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Abstract: Genitourinary tumors are heterogeneous groups of tumors with high morbidity and mortality rates. Con-
fronted with existing problems in the management of genitourinary tumors, a personalized imaging method called 
radiomics shows great potential in areas including detection, grading, and treatment response assessment. Ra-
diomics is characterized by extraction of quantitative imaging features which are not visible to the naked eye from 
conventional imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI) and posi-
tron emission tomography-computed tomography (PET-CT), followed by data analysis and model building. It out-
performs other invasive methods in terms of non-invasiveness, low cost and high efficiency. Recently, a number 
of studies have evaluated the application of radiomics in patients with genitourinary tumors with promising data. 
The combination of radiomics and clinical/laboratory factors provides added value in many studies. Despite this, 
there are limitations and challenges to be overcome before a more extensive clinical application in the future. In 
this article, we will introduce the concept, significance and workflow of radiomics, review their current applications 
in patients with genitourinary tumors and discuss limitations and future directions of radiomics. It would help multi-
disciplinary team involved in the treatment of patients with genitourinary tumors to achieve a better understanding 
of the results of radiomics study toward a personalized medicine. 
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Introduction

Genitourinary tumors remain both clinically and 
biologically heterogeneous with a high inci-
dence rate and mortality [1]. Thus, biomarkers 
that can be applied to predict tumor subtypes, 
disease progression and treatment responses 
are gaining popularity. A personalized disease 
management is of urgent need. Considering 
the important role of imaging analysis in the 
screen, detection and overall management of 
genitourinary tumors, a new quantitative, read-
er-independent imaging-based strategy may 
have the potential to improve clinical care as 
traditional imaging analysis mainly bases on 
the anatomic changes and relies heavily on 
subject interpretation by radiologists, which are 
prone to variability. Radiomics refers to the 

method which converts digital medical images 
into high-dimensional, mineable data via extrac-
tion of quantitative descriptors, followed by 
data analysis and model building for aiding clini-
cal decisions [2]. By quantitatively analyzing 
digital imaging, radiomics can potentially detect 
specific characteristics of a disease that other-
wise could not be accessed visually with a 
potential to inform future precision medicine. 
Recent results have shown promising results of 
radiomics in oncological practice [2]. This meth-
od may supplement traditional imaging analysis 
and assist in providing personalized medicine 
for patients [3, 4]. 

Recent years have seen a rapid increase in the 
publications of the application of radiomics in 
the genitourinary tumors. In this review, we will 
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introduce the concept, significance and the 
workflow of the radiomics, review recent appli-
cations of the radiomics in the genitourinary 
tumors and discuss limitations and future 
directions of radiomics.

Concept and significance of radiomics

Precision medicine, in which the right treat-
ment was based on the characteristics of dif-
ferent subtypes, has substantially changed 
treatment options in recent years. Robust and 
reliable biomarkers are essential to facilitating 
precision medicine development. Efforts are 
under way to develop such biomarkers all over 
the world. Unfortunately, current tumor evalua-
tion is far from satisfaction. Subjective, qualita-
tive features are usually used by radiologists to 
evaluate tumor characteristics, making the 
results less reliable.

Current assessment for gene expression and 
immune phenotype is mainly based on the 
biopsy and surgery, which may be less accurate 
due to intratumoral heterogeneity, let alone the 
procedure is expensive and invasive. Thus, the 
need for a non-invasive, stable and less expen-
sive method has never been greater.

Radiomics was first introduced in 2012 by 
Lambin et al. [5]. It was motivated by the under-
lying hypothesis that medical imaging contains 
much more information than we have already 
acquired and the information can reflect under-
lying pathphysiology [6, 7]. By applying quanti-
tative image analysis, the relationship between 
the information and the pathphysiology can be 
revealed. With subsequent model building, 
radiomics has the potential to aid clinical deci-
sions and change clinical management. In 
oncological practice, radiomics has advantag-
es over other methods. Imaging examinations 
are usually prescribed for almost every patient 
with cancer, which means that all these images 
are huge potential sources of radiomics data. It 
is safe, reproducible and easy to obtain. It is 
now widely accepted that most solid malignant 
tumors are highly heterogeneous at the pheno-
typic, physiologic and genomic levels [8-10]. 
Radiomics has shown great potential as a 
source of quantitative biomarkers to relate 
imaging features to intratumoral heterogeneity 
and biology phenotypes. In addition to tumor 
assessment, radiomics can achieve longitudi-
nal evaluation of treatment response and dis-

ease progression. It is a promising method in 
the era of precision medicine.

Radiomics workflow

The practice of radiomics involve four main 
steps: (1) Imaging acquisition; (2) Volume of 
interest segmentation; (3) Feature extraction; 
(4) Models establishment. 

Imaging acquisition

As the first step in radiomics, imaging acquisi-
tion would lay a solid foundation for subsequent 
steps of radiomics. Generally speaking, imag-
ing data can be obtained from various imaging 
modalities like CT, MRI, PET-CT and ultrasound. 
Modern imaging units allow for difference in 
imaging protocols across medical centers. It is 
not a problem in the routine identification of 
imaging features used in clinical setting. 
However, when it comes to data extraction from 
images, variations in imaging protocols can 
introduce changes that are not resulting from 
underlying biologic effects [6]. Previous studies 
have revealed that radiologic features differ in 
different imaging acquisition parameters [11, 
12]. Both spatial resolution and gray level reso-
lution can affect the computation of radiomics 
features [13]. 

The accuracy and reproducibility of the 
radiomics results rely on the quality of image 
acquisition. It would be ideal for radiomics anal-
ysis to use standardized imaging protocols. 
Thus, imaging data should be preprocessed 
before feature extraction in order to ensure 
consistency and comparability. Heterogeneous 
spatial resolution can be resolved by resam-
pling the voxels into isotropic pixels or voxels 
after co-registration of multi-spectral imaging 
modality or different sequences in the same 
imaging modality, and intensity normalization 
can be applied to solve the heterogeneous gray 
level resolution [14].

Volume of interest segmentation

Accurate identification and segmentation, 
defined as the Volume of Interest (VOI), is a key 
and challenging step in the radiomics analysis, 
as it defines the volume of the image from 
which the subsequent radiomics features are 
extracted. VOI can be segmented either manu-
ally, semi-automatically or automatically [7, 15]. 
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Manual segmentation is a straightforward solu-
tion and is regarded as the “golden standard”. 
However, apart from being burdensome and 
time-consuming, this process is affected by 
intra-operator and inter-operator variability [16-
18]. Recent years have seen progression in the 
development of semi-automatically and auto-
matically segmentation methods. Even we have 
so many available methods at hand, we must 
realize that there is no universal segmentation 
method fitting for all types of images. A seg-
mentation method with high accuracy, high effi-
ciency, maximal automation and reproducibility 
is of great need. 

Feature extraction

Following VOI segmentation, various quantita-
tive features can be extract from the identified 
VOI. The radiomics features can usually be clas-
sified into four categories: (1) Size and shape 
characteristics; (2) First-order statistical char-
acteristics; (3) Second-order statistical charac-
teristics; (4) Transform-based features. Size 
and shape characteristics describe the size 
and shape of the VOI, such as the volume of 
VOI, maximal surface area, tumor compactness 
and eccentricity and surface to volume ratio. 
First-order statistical characteristics describe 
the features related to the distribution of the 
intensities of voxels within the VOI, but do not 
describe its spatial arrangement, including the 
mean, median, maximum and minimum of 
voxel intensity, standard deviation, skewness, 
kurtosis, uniformity, and randomness. Second-
order statistical characteristics, also known as 
texture features, was introduced by Haralick et 
al. [19]. The image texture means the perceived 
or measured spatial variation in the intensity 
levels. It can be visualized using a gray level 
scale. Texture features and higher features can 
be calculated from different matrices: the gray-
level co-occurrence matrix (GLCM), the Gray 
Level Size Zone Matrix (GLSZM), the gray level 
run-length matrix (GLRLM) and the neighbor-
hood gray-tone difference matrix (NGTDM) [20]. 
Texture features provide heterogeneity infor-
mation among the lesions. Transform-based 
features aim to identify repetitive or non-repet-
itive patterns through imposing kernel function-
al transformation to the segmented image con-
tent [20].

Models establishment

It usually involves three aspects to build a 
radiomics model: feature selection, modeling 

methodology and model validation. One impor-
tant specificity in radiomics analysis is the huge 
number of features imaging software can pro-
vide. It has recently been highlighted that too 
many features may lead to a high false-positive 
risk [15, 21, 22]. Thus, it is of vital importance 
to select features for further study to avoid 
overfitting. Two common procedures exist in 
determining radiomics features. One is to ana-
lyze generated features preliminarily and select 
features with most repeatability and reproduc-
ibility [23]. Another is to make a priori selection 
of features based on the features’ mathemati-
cal definitions and select targeted features 
[24]. 

When the ideal features have been selected, 
they can be used for model construction. The 
methods selected for data analysis is depen-
dent on several factors, including sample size 
and the application of radiomics measure-
ments. There is a wide selection of statistical 
methods and machine learning (ML) algorithms 
for radiomics analysis, including nomograms, 
linear regression, logistic regression, random 
forest (RAF) and Cox proportional hazards 
regression [25]. The model selected would 
affect the performance of the radiomics analy-
sis for assessing the prediction target [26]. For 
small pilot studies where a large sample size is 
impossible, univariate analysis may be a pre-
ferred selection [27]. While small pilot or retro-
spective studies can provide preliminary infor-
mation that certain radiomics features or 
statistical methods are worth further mining as 
imaging biomarkers and surrogates for tumor 
biology, it is noteworthy that selection bias and 
false-positive results exist when the number of 
radiomics features assessed exceeds the num-
ber of enrolled patients [15]. Thus, it is highly 
recommendable that several models should be 
tested to select the model with best perfor-
mance [28]. 

As the last and indispensable step in model 
building, model validation aims at assessing 
the performance and applicability of the 
radiomics model developed. Internal and/or 
external validation should be performed to 
ensure the generalizability of the model to all of 
the targeted patients. The receiver operating 
characteristic (ROC) curve and the area under 
the ROC curve (AUC) can be used to calculate 
the performance of the model. ROC curve can 
display the ability of disease recognition at any 
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threshold in an easy way. When comparing two 
or more models, the ROC curves can show 
advantages and disadvantages of the models 
in a visual way through drawing each model in 
the same coordinate [7].

Radiomics application in bladder cancer 

Tumor staging and grading have important clini-
cal significance for the management of bladder 
cancer (BCa). Based on CT urography, Garapati 
et al. constructed a predictive model as a clas-
sifier for stratifying BCa into two categories: 
below stage T2 and greater than or equal to 
stage T2 [29]. Machine learning methods 
including linear discriminant analysis (LDA), 
neural network (NN), support vector machine 
(SVM) and RAF classifiers were used in the 
study and these four classifiers showed compa-
rable results in bladder cancer staging accura-
cy, demonstrating the potential application of 
radiomics in assessing BCa stage [29]. MRI 
also plays an important role in the clinical care 
of BCa. A recent study revealed that MRI tex-
ture features extracted from diffusion-weighted 
imaging (DWI) and apparent diffusion coeffi-
cient (ADC) maps were able to distinguish low- 
and high-grade BCa with an accuracy of 83% 
[30]. Multiparametric MRI (mp-MRI) has gained 
popularity in recent years. A mp-MRI based 
radiomics model was developed by Wang et al. 
and had the potential to serve as a noninvasive 
imaging approach for preoperative grading of 
BCa tumors [31]. The joint model constructed 
from T2WI, DWI and ADC features demonstrat-
ed a higher diagnostic accuracy than other sin-
gle-modality models for preoperative predic-
tion of pathological grade in BCa tumors [31]. 
All these studies showed promising feasibility 
of radiomics and laid a solid foundation for 
future application in bladder cancer staging 
and grading. 

Due to poorer survival rate of micropapillary 
carcinoma (MPC) of the bladder compared with 
urothelial carcinoma (UC) of the bladder, earlier 
detection of MPC subtype would improve 
patient outcomes regardless of the treatment 
strategy [32, 33]. However, MPC subtype is dif-
ficult to distinguish from UC subtype during cys-
toscopy and on CT scans. A CT-based radiomics 
analysis revealed that compared to UC, MPC 
subtype has a more heterogeneous texture. 
Tumor heterogeneity extracted using GLCM 
and gray level difference matrix (GLDM) may be 

a noninvasive imaging strategy in separating 
MPC subtype from UC subtype. Evaluation of 
the depth of bladder cancer invasion is of great 
significance in the determination of treatment 
methods. Due to the unsatisfactory diagnostic 
accuracy of cystoscopy and histological evalua-
tion of biopsy or resected tissue in diagnosing 
and staging BCa, CT and MRI are also per-
formed to aid in preoperative tumor staging 
[34-39]. MRI could provide favorable soft-tis-
sue contrast, leading to a better discrimination 
between non-muscle-invasive BCa (NMIBC) 
and muscle-invasive BCa (MIBC) than CT [40]. 
T2-weighted imaging in MRI is able to directly 
evaluate the depth of BCa involvement [41]. 
However, its application is still limited due  
to unsatisfactory diagnostic accuracy with a  
range between 64.7% and 83% [42-45]. Zheng 
et al. developed a MRI-based radiomics-clinical 
nomogram, showing a favorable result in dis-
criminating NMIBC from MIBC with an AUC of 
0.922 in the training set and an AUC of 0.876 in 
the validation set [46]. Another study aiming  
at accurately differentiating between NMIBC 
and MIBC based on MRI radiomics features 
achieved a result with the AUC and Youden 
index improving to 0.8610 and 0.7192, respec-
tively [47]. A T2-weighted MRI-based radiomics 
also showed a promising result in classifying 
BCa into different stage groups (non-muscle 
invasive vs muscle-invasive), which may im- 
prove BCa clinical staging and aid in therapy 
management [48]. 

Lymph node (LN) metastasis is a negative prog-
nosis indicator in patients with BCa. Compared 
to LN-negative patients, LN-positive patients 
have a lower 5-year overall survival rate (15-
31% VS >60%) [49, 50]. Accurate preoperative 
prediction of LN status in patients with BCa can 
aid in clinical decision-making. CT and MRI are 
usually used in nodal staging in patients with 
BCa. However, both imaging modalities evalu-
ate LN status according to their sizes, while a 
considerable part of malignant LNs remain a 
normal or minimally-enlarged size in BCa. 
Therefore, the sensitivity of CT or MRI for 
detecting LN metastasis is relatively low (31-
45%), resulting in a proportion of patients being 
understaged [51-53]. Wu et al. developed two 
nomograms based on CT radiomics features 
and MRI radiomics features, respectively [54, 
55]. The CT-based radiomics nomogram that 
incorporates the radiomics signature and 
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surgically resected renal masses are benign 
[59]. Thus, it is important to differentiate benign 
renal masses from malignant renal masses to 
avoid unnecessary surgeries. However, no 
existing imaging modalities are capable to 
make a 100% differential diagnosis due to the 
similarities in the imaging findings between 
benign and malignant renal masses. Con- 
sidering the invasive character and potential 
risk of renal biopsy, a non-invasive method is of 
urgent need. 

Yan et al. showed that CT texture analysis may 
be a reliable quantitative imaging approach to 
differentiate between clear cell RCC (ccRCC), 
minimal fat angiomyolipoma (AML) and papil-
lary RCC (pRCC) based on preoperative three-
phase CT scans [60]. Feng et al. achieved an 
accuracy, sensitivity, specificity and AUC of 
93.9%, 87.8%, 100% and 0.955, respectively, 
in discriminating small angiomyolipoma without 
visible fat from renal cell carcinoma (RCC) using 
CT texture analysis [61]. Eight machine learning 
algorithms was used in the study by Erdim et 
al., aiming at investigate whether machine 
learning-based CT texture analysis could distin-
guish benign and malignant renal solid masses 
[62]. The result showed that RAF algorithm 
achieved the best predictive performance 
based on five selected contrast-enhanced CT 
texture features, with an accuracy and AUC of 
90.5% and 0.915, respectively. Yang et al. 
developed radiomics models based on image 
features extracted from unenhanced CT scan 
or different post-contrast enhanced scans to 
differentiate small (< 4 cm) renal angiomyolipo-
ma without visible fat and RCC [63]. It was 
revealed that radiomics features extracted 
from unenhanced CT scan made a major contri-
bution to the differentiation, providing the pos-
sibility of waiving the need for contrast-
enhanced CT. The radiomics nomogram that 
combines the Rad-score and clinical factors 
showed a better discrimination capability com-
pared with the clinical factors model in the dis-
crimination of renal angiomyolipoma without 
visible fat from homogeneous ccRCC [64]. 

RCC nuclear grading is now widely accepted as 
has prognostic significance. Renal biopsy is still 
considered to be the golden standard for 
obtaining an accurate assessment of tumor 
pathological grade before surgery. Unfortu- 
nately, the application of renal biopsy has been 
extremely limited due to its invasive character, 

CT-reported LN status has the potential be 
used as a non-invasive imaging approach  
for individualized preoperative prediction of  
LN metastasis in BCa [54]. The MRI-based 
radiomics nomogram consisting of the ra- 
diomics signature and MRI-reported LN status 
shows favorable predictive accuracy for LN 
metastasis in BCa, with an AUC of 0.9118 in 
the training set and an AUC of 0.8902 in the 
validation set [55]. 

Realizing the importance of preoperative pre-
diction of the recurrence risk of BCa, Xu et  
al. developed a nomogram based on MRI 
radiomics and clinical predictors for individual-
ized prediction of the first 2 years (TFTY) risk in 
recurrence [56]. The nomogram combined the 
Rad Score and important clinical factors includ-
ing age, gender, tumor grade, muscle-invasive 
status (MIS) of the lesion, tumor size, number 
and previous history of surgery, showing excel-
lent performance in both the validation and 
training set. When the risk threshold was larger 
than 0.3, the decision curve showed that the 
radiomics-clinical nomogram can provide more 
benefit than using the radiomics or clinical 
model alone.

Neoadjuvant chemotherapy (NAC) plays an 
important role in the management of BCa. 
However, no reliable methods are available to 
predict a patient’s response to NAC. Patients 
may experience side effects of chemotherapy 
while enduring the risk of no benefit from the 
chemotherapy. Thus, early evaluation of treat-
ment response and prediction of treatment fail-
ure are important, allowing clinicians to with-
drawal unbeneficial treatment timely. Cha et  
al. developed radiomics models based on  
CT images obtained before or after neoadju-
vant chemotherapy in discriminating BCa with  
chemotherapy responses or not. The study 
revealed that radiomics has the potential to aid 
in the evaluation of therapy responses [57]. 
The application of radiomics in BCa is summa-
rized in Table 1. 

Radiomics application in kidney cancer

Recent years have seen a significant increase 
in the incidence of renal masses due to large 
amounts of imaging studies carried out. Most 
renal masses are usually considered as malig-
nant and require surgical resection [58]. 
However, it has been revealed that 13%-16% of 
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Table 1. Published radiomics research in bladder cancer (BCa)

References Nature of study Application Case 
numbers

Imaging 
modality Results

Garapati et al. [29] Retrospective Tumor staging 76 CT Four classifiers showed compa-
rable results in BCa staging

Zhang et al. [30] Retrospective Tumor grading 61 MRI MRI texture features extracted 
from DWI and ADC maps were 
able to distinguish low- and 
high-grade BCa

Wang et al. [31] Retrospective Tumor grading 70 MRI Joint model constructed from 
T2WI, DWI and ADC performed 
best

Fan et al. [33] Retrospective Tumor differentiation 66 CT Tumor heterogeneity extracted 
using GLCM and GLDM could 
separate MPC from UC

Zheng et al. [46] Retrospective Tumor differentiation 199 MRI The radiomics-clinical nomo-
gram shows favorable result 
in discriminating NMIBC from 
MIBC with an AUC of 0.922 in 
the training set

Xu et al. [47] Retrospective Tumor differentiation 68 MRI MRI radiomic features achieved 
a result in differentiating 
between NMIBC and MIBC with 
the AUC of 0.8610

Tong et al. [48] Retrospective Tumor differentiation 65 MRI T2-weighted MRI-based 
radiomics showed promising 
result in classifying BCa into dif-
ferent stage groups (non-muscle 
invasive vs muscle-invasive)

Wu et al. [54] Retrospective LN metastasis  
prediction

118 CT CT-based radiomics nomogram 
could be used for prediction of 
LN metastasis in BCa

Wu et al. [55] Retrospective LN metastasis  
prediction

103 MRI Radiomics nomogram based on 
MRI shows favorable predictive 
accuracy for LN metastasis in 
BCa

Xu et al. [56] Retrospective Recurrence  
stratification of BCa

71 MRI The radiomic-clinical nomogram 
performed better than the ra-
diomics or clinical model alone

Cha et al. [57] Retrospective Treatment response 
assessment

123 CT Radiomics has the potential to 
aid in the evaluation of therapy 
responses

the metastatic potential along the needle path, 
the high risk of bleeding and puncture of the 
tumor, and the relatively low accuracy in 
assessing the tumor grade based on the biop-
sy. Recent studies have shown that machining 
learning-based CT texture analysis can accu-
rately distinguish between high and low grades 
of RCC [65, 66]. MR-based texture analysis 
also demonstrated excellent diagnostic per- 
formance in differentiating high-grade from 
low-grade ccRCC [67]. Recently, studies have 

shown that the novel WHO/ISUP grading sys-
tem is superior to the four-tiered Fuhrman grad-
ing system. The ISUP system can provide better 
grade separation, especially in grades 2 and 3 
(a drawback in the Fuhrman system), and this 
new system has exhibited a stronger associa-
tion with patient outcome [68, 69]. Shu et  
al. showed that machine learning-based CT 
radiomics analysis can be used for preopera-
tive prediction of the WHO/ISUP grade of ccRCC 
[70]. The SVM model constructed using CT 
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radiomics features can effectively discriminate 
between high ISUP grade and low ISUP grade of 
ccRCC with an AUC of 0.88 and 0.91 in the 
training and validation set, respectively [71]. 
Cui et al. showed that MR-based radiomics 
models can serve as a noninvasive method for 
discriminating high ISUP grade from low ISUP 
grade of ccRCC, and mpMRI-based models 
may be superior to those based on single-
sequence or single-phase imaging [72]. 

Radiogenomics is a field focusing on the asso-
ciation between a disease’s imaging features 
and the underlying genetic patterns or molecu-
lar phenotype [73]. It establishes imaging bio-
markers based on radiomics features to predict 
genomic profiles, which could potentially waive 
the need for invasive procedure. Kocak et al. 
adopted CT texture analysis based on unen-
hanced CT scan to evaluate the status of BAP1 
mutations in ccRCC [74]. The RAF classifier 
achieved a precision of 81% for predicting 
ccRCCs with BAP1 mutation and a precision of 
89.1% for predicting ccRCCs without BAP1 
mutation. Interestingly, Feng et al. only used 
images in the CT enhancement nephrographic 
phase for construction of a radiomics model in 
order to predict BAP1 mutation status in 
patients with ccRCC [75]. The RAF model in the 
study achieved a precision of 0.65. Kocak et al. 
assessed the potential of CT texture analysis to 
predict the presence of PBRM1 mutations 
using artificial neural network (ANN) and RAF 
algorithms [76]. Finally, the ANN correctly clas-
sified 88.2% of ccRCC in terms of PBRM1 muta-
tion status, while the RAF algorithm correctly 
classified 95% of ccRCC. Overall, the RAF clas-
sifer performed better than the ANN classifier. 
Application of radiomics in kidney cancer is 
summarized in Table 2.

Radiomics application in prostate cancer

Traditional diagnosis of prostate cancer (PCa) 
mainly relies on transrectal ultrasound (TRUS) 
guided biopsy. However, it involves substantial 
limitations including biopsy complications like 
bleeding and infection, low detection rate, over-
diagnosis of clinically insignificant PCa while 
missing certain significant lesions [77-80]. 
There is an unmet need for non-invasive meth-
ods that predicting patients’ cancer risk. For 
clinically significant PCa prediction, Li et al. 
developed three models, including a clinical 

model, a biparametric MRI (bp-MRI)-based 
radiomics model and a clinical-radiomics com-
bined model [81]. The results revealed that 
both the MRI-based radiomics model and the 
clinical-radiomics combined model demon-
strated better predictive efficacy than the clini-
cal model. Xu et al. constructed a bp-MRI 
radiomics signature based on the six selected 
radiomics features of bp-MRI, which performed 
better than each single imaging modality includ-
ing the T2-weighted imaging (T2WI), DWI and 
ADC imaging [82]. Whether men with a pros-
tate-specific antigen (PSA) level of 4-10 ng/mL 
should receive a biopsy is still under debate. Qi 
et al. developed a combined model incorporat-
ing mp-MRI-based radiomics signature and 
clinical-radiological risk factors in patients with 
PSA levels of 4-10 ng/mL to make a preopera-
tive prediction of prostate cancer (PCa) [83]. 
The combined model achieved an AUC of 0.956 
and 0.933 in the primary and validation 
cohorts, respectively. Compared with the clini-
cal-radiological model, the combined model 
showed better performance on both the prima-
ry and validation cohort. 

Intra-tumoral heterogeneity may lead to the 
underperformance of the current pretreatment 
assessment of tumor stage [84]. Efforts have 
been made in order to improve staging accura-
cy. A radiomics signature based on 17 radiomics 
features from T2WI had the potential to predict 
status of extracapsular extension preoperative-
ly, with an AUC of 0.902 and 0.883 in the train-
ing and validation cohort, respectively [85]. 
Stanzione et al. showed that ML method could 
predict histopathological extraprostatic exten-
sion of the PCa using texture features extracted 
from unenhanced MR images [86]. Gleason 
score (GS), which is often underestimated at 
the time of biopsy, has prognostic value. Thus, 
a non-invasive method to predict GS is of great 
value. Fehr et al. demonstrated that textural 
features from T2WI and ADC could show differ-
ences between Gleason 3+3 and higher 
Gleason scores (3+4 and 4+3 disease) [87]. 
Nketiah et al. have revealed that T2WI-derived 
textural features correlated significantly with 
GS and could differentiate GS 3+4 from 4+3 
cancers [88]. GS is crucial for decision-making 
in PCa management. An accurate identification 
of the potential of upgrading in GS would mini-
mize the possibility of undertreatment of PCa 
patients and provide more information in 
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selecting patients fitable for active surveil-
lance. Zhang et al. showed that mpMRI-based 
radiomics had the potential to predict upgrad-
ing of PCa from biopsy to radical prostatectomy 
(RP) [89]. The mode that combines the 

radiomics signature, clinical stage, and time 
from biopsy to RP demonstrated better perfor-
mance than the clinical model and radiomics 
model, with an AUC of 0.910, 0.646 and 0.868, 
respectively. Gong et al. also showed that 

Table 2. Published radiomics research in kidney cancer

References Nature of 
study Application Case 

numbers
Imaging 
modality Results

Yan et al. [60] Retrospective Tumor  
differentiation

50 CT CT texture analysis was able to differentiate 
between ccRCC, minimal fat AML and pRCC

Feng et al. [61] Retrospective Tumor  
differentiation

58 CT Machine-learning based texture analysis 
was able to differentiate small AML without 
visible fat from RCC

Erdim et al. [62] Retrospective Tumor  
differentiation

84 CT RAF algorithm performed best in differen-
tiating benign and malignant renal solid 
masses with an accuracy of 90.5%

Yang et al. [63] Retrospective Tumor  
differentiation

163 CT Radiomics features extracted from unen-
hanced CT could differentiate small (< 4 
cm) renal AML without visible fat and RCC

Nie et al. [64] Retrospective Tumor  
differentiation

99 CT The radiomics nomogram showed a bet-
ter capability compared with the clinical 
factors model in the discrimination of AML 
without visible fat from homogeneous 
ccRCC

Bektas et al. [65] Retrospective Tumor grading 54 CT Texture analysis can accurately distinguish 
between high and low grades of RCC

Lin et al. [66] Retrospective Tumor grading 232 CT Machine learning classifiers can noninva-
sively distinguish between high and low 
grades of RCC

Goyal et al. [67] Retrospective Tumor grading 34 MRI MR-based texture analysis demonstrated 
excellent diagnostic performance in differ-
entiating high-grade from low-grade ccRCC

Shu et al. [70] Retrospective Tumor grading 271 CT Machine learning-based CT radiomics 
analysis can be used for preoperative 
prediction of the WHO/ISUP grade of ccRCC

Sun et al. [71] Retrospective Tumor grading 227 CT The svm model based on CT radiomics 
features can effectively discriminate 
between high ISUP grade and low ISUP 
grade of ccRCC

Cui et al. [72] Retrospective Tumor grading 460 MRI MR-based radiomics models can 
noninvasively discriminate high ISUP grade 
from low ISUP grade of ccRCC

Kocak et al. [74] Retrospective Radiogenomics 65 CT The RAF classifier achieved a precision 
of 81% for predicting ccRCCs with BAP1 
mutation and a precision of 89.1% for 
predicting ccRCCs without BAP1 mutation

Feng et al. [75] Retrospective Radiogenomics 54 CT The RAF model based on CT enhancement 
nephrographic phase  achieved a precision 
of 0.65 in predict BAP1 mutation status

Kocak et al. [76] Retrospective Radiogenomics 45 CT The ANN correctly classified 88.2% of 
ccRCC in terms of PBRM1 mutation status, 
while the RAF algorithm correctly classified 
95% of ccRCC
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radiomics based on bpMRI could noninvasively 
distinguish high-grade PCa from low-grade PCa 
preoperatively [90]. 

The value of radiomics on predicting treatment 
response has also been studied. T2-weighted 
Haralick features may be strongly associated 
with biochemical recurrence following prostate 
cancer radiotherapy [91]. Bourbonne et al. 
found that MRI ADC map-based radiomics 
model could serve as a strong predictor of bio-
chemical recurrence (BCR) after RP. Compared 
to the clinical model (with an accuracy of 63%), 
the radiomics model achieved an accuracy of 
78% and allowed for significant stratification of 
patients for biochemical recurrence-free sur-
vival [92]. Another study showed that radiomics 
features extracted from pretreatment bpMRI 
can predict PCa BCR after therapy and may 
identify patients who would benefit from adju-
vant therapy [93]. Bourbonne et al. showed that 
one radiomics feature from ADC was predictive 
of BCR with an AUC of 0.79 while no clinical fea-
ture was correlated with BCR in the training set 
[94]. In the testing set, this feature remained 
predictive of BCR and BCR-free survival (bRFS) 
with an AUC of 0.76. Carbon ion radiotherapy 
(CIRT) is a promising radiotherapy technique, 
which offers biological and physical advantag-
es over conventional photon radiotherapy as  
it allows for better tumor control while minimiz-
ing adjacent normal tissues affection [95]. 
However, the relatively high cost of CIRT would 
bring burden to many patients. Thus, a low-
cost, non-invasive method to identify PCa 
patients who may benefit from CIRT before 
treatment would be of great clinical value. Wu 
et al. showed that radiomics features extracted 
from T2w and ADC images demonstrated high 
accuracy in predicting individualized treatment 
response of CIRT [95]. 

Radiogenomics has also gained popularity in 
PCa in recently years. One of the first radioge-
nomics study in PCa revealed that there existed 
a significant association between the quantita-
tive dynamic contrast-enhanced MRI feature 
k(ep) and GS with PTEN expression in peripher-
al zone PCa [96]. Stoyanova et al. correlated 49 
mp-MRI based radiomics features with three 
clinically available gene signatures associated 
with adverse outcome in PCa. The results 
showed that there were significant correlations 
between the radiomics features and these 
genes, indicating the prognostic value of ra- 
diomics features in PCa [97]. Fischer et al. iden-

tified four biomarkers (ANPEP, mir-217, mir-592, 
mir-6715b) that had the potential to distinguish 
between T2c stage and T3b stage [98]. The bio-
markers were highly correlated with aggressi- 
veness-related imaging features extracted 
from mp-MRI images. Application of radiomics 
in PCa is summarized in Table 3.

Radiomics application in testicular cancer

Testicular cancer is the most common malig-
nant tumor among men aged between 14 and 
44 years [99]. Radical orchiectomy remains the 
main treatment for testicular tumors and can 
be supplemented by radiotherapy and chemo-
therapy [100]. Considering the different sensi-
tivities of seminomas and nonseminomas to 
radiotherapy and chemotherapy, it is necessary 
to distinguish these two tumors for patients 
who are unwilling to undergo orchiectomy. In 
view of the potential risk of biopsy including 
tumor spread and metastasis, a non-invasive 
method is of great need. Zhang et al. construct-
ed a radiomics signature from five T2WI-MRI 
radiomics features. The radiomics signature 
can effectively discriminate between semino-
mas and nonseminomas with an AUC of 0.979 
[100]. For patients with metastatic non-semi-
nomatous testicular germ cell tumors, it would 
help patients avoid overtreatment if we can 
predict the presence of malignant histopathol-
ogy in retroperitoneal lymph nodes metastases 
prior to lymph node dissection. Baessler et al. 
developed a CT-based radiomics machine 
learning classifier [101]. The classifier achieved 
a classification accuracy of 0.81 in the valida-
tion dataset while the model incorporating only 
the LN volume achieved a classification accu-
racy of 0.68. Another study showed that the 
accuracy of CT-based radiomics algorithm was 
72% alone and was improved to 88% when 
combined with clinical predictors in predicting 
pathology of postchemotherapy retroperitoneal 
lymph node masses in metastatic testicular 
germ cell tumors [102]. Application of radiomics 
in testicular cancer is summarized in Table 4. 

Challenges and future directions

Numerous studies have been carried out in 
illustrating the application of radiomics in 
almost every aspect of genitourinary tumors, 
especially in bladder cancer, kidney cancer and 
prostate cancer. Studies focusing on other 
tumors like renal pelvis cancer, ureter cancer 
and penis cancer are still very limited. Mp-MRI, 
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especially DWI, may have the potential to be 
used as a non-invasive method to quantitative-
ly evaluate tumor grade and histologic subtyp-
ing in penis cancer, which lays a solid founda-
tion for the application of radiomics [103]. We 
believe that recent years will see the growth of 
radiomics studies in these tumors.

However, there are significant issues concern-
ing radiomics that need be to addressed when 
put in actual use. Radiomics requires the use of 
specialized software, which may lead to addi-
tional costs and training. Imaging acquisition, 
segmentation methods, reconstruction algo-
rithms and radiomics analysis tools vary among 
centers and scanners. It has been reported 

that the analysis of signal in MR images is dif-
ficult to generalize due to the issue of normal-
ization and regularization [20, 104]. Radiomics 
feature measurements could be influenced  
by factors like imaging acquisition, tumor vol-
ume and other pre-processing steps [15, 105, 
106]. Thus, reproducibility of radiomic features 
should be tested in the workflow. Moreover, 
results from different studies might be difficult 
to compare due to the lack of standardized 
analysis method. As many studies are retro-
spective, the radiomics features extracted 
often far exceeds the number of patients. This 
may lead to a selection bias and a high false-
positive result [107]. 

Table 3. Published radiomics research in prostate cancer (PCa)

References Nature of 
study Application Case 

numbers
Imaging 
modality Results

Li et al. [81] Retrospective Cancer risk prediction 381 MRI Both the MRI-based radiomics model and the clinical-
radiomics combined model performed better than the 
clinical model

Xu et al. [82] Retrospective Cancer risk prediction 331 MRI Bp-MRI radiomics signature performed better than each 
single imaging modality including the T2WI, DWI, and ADC

Qi et al. [83] Retrospective Cancer risk prediction 199 MRI The model that combines the mp-MRI radiomics signature 
and clinical-radiological risk factors achieved an AUC of 
0.956 in the in the primary cohorts

Ma et al. [85] Retrospective Tumor staging 210 MRI A radiomics signature based on 17 radiomics features 
from T2WI had the potential to predict status of extracap-
sular extension preoperatively

Stanzione et al. [86] Retrospective Tumor staging 39 MRI Texture features extracted from unenhanced MR images 
could be used to predict histopathological extraprostatic 
extension of the PCa

Fehr et al. [87] Retrospective Cancer risk prediction 217 MRI Textural features from T2WI and ADC could show differ-
ences between Gleason 3+3 and higher Gleason scores

Nketiah et al. [88] Retrospective Cancer risk prediction 23 MRI T2WI-derived textural features correlated significantly with 
GS and could differentiate GS 3+4 from 4+3 cancers

Zhang et al. [89] Retrospective Tumor grading 166 MRI mpMRI-based radiomics had the potential to predict 
upgrading of PCa from biopsy to radical RP

Gong et al. [90] Retrospective Tumor grading 489 MRI Radiomics based on bpMRI could noninvasively distin-
guish high-grade PCa from low-grade PCa

Gnep et al. [91] Retrospective Treatment response 74 MRI T2-weighted Haralick features may be strongly associated 
with BCR following prostate cancer radiotherapy

Bourbonne et al. [92] Retrospective Treatment response 195 MRI MRI ADC map-based radiomics model could serve as a 
strong predictor of BCR after RP

Shiradkar et al. [93] Retrospective Treatment response 120 MRI Radiomic features extracted from pretreatment bpMRI 
can predict PCa BCR after therapy

Bourbonne et al. [94] Retrospective Treatment response 107 MRI Radiomics feature from ADC was predictive of BCR with 
an AUC of 0.79

Wu et al. [95] Retrospective Treatment response 23 MRI Radiomics features extracted from T2w and ADC images 
demonstrated high accuracy in predicting individualized 
treatment response of CIRT

McCann et al. [96] Retrospective Radiogenomics 45 MRI A significant association existed between the quantitative 
dynamic contrast-enhanced MRI feature k(ep) and GS 
with PTEN expression in peripheral zone PCa

Stoyanova et al. [97] Retrospective Radiogenomics 17 MRI There were significant correlations between the radiomics 
features and genes

Fischer et al. [98] Retrospective Radiogenomics 298 MRI Biomarkers were highly correlated with aggressiveness-
related imaging features extracted from mp-MRI images
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Table 4. Published radiomics research in testicular cancer

References Nature of 
study Application Case 

numbers
Imaging 
modality Results

Zhang et al. [100] Retrospective Tumor  
differentiation

39 MRI Radiomics signature derived from MRI 
can effectively discriminate between 
seminomas and nonseminomas with 
an AUC of 0.979

Baessler et al. [101] Retrospective Tumor  
differentiation

80 CT The CT-based radiomics machine 
learning classifier could predict the 
presence of malignant histopathol-
ogy in retroperitoneal lymph nodes 
metastases

Lewin et al. [102] Retrospective LN metastasis 
prediction

77 CT The accuracy of CT-based radiomics 
algorithm was improved to 88% when 
combined with clinical predictors in 
predicting pathology of postchemo-
therapy retroperitoneal lymph node 
masses in metastatic testicular germ 
cell tumors

Furthermore, large amounts of current studies 
are carried out in a single institution with a 
small sample size. Some studies lack external 
validation for radiomics model development. In 
the future, a well-designed multi-center pro-
spective study with enough cases should be 
carried out to test the reliability and reproduc-
ibility of the radiomics model.

Further studies should focus on the combina-
tion of radiomics-based biomarkers with other 
non-imaging biomarkers as combined analysis 
of a panel of biomarkers is the most promising 
method that has the potential to change clinical 
management [108]. Radiogenomics combines 
genomics with radiomics and could potentially 
waive the need for invasive diagnostic proce-
dures like biopsy. This could be a breakthrough 
point for future research. 

In the future, with radiomics analysis, tradition-
al imaging analysis, common sense and experi-
ence of experts all combined together, we may 
deliver state-of-the-art medical care that out-
performs what either of them can achieve 
alone. With larger medical databases estab-
lished and further development of artificial 
intelligence (AI) techniques developed, the 
improved algorithms may not only be performed 
on computer, but also be performed on mobile 
devices or by access to cloud services in a 
timely manner. It would bring great benefit to 
the overall management of diseases including 
tumors. 
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