrysse et al. showed 
the mice lacking A20 specifically in liver paren-
chymal cells spontaneously develop chronic 
liver inflammation, hepatocyte apoptosis and 
lethality following treatment with sublethal 
doses of TNF. Besides, these mice are more 
susceptive to hepatocellular carcinoma devel-
opment induced by chemical or high fat-diet 
[73]. Another study revealed silence of A20 
accompanied with IFN-γ exposure obviously 
repressed cell viability, and induced cell-cycle 
arrest and apoptosis in HCC cells through 
restraining phosphoinositide 3-kinase/Akt pa- 
thway and antiapoptotic B-cell lymphoma 2 
proteins [74].

In addition, A20 plays a role in HCC metastasis. 
In 89 tissue samples from HCC patients, the 
expression of A20 was decreased in invasive 
cells compared with the noninvasive cells. 
Overexpression of A20 significantly inhibited 
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the proliferation, epithelial-mesenchymal tran-
sition and migration of HCC cells both in vitro 
and in vivo [75, 76].

Interestingly, Chen et al. found patients with 
higher A20 expression had a prolonged overall 
survival and disease-free survival than those 
with lower A20 expression [76]. Meanwhile, a 
recent study showed in HCC and liver cirrhosis 
patients, A20 mRNA level in peripheral blood 
mononuclear cells was higher than patients 
with chronic hepatitis B, who showed signifi-
cantly higher A20 mRNA level than the healthy. 
For HCC patients with vascular invasion, liver 
cirrhosis and ascites, A20 mRNA level was also 
elevated compared with those without [77]. 
Therefore, A20 might represent a potential bio-
marker to differentiate the stages of HCC and 
evaluate prognosis.

Other DUBs involved in liver cancer 

There are growing DUBs reported to promote 
HCC progression recently. By unbiased siRNA 
screening, Kim et al. found that YOD1 enhanc-
es the stability of ITCH, an E3 ligase of LATS, 
and facilitates LATS1/2 ubiquitination and  
degradation, subsequently increasing YAP/TAZ  
levels. Overexpression of YOD1 enhances the 
hepatocytes proliferation and leads to hepato-
megaly [78]. It has been shown that the expres-
sion of USP14 in tumor tissues of HCC patients 
was much higher than para-carcinoma and nor-
mal liver tissues. Knockdown or inhibiton of 
USP14 with b-AP15, the potent and selective 
inhibitor of USP14, in human hepatocarcinoma 
SMMC7721 cells both significantly suppressed 
cell proliferation and induced apoptosis [79, 
80]. USP4 was up-regulated in mesenchymal-
type liver-tumor cells, facilitating proliferation 
and migration [81]. Downregulation of USP39 
significantly enhanced apoptosis, inhibited cell 
growth in HCC cells, and reduced xenograft 
tumor growth in nude mice [82, 83]. By directly 
targeting and inhibiting USP28, miR-363-3p 
destabilizes Myc and prevented hepatocellu- 
lar tumorigenesis [84]. The EEF1A2/PI3K/AKT/
mTOR axis has been suggested to promote the 
protumorigenic stabilization of the protoonco-
gene MDM4 in human HCC by way of USP2a 
and AKT-mediated phosphorylation [85].

However, other DUBs have emerged as tumor 
suppressor. For example, USP16 was frequent-
ly downregulated in human HCCs, and the 

reduced expression of USP16 was correlated 
with poor differentiation status. In tumour cells, 
Inhibition of USP16 promoted stem-like proper-
ties, ectopic expression of USP16 significantly 
decreased cell viability and tumour growth [86]. 
DUBs also regulate drug resistance, which has 
been a challenge during cancer treament. US- 
P22 promotes the multidrug resistance in HCC 
cells by activating the SIRT1/AKT/MRP1 path-
way via direct interaction with SIRT1 and upreg-
ulation of SIRT1 protein [87]. In chemoresistant 
HCC cells, silencing USP22 dramatically sup-
pressed tumorigenic and metastatic capacities 
in vivo, as well as inhibited proliferation and 
epithelial-mesenchymal transition in vitro [88].

DUBs may represent valuable biomarker for 
HCC patients in near future. HCC samples with 
higher OTUB1 and USP11 expression have 
shorter overall survival time [89, 90]. HCC 
patients with Cezanne reduction, in which can-
cer cells showed high invasiveness, had short-
er time to recurrence and poor overall survival 
[91]. HCC patients with high expression of 
USP22 showed poor prognosis, reduction of 
USP22 suppressed cell growth [92]. Tumor 
metabolism is the key event for unconstrained 
proliferation of tumor cells. DUBs may impact 
this process to alter HCC progression. USP2a 
inhibited fatty acid synthase ubiquitination and 
subsequently promoted lipogenesis and HCC 
development [93].

Development of DUBs inhibitors for cancer 
therapy

Bortezomib, the proteasome inhibitor, has been 
approved by FDA for multiple myeloma treat-
ment, which makes the ubiquitin-proteasome 
system as a promising target for new antican-
cer treatment development [94]. Considering 
the key roles of DUBs in the ubiquitin-protea-
some system and diverse functions in cancer, 
growing interest has been focused on exploit-
ing DUBs as therapeutic targets [95]. However, 
the development of selective DUBs inhibitors 
has been hampered by lack of sufficient knowl-
edge about DUBs biology, difficulties in estab-
lishing suitable biochemical methods for com-
pound screening, limitations in models of in 
vitro and in vivo to measure DUBs activity. Over 
the past few years, the progress in DUBs drug 
discovery has accelerated with many issues 
overcome. Although no DUBs inhibitors have 
successfully entered clinical trials yet, endeav-
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or is being made to develop them as treatment 
strategies. 

Currently, both pan-DUBs inhibitors and specif-
ic inhibitors of single DUB have been identified. 
The first DUBs active-site inhibitors were cyclo-
pentenone prostaglandins, which induce accu-
mulation of polyubiquitylated proteins and 
cause p53-dependent apoptosis in colon can-
cer cells [96, 97]. P5091, the inhibitor of USP7, 
lead multiple myeloma cells to apoptosis [98]. 
WP1130, which inhibits USP5, USP9X, USP14, 
and UCH37, was found to trigger rapid polyubiq-
uitinated proteins accumulation in aggresomes 
and induced apoptosis of tumor cell [99].

In brief, the development of DUBs inhibitors are 
in the early stages and numerous researches 
have proved selective inhibitors of cancer-pro-
moting DUBs, such as USP7, efficiently induced 
cancer cell death. More efforts need to be 
made for improving the specificity, efficacy, and 
safety. There is no doubt DUBs inhibitors are 
emerging as attractive druggable targets and 
new agents for the treatment of cancer.

Conclusions and perspectives

Liver cancer is predicted to be the fourth lead-
ing cause of cancer death worldwide in 2018 
and therefore a major public health challenge. 
Because of rapid progression and lack of tar-
geted drugs, the survival rate of liver cancer is 
extremely low. Recently, growing evidence has 
demonstrated the vital role of DUBs in liver can-
cer progression, which may represent novel tar-
gets for cancer therapy. With dramatic advanc-
es in DUB screening technologies and biochem-
ical assays, increasing numbers of DUB inhibi-
tors have been developed. Such inhibitors pro-
vide the basis for drug-like molecules suitable 
for clinical evaluation and also provide versatile 
tools to further investigate DUB cell biology. 

Although much progress has been made in 
exploring the roles of DUBs in liver cancer pro-
gression, why these DUBs function differently 
in the same disease needs further investiga-
tion. And we know little about what function the 
same one DUB has through the pathological 
process, including liver fibrosis, liver cirrhosis 
and final hepatocellular carcinoma. In addition, 
knowledge about whether DUBs affect the 
tumor microenvironment during liver cancer 
progression is deficient. Also, specificity and 

selectivity of DUBs inhibitors needs improve-
ment. Summary, we will witness rapid expan-
sion in the arenas of DUB biology and drug dis-
covery in the next few years. 
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