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Abstract: Aurora-A is a mitotic serine/threonine-protein kinase and an oncogene. In normal cells, Aurora-A appears 
from G2 phase and localizes at the centrosome, where it participates in centrosome replication, isolation and matu-
ration. Aurora-A also maintains Golgi apparatus structure and spindle assembly. Aurora-A undergoes ubiquitination-
mediated degradation after the cell division phase. Aurora-A is abnormally expressed in tumor cells and promotes 
cell proliferation by regulating mitotic substrates, such as PP1, PLK1, TPX2, and LAST2, and affects other molecules 
through a non-mitotic pathway to promote cell invasion and metastasis. Some molecules in tumor cells also indi-
rectly act on Aurora-A to regulate tumor cells. Aurora-A also mediates resistance to chemotherapy and radiotherapy 
and is involved in tumor immunotherapy. Clinical trials of Aurora-A molecular inhibitors are currently underway, and 
clinical transformation is just around the corner.
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Introduction 

The Aurora kinase family is a class of serine/
threonine protein kinases that was first discov-
ered by Chan et al. in 1993 and named Ipl1 [1]. 
In 1995, Glover discovered a gene homologous 
to Ipl1 and named it Aurora-A (also known as 
aurka, STK6/BTAK) [2]. The Aurora gene family 
in humans includes Aurora-A, Aurora-B, and 
Aurora-C [3]. Aurora-A has been the subject of 
intense investigation because of its powerful 
regulatory roles on a variety of signaling path-
ways. The human Aurora-A gene is located on 
chromosome 20q13 [4, 5], and the structure of 
Aurora-A is shown in Figure 1. The N-terminal 
contains a localization domain that localizes 
Aurora-A on the centrosome in a microtubule-
dependent manner. The C-terminal, a catalytic 
domain, contains two conserved domains: an 
activation loop and a degradation box (D-Box) 
[6, 7]. The activation loop comprises a highly 
conserved RxT motif, and phosphorylation of 
the motif at the threonine induces activation of 
Aurora-A [8]. The D-Box mediates degradation 

of Aurora-A through the ubiquitin-mediated pro-
teasome pathway [9, 10]. 

Aurora-A was first discovered as a mitotic 
kinase that phosphorylates specific substrates 
and participates in centrosome and spindle 
activity during mitosis [11]. As studies on tu- 
mor development increased, Aurora-A was later 
found to be an oncogene that shows gene 
amplification and overexpression in a variety of 
human tumors [12, 13]. Aurora-A is used not 
only as a target for cancer treatment but also 
has such uses as a molecular marker for cancer 
diagnosis and prognosis, and for influencing 
cell proliferation, migration and metastasis [14-
20]. In this review, we discuss the role of 
Aurora-A in mitosis and the regulatory mecha-
nisms of Aurora-A in tumor cells. We also sum-
marize the current clinical trials and results 
from Aurora-A inhibitors.

Biological function

The expression of Aurora-A is dependent on the 
cell cycle. Aurora-A is expressed at low levels in 
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the G1 and S phases and peaks at the G2 and 
M phases. Aurora-A is then ubiquitinated and 
degraded after the cell division phase [8, 21]. 
Aurora-A is activated during the G2 to M phase 
transition, when it is mainly responsible for the 
maturation and separation of centrosomes, 
assembly of bipolar spindles, and regulation of 
mitotic processes (Figure 2).

Aurora-A localizes on the centrosome in G2  
and M phases, a process that is regulated  
by the Golgi apparatus [22-24]. The Golgi appa-
ratus raises Aurora-A to target centrosomes  
in G2 phase, which is crucial to promoting the 
maturity of centrosomes [25]. Aurora-A simu- 
ltaneously regulates Golgi structure stability 
after mitosis [26]. The centrosome replicates 
into two undivided centrosomes before the  
late S phase, but this process does not seem  
to involve Aurora-A, which only appears in the 
G2 phase. However, in vitro experiments have 
shown that Aurora-A overexpression causes 
centrosome amplification [27, 28]. Therefore, 
we speculate that Aurora-A may be indirectly 
involved in centrosome replication in some 
way. The copied centrosome must be separat-
ed to form a bipolar spindle, which requires  
the participation of Aurora-A. Inhibition of Au- 
rora-A results in the formation of a unipolar 
spindle containing two unseparated centro-
somes [2, 22, 29]. For mitosis to continue, the 
isolated centrosome needs to recruit various 
proteins, such as g-tubulin and centrosome 
proteins, which also requires Aurora-A [30]. 
During this process, Aurora-A also assists the 
spindle assembly checkpoint (SAC) to check 
the accuracy of the chromosomal centromere 
connection with microtubules [31]. The main 
role of Aurora-A after the spindle is formed is  
to stabilize the structure of the spindle [32]. 
Inhibiting Aurora-A not only renders the spindle 
structure unstable, but also reduces the star-
shaped microtubules and spindle length [33- 
35].

Regulatory mechanisms in tumors

Tumorigenesis and development

Aurora-A exhibits a dual role in tumor cells. 
Aurora-A regulates molecules and substrates 
during mitosis, and it influences molecules and 
signals involved in tumor biological processes, 
such as proliferation, migration, invasion, me- 
tastasis, tumorigenesis, and apoptosis [36-
40]. Aurora-A regulates multiple molecules and 
signaling pathways, such as p53/p73, p27, 
PP1, BRCA, Ras, the MEK/ERK signaling path-
way, PLK1, TPX2, the NF-κB signaling pathway, 
the Hippo signaling pathway, the PI3K/Akt/
mTOR signaling pathway, RIPK1/3, MLKL, the 
Wnt/β-catenin pathway, and the p38 MAPK sig-
naling pathway, among other factors. Aurora-A 
is also regulated by several cellular microRNAs 
and long non-coding RNAs (lncRNAs) [41-43] 
(Figure 3).

p53/p73 

P53, a pro-apoptotic factor, is phosphorylated 
by Aurora-A at Ser 315, which facilitates MDM2-
mediated ubiquitination of p53 [44], and at  
Ser 215, which inhibits transcriptional activity 
of p53 [45]. In HCT116 cells, multiple myeloma 
SET domain proteins (MMSET), an epigeneti-
cally modified molecule, methylates Aurora-A to 
promote ubiquitination of p53 and reduction  
of p53 stability [46]. In response to decreased 
p53 levels, apoptosis is reduced, indicating a 
potential anti-cancer activity of p53. p73, a 
member of the p53 family, shows a similar 
structure and biological activity to p53 and also 
acts as a pro-apoptotic protein [47]. In p53-defi-
cient hepatocellular carcinoma cells, inhibition 
of Aurora-A activates p73-mediated apoptosis, 
and p73 is regarded as a new target for p53- 
deficient cancer cells [48, 49].

p27

P27 (Cyclin-dependent kinase inhibitor 1B) se- 
rves as a regulator of cell proliferation as well 
as a tumor suppressor relying on varying post-
translational modifications [50]. In gastric can-
cer, Aurora-A promotes p27 to reduce c-Bax-
mediated apoptosis. Bcl-2 binds to Bax to in- 
hibit Bax-mediated apoptosis. In gastric can- 
cer, p27 inhibits the cleavage of Bax, a mito-
chondrial apoptosis activator, which leads to 
increased apoptosis and disruption of suppres-

Figure 1. Aurora-A structure diagram.
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sion by Bcl-2. Overexpressed Aurora-A down-
regulates calpain, which represses p27 and 
mediates Bax cleavage [51]. 

PP1

Aurora-A interacts with protein phosphatase 1 
(PP1) in a balanced feedback regulation mech-
anism that is required for cell cycle progression 
of normal cells. PP1 binding to Aurora-A is es- 
sential for Aurora-A activation. Activated Aur- 
ora-A then phosphorylates PP1 to repress PP1, 
and in turn, PP1 inhibits Aurora-A by dephos-
phorylating certain sites in Aurora-A [52]. When 
this balance is disrupted, cells tend to undergo 
malignant changes. Phosphatase 1 nuclear tar-
geting subunit (PNUTS), a protein that is cru- 
cial for mitotic stability and that is overex-
pressed in cancer cells, is involved in the pro-
cess by which PP1 dephosphorylates Aurora- 
A in mammalian cells [53]. Thus, the ratio of 
Aurora-A to PP1 may be a prospective biomark-
er to predict tumorigenesis and allow for early 
diagnosis.

BRCA1/2

Oxidative stress induces single strand DNA  
single-strain break (SSB) in normal cells, which 
requires poly ADP-ribose polymerase (PARP) 
intervention for repair. If PARP is inhibited dur-
ing this process, the SSBs leads to double-
strain breaks (DSB), which requires BRCA for 
repair. In the absence of BRCA, these types of 
DNA damage lead to cell aberrations and sub-
sequent tumorigenesis [54]. In normal cells, 
BRCA1 is phosphorylated and restrained by 
Aurora-A, while it is positively regulated by PP1 
[55]. In ovarian carcinoma, overexpressed Aur- 
ora-A regulates DNA repair through its nega- 
tive effects on BRCA1/2 [56, 57]. 

BRCA2, leading to chromosomal instability and 
tumorigenesis [59]. KRAS exhibits similar bio-
logical activity as RAS and has a positive effect 
on Aurora-A in lung cancer [60]. In gastrointes-
tinal cancer, KRAS promotes the expression of 
Aurora-A and subsequent Aurora-A-mediated 
phosphorylation of ribosomal protein S6 kinase 
B1 (RPS6KB1, mitosis-related protein) at T389, 
thereby promoting cell proliferation [61]. In br- 
east cancer, Ras downstream signaling path-
ways such as the Ras-MAPK signaling path- 
way also participate in the regulation of Aur- 
ora-A [62]. 

MEK/ERK signaling pathway

The MEK/ERK signaling pathway is a Ras-
MAPK signaling pathway that is activated by 
Aurora-A and Ras in triple-negative breast can-
cer, bladder cancer, and melanoma. In turn, 
ERK reacts to Aurora-A, promoting ERK and 
Aurora-A [63-65].

PLK1

Polo-like kinase 1 (PLK1) is a powerful cell cycle 
regulator that is activated in G2 phase under 
the combined action of Aurora-A and its cofac-
tor Bora (protein aurora borealis) and functions 
in the M phase. PLK1 is phosphorylated by 
Aurora-A at Thr 210 and regulates centrosome 
maturation, spindle assembly, and chromo-
some segregation [66, 67]. Both Aurora-A and 
PLK1 have been identified as potential targets 
in chondrosarcoma [68]. In HeLa cells and 
nasopharyngeal carcinoma cells, the combined 
use of inhibitors against Aurora-A and PLK1 
results in mitotic catastrophe [69]. In breast 
cancer, activated PLK1 motivates cell division 
cycle 25 (CDC25) to promote the cell cycle-
related CCND1-CDK4/6 axis and proliferation. 
However, BRCA1 disturbs the interaction bet- 

Figure 2. Schematic diagram of changes in centromere and Aurora-A during 
the cell cycle. The background color in the figure represents the expression 
level of Aurora-A.

Ras

The oncogene Ras, which con- 
tains three mutations, K-Ras, 
H-Ras, and N-Ras, promot- 
es genomic instability through  
a positive effect on Aurora-A 
[58]. In ovarian cancer, Ras 
promotes Aurora-A expressi- 
on and downregulates BR- 
CA2, resulting in an imbalan- 
ce in the ratio of Aurora-A to 
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Figure 3. Regulation of tumorigenesis and development.
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ween Aurora-A and Bora to repress PLK1 [70]. 
Therefore, molecules that activate BRCA1 may 
represent new opportunities for the treatment 
of breast cancer. 

TPX2

Targeting protein for XKLP2 (TPX2) is a sub-
strate of Aurora-A and is highly expressed in 
cancer cells. TPX2 helps Aurora-A localization 
to the spindle, while Aurora-A phosphorylates 
TPX2 to regulate the process of the spindle [71, 
72]. TPX2 deficiency causes genomic instability 
and apoptosis [73].

NF-κB signaling pathway

In gastric cancer, Aurora-A phosphorylates 
IκBα, a key molecule in the NF-κB signaling 
pathway, to activate the NF-κB signaling path-
way. Activation of NF-κB causes chronic inflam-
mation of the stomach, resulting in tumorigen-
esis [74].

Hippo signaling pathway

Large tumor suppressor 1/2 (LAST1/2) are 
kinases in the Hippo signaling pathway that act 
as tumor suppressors [75, 76]. In normal cells, 
LAST2 is phosphorylated by Aurora-A at Ser 
380 during mitosis to activate Aurora-B, prom-
ising well-balanced cell cycle, which makes no 
difference with LAST2 to serve in Hippo sig- 
naling pathway [77]. Both Aurora-A and LATS2 
are overexpressed in chronic myeloid leukemia 
[78]. Therefore, we speculate that the Aurora- 
A-LAST2-Aurora-B axis may be important in 
chronic myeloid leukemia or other solid tumors. 

PI3K/Akt/mTOR signaling pathway

The PI3K/Akt/mTOR signaling pathway and 
Aurora-A have a mutual feedback regulation 
effect in human epithelial ovarian cancer, glio-
blastoma, prostate cancer, and breast cancer 
[79-83]. In lung cancer, both the EGF/EGFR  
signaling pathway and Aurora-A overexpression 
activate the PI3K/Akt/mTOR signaling pathway 
[84]. In neuroblastoma, PI3K and mTOR act on 
Aurora-A to promote Aurora-A expression dir- 
ectly and regulate its transcription level by pro-
moting MYC indirectly, which is activated to pro-
mote epithelial-mesenchymal transition (EMT), 
thereby promoting tumor proliferation, migra-

tion, metastasis, and invasion and inhibiting 
apoptosis [85]. In human glioblastoma multi-
form stem cells, phosphoinositide-dependent 
kinase-1 (PDK1) serves as a link between PI3K 
and Akt [86].

RIPK1/3 and MLKL

Necroptosis, a form of apoptosis, involves re- 
ceptor-interacting serine/threonine kinase 1 
(RIPK1), receptor-interacting serine/threonine 
kinase 1 (RIPK3), and mixed lineage kinase 
domain-like (MLKL), which are all necrosome 
components. During necroptosis, the RIPK1-
RIPK3 complex activates MLKL to mediate the 
final lethal step [87, 88]. In pancreatic carcino-
ma, Aurora-A represses both the RIPK1-RIPK3 
complex and MLKL, thus inhibiting necroptos- 
is. Aurora-A binds the RIPK1-RIPK3 complex  
to inhibit it. Aurora-A suppresses the RIPK3-
MLKL complex via phosphorylating glycogen 
synthase kinase 3β (GSK3β) at Ser 9 [89]. 

Wnt/β-catenin pathway

Wnt/β-catenin pathway is closely related to 
Aurora-A. In colorectal cancer, the Wnt/β-ca- 
tenin pathway is downregulated by Aurora-A, 
although the mechanisms have not been iden-
tified and require further exploration [90]. Ac- 
tive GSK3β phosphorylates β-catenin, leading 
to β-catenin degradation [91]. As mentioned 
above, in pancreatic carcinoma, Aurora-A phos-
phorylates GSK3β at Ser 9 to restrain GSK3β 
[89]. We thus speculate that inactive GSK3β 
issue in β-catenin accumulation mediates Wnt/
β-catenin pathway activation. 

p38 MAPK signaling pathway

p38 MAPK is a member of the MAPK family of 
proteins. p38 MAPK is activated by Aurora-A 
and plays a role in promoting tumor EMT in mel-
anoma and glioblastoma. Aurora-A inhibitors 
inhibit p38 MAPK activation, mediating apopto-
sis and autophagy. p38 MAPK is speculated to 
function in apoptosis and autophagy [83, 92].

MicroRNAs and lncRNA

Several microRNAs and long non-coding RNAs 
(lncRNA) that play vital regulatory roles in cells 
have also been shown to regulate Aurora-A.  
For example, some microRNAs, which are do- 
wn-regulated in cancer cells, also limit Aurora-A 
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expression: methylation-mediated downregu-
lated miR-129-3p which promotes EMT, inva-
sion and metastasis in hepatocellular cancer; 
miR-124-3p, which affects proliferation, migra-
tion and apoptosis in bladder cancer [93]; and 
miR-137, which is involved in chromosomal in- 
stability in multiple myeloma [94]. In adult acu- 
te myeloid leukemia and epithelial ovarian can-
cer, the lncRNA taurine-upregulated gene 1 
(TUG1) promotes proliferation via inducing Au- 
rora-A expression [95, 96]. 

PARP

The PARP family is a group of ribozymes that 
contains 18 members. Both PARP1 and PA- 
RP10 have been shown to functionally interact 
with Aurora-A in cancer cells. In ovarian cancer, 
Aurora-A inhibition decreases PARP1, which 
mainly participates in DNA repair, leading to the 
more error-prone non-homologous end-joining 
(NHEJ) repair and eventually resulting in apop-
tosis [56]. In hepatocellular carcinoma, PA- 
RP10, which functions differently than PARP1, 
mono-ADP-ribosylates and inactivates Aurora- 
A, leading to reduced migration, invasion, and 
metastasis [97].

CDC25

The cell cycle regulator CDC25 is regulated by 
Aurora-A and AT-rich interactive domain 1A 
(ARID1A), a tumor suppressor that is mutated 
in many tumors. In colorectal cancer, ARID1A 
indirectly inhibits CDC25 and PLK1 by decreas-
ing Aurora-A expression and directly inhibits 
CDC25 through the ARID1A/ATR/CHK pathway, 
thereby inhibiting the cell cycle and regulating 
cell proliferation [98]. In breast cancer, Aurora-A 
regulates CDC25 to promote cancer progres-
sion [70].

Sirtuin 1 (Sirt1)

Sirt1 is a key protein involved in centromeric 
replication. The interaction between Sirt1 and 
PLK2 facilitates the cell cycle and EMT [99].  
In human epithelial ovarian cancer cells, the 
Aurora-A inhibitor induces cell apoptosis and 
autophagy, possibly through restraining Sirt1 
expression. The specific regulatory mechanism 
needs further study [79].

LKB1

In non-small cell lung cancer (NSCLC), liver 
kinase B1 (LKB1, or STK11) interacts with 

STARD and Mo25 to catalyze the phosphoryla-
tion of AMPK to facilitate autophagy. Aurora-A 
phosphorylates and inactivates LKB1, prevent-
ing it from binding STARD and Mo25 to promote 
tumor cell development [100].

Other functions and pathways

In oral squamous cell carcinoma, inhibition of 
Aurora-A promotes reactive oxygen species 
(ROS) production and tumor apoptosis [101].  
In colorectal cancer, hnRNP Q1 influences cell 
proliferation and tumorigenesis by controlling 
Aurora-A translation [102]. In papillary thyroid 
cancer, cofilin-1 (CFL-1), an actin-binding pro-
tein, is dephosphorylated by Aurora-A to cata-
lyze its activation and tumor migration [103].  
In colorectal cancer, fizzy and cell division cyc- 
le 20 related 1 (FZR1) is dephosphorylated  
by phosphatase of regenerating liver-3 (PRL-3) 
and interacts with the anaphase-promoting 
complex/cyclosome (APC/C) complex to pro-
mote Aurora-A ubiquitination [104].

Two spindle formation modes exist in mamma-
lian cells: centrosome-dependent and non-cen-
trosome-dependent mitosis. In NSCLC cells, 
Aurora-A plays a role in both processes. Inhi- 
bition of the centrosome-dependent protein 
SMARCA4 increases Aurora-A regulation of sp- 
indle formation and NSCLC cell sensitivity to 
Aurora-A inhibitors [105]. 

Aurora-A may localize in mitochondria in tumor 
cells to promote mitochondrial fusion, thereby 
generating more ATP and providing more ener-
gy support for tumor cells, which is beneficial to 
tumor cell proliferation [106].

Chemoresistance and radioresistance

In addition to directly regulating the occurren- 
ce and development of tumors, Aurora-A also 
exerts a negative influence on the efficacy of 
chemotherapy and radiotherapy, based in part 
on its increased expression in resistant tumor 
cells (Figure 4). Aurora-A overexpression induc-
es radiotherapy resistance in many cancers 
such as lung cancer, hepatocellular carcinoma, 
cervical squamous cell carcinoma, glioblasto-
ma, nasopharyngeal carcinoma, and prostate 
cancer [107-109]. In breast cancer, pancreatic 
cancer, and ovarian epithelial cancer, Aurora-A 
overexpression increases the chemoresistance 
and radioresistance of tumor cells by upregu-
lating the ATM/Chk2-mediated DNA damage 
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repair network, which can be inhibited by BR- 
CA1/2 [110]. Clinical data suggest that elevat-
ed Aurora-A expression in NSCLC, ovarian can-
cer, and oral squamous cell carcinoma is relat-
ed to cisplatin resistance [111-114]. In endo-
metrial cancer, Aurora-A increases cisplatin 
and PTX resistance by sensitizing AKT/mTOR 
signaling pathway [115]. Aurora-A promotes 
ERK phosphorylation and regulates P-gp (a 
multidrug resistance transporter that takes 
Taxol as substrate), which ultimately leads to 
Taxol resistance in breast cancer [116]. In tri-
ple-negative breast cancer, FOXM1 is stabiliz- 
ed by Aurora-A to promote PTX resistance 
[117]. Aurora-A and MYC interact with each 
other in Myc-overexpressing lymphoma to me- 
diate cancer cell resistance to cyclophospha-
mide. Inhibition of Aurora-A overexpression re- 
duces the chemotherapy resistance of lym- 
phoma while suppressing MYC overexpression 
[118]. Aurora-A causes laryngeal squamous 
cell carcinoma cells to hibernate in the manner 
of the activation ERK1/2 pathway [119]. High 
expression of Aurora-A enables cancer stem 
cells in colorectal cancer to develop resistance 
to 5-FU [120]. In lung cancer, EGFR-TKI resis-
tance is related to the interaction between 
Aurora-A, Ras, and p53 [121, 122]. Imatinib 
resistance in chronic myelogenous leukemia 
cells is also closely related to Aurora-A overex-
pression in tumor cells, although the related 
signaling is unknown [123]. In nasopharyngeal 

carcinoma, Aurora-A works synergistically with 
HIF-1α to promote the radiotherapy and che- 
motherapy resistance of cancer cells [124]. In 
lung cancer cells, Aurora-A may affect radio-
therapy sensitivity by upregulating NF-ĸB ex- 
pression and downregulating p53 expression 
[125, 126]. NF-ĸB also functions in the radiore-
sistance of hepatocellular carcinoma regulat- 
ed by Aurora-A [127]. Intriguingly, radiation al- 
so promotes HCC metastasis by activating 
Aurora-A to promote tumor stem cell prolifera-
tion through the PI3K/Akt signaling pathway 
[128]. 

Immunotherapy

Tumor immunotherapy mobilizes the host im- 
mune system and enhances the ability of anti-
tumor immunity in the tumor microenvironment 
to control and kill tumor cells [129]. Aurora-A is 
considered an antigen target for immunothera-
peutic attacks [130-132]. In breast cancer, 
suppression of Aurora-A greatly changes the 
immunogenic microenvironment of tumor cells, 
which is conducive to the enrichment of cyto-
toxic T cells (CTLs). Also, the suppression of 
Aurora-A is harmful to immunosuppressive my- 
eloid-derived suppressor cells (MDSCs) in whi- 
ch apoptosis is induced by reduced ROS pro-
duction through the Stat3 pathway [133]. In 
peripheral T-cell lymphoma, the simultaneous 
application of PD-L1 and Aurora-A inhibitors 

Figure 4. Mechanism of Aurora-A mediated chemotherapy and radiotherapy.
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Table 1. Aurora kinase inhibitors

Inhibitor Molecular 
Formula Target Current 

status DLT AE Condition Reference

PHA-79358 
(Danusertib)

C26H30N6O3 Aurora-A (IC50: 13 nmol/L)
Aurora-B (IC50: 79 nmol/L)
Aurora-C (IC50: 61 nmol/L)

Phase 2 -Bullous dermatitis  
-Febrile neutropenia
-Mucositis
-Syncope

-Anorexia 
-Constipation
-Diarrhea
-Fatigue
-Nausea  
-Progressive Pneumonia
-Thrombocytopenia

-Advanced Solid Tumors 
-Breast, Ovarian, Colorectal, Pancreatic 
Cancer, SCLC, NSCLC
-CML
-Metastatic hormone refractory Prostate 
Cancer
-Metastatic castration-resistant prostate 
cancer after docetaxel failure
-Multiple Myeloma

[182-187]

MK-0457 (VX-680, 
Tozasertib)

C23H28N8OS Aurora-A (Ki: 0.6 nM)
Aurora-B (Ki: 18 nM)
Aurora-C (Ki: 4.6 nM)

Phase 2 -Herpes zoster -Neutropenia -Alopecia
-Diarrhea
-Fatigue
-Nausea
-Transient mucositis
-Vomiting

-Advanced Solid Tumors 
-BCR-ABL T315I mutant CML, Philadelphia 
chromosome-positive ALL
-Colorectal Cancer

[188-190]

MSC1992371A C24H30FN7O Aurora-A
Aurora-B 
Aurora-C

Phase 1 -Diarrhea 
-(Febrile or not) Neutropenia
-Mucositis/stomatitis
-Sepsis

-Anemia
-Fatigue.  
-Thrombocytopenia

-Advanced Hematologic Malignancies
-Solid Tumors

[191, 192]

ABT-348 (Iloraser-
tib)

C25H21FN6O2S Aurora kinase
VEGFR

Phase 2 -Hypertension
-Pancreatitis

-Anemia
-Hypokalemia  
-Hypophosphatemia

-Advanced Solid Tumors
-ALL, AML, B-cell CLL, CML, Myelodysplasia
-Hematologic Malignancies
-Metastatic Malignant Neoplasm, Solid Neo-
plasm, Unresectable Malignant Neoplasm

[193]

BI-847325 C29H28N4O2 Aurora kinase
MEK

Phase 1 Reversible hematologic and 
gastrointestinal toxicities

-Anemia
-Diarrhea
-Decreased appetite
-Fatigue
-Nausea
-Neutropenia
-Vomiting

-Advanced Solid Tumors [194]

ENMD-2076 C21H25N7 Aurora kinase
VEGFR

Phase 2 -Fatigue
-Hypertension
-Neutropenia
-Syncope
-Typhlitis
-QTc prolongation

-Diarrhea
-Fatigue
-Nausea
-Vomiting

-Advanced Solid Tumors
-Advanced, Metastatic, Soft Tissue Sarcoma
-Advanced Adult Hepatocellular
Carcinoma, Advanced Fibrolamellar Carci-
noma
-Metastatic Triple-Negative Breast Cancer
-Multiple Myeloma
-Relapsed or Refractory Hematological 
Malignancies
-Ovarian Clear Cell Carcinoma
-Ovarian Cancer, Fallopian Cancer, Perito-
neal Cancer

[195-198]



Regulatory of Aurora-A in cancer cells

2713 Am J Cancer Res 2020;10(9):2705-2729

AT9283 C19H23N7O2 Aurora-A
Aurora-B

Phase 2 -Cardiomyopathy
-(Febrile or not) Neutropenia
-Hypertension
-Infection
-Myocardial infarction
-Multiorgan failure
-Pneumonia
-Tumor lysis syndrome

-Alopecia
-Anemia 
-Fatigue
-Gastrointestinal disturbance 
-Lymphocytopenia
-Myelosuppression
-Mucositis
-Thrombocytopenia
-Vomiting

-Advanced Solid Malignancies
-Multiple Myeloma
-Non-Hodgkins Lymphoma, Unspecified 
Adult Solid Tumor
-AML, ALL, CML, Myelodysplastic Syn-
dromes, Myelofibrosis
-Unspecified Childhood Solid Tumor

[199-204]

AMG900 C28H21N7OS Aurora-A
Aurora-B

Phase 1 -Abnormal pain
-Increases in alanine amino-
transferase and aspartate 
aminotransferase  
-Neutropenia
-Pancytopenia
-Thrombocytopenia

-Anemia
-Diarrhea
-Fatigue
-Leukopenia
-Nausea

-Advanced Adult Solid Tumors
-AML
-Hematologic Malignancies

[205, 206]

PF-03814735 C23H25F3N6O2 Aurora-A
Aurora-B

Phase 1 -Febrile neutropenia  
-Increase of aspartate amino-
transferase
-Left ventricular dysfunction

-Anemia
-Diarrhea
-Decreased appetite
-Fatigue
-Nausea
-Vomiting

-Advanced Solid Tumors [207]

MLN8237
(Alisertib)

C27H20ClFN4O4 Aurora-A Phase 3 -Abdominal pain
-Asthenia
-Anorexia
-Bullous dermatitis  
-Fatigue
-(Febrile or not) Neutropenia
-Headache
-Leukopenia 
-Liver transaminases elevation
-Mood alteration/depression
-Nausea
-Oropharyngeal mucositis
-Oral pain
-Somnolence
-Stomatitis
-Thrombocytopenia
-Urinary tract infection

-Anemia
-CNS toxicities 
-Cytopenia
-Diarrhea
-Dysgeusia
-Hypocalcemia
-Lymphopenia 
-Memory impairment  
-Neuropathy
-Thrombocytopenia
-Vomiting 

-Advanced Solid Tumors 
-Ovarian Carcinoma, Fallopian Tube Cancer, 
Peritoneal Cancer, Breast Carcinoma
-Unspecified Childhood Solid Tumor, Exclud-
ing CNS
-Relapsed/Refractory Hematological 
Malignancies
-Refractory Multiple Myeloma
-etc.

[136-162, 
208, 209]

MLN8054 C25H15ClF2N4O2 Aurora-A Phase 1 -Benzodiazepine-like effects
-Somnolence
-Transaminitis

-Asthenia
-Anorexia
-Fatigue
-Insomnia
-Confusion
-Dizziness
-Nausea

-Advanced Solid Tumors 
-Breast Neoplasm, Colon Neoplasm, Pancre-
atic Neoplasm, Bladder Neoplasm

[167-169]

MK-5108
(VX-689)

C22H21ClFN3O3S Aurora-A (IC50: 0.064 nM) Phase 1 -Febrile neutropenia
-Infection

-Blood and lymphatic system 
disorders
-General disorders and ad-
ministration site conditions
-Gastrointestinal disorders

-Advanced or Refractory Solid Tumors [170]
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AZD-1152
(Barasertib)

C26H31FN7O6P Aurora-B Phase 3 -Neutropenia  
-Stomatitis/mucositis

-Diarrhea
-Fatigue
-Infection
-Nausea
-Neutropenia
-Pyrexia

-AML
-Advanced Solid Tumors
-Myeloid Leukemia
-Relapsed/Refractory Diffuse Large B-cell 
Lymphoma

[210-217]

BI-831266 C20H14O2 Aurora-B Phase 1 -Febrile neutropenia -Alopecia
-Anemia
-Dry skin
-Fatigue
-Nausea

-Advanced Solid Tumors [218]

BI-811283 unknown Aurora-B (IC50: 9 nM) Phase 2 -Febrile neutropenia -Fatigue
-Leukopenia
-Nausea

-AML
-Advanced Solid Tumors

[219]

Part of the information comes from https://clinicaltrials.gov/and https://pubchem.ncbi.nlm.nih.gov/. Abbreviations: (i) DLT: dose-limiting toxicity, (ii) AE: adverse event, (iii) CML: chronic myeloid leukemia, (iv) SCLC: small-cell lung cancer, 
NSCLC: non-small-cell lung cancer (v) ALL: acute lymphoblastic leukemia (vi) AML: acute myeloid leukemia.
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achieve better efficacy than PD-L1 monothera-
py [134].

Clinical application

Dozens of inhibitors of the Aurora kinase fa- 
mily are currently under development, many of 
which have entered into clinical trials and 
achieved promising results. (Table 1) (Figure 5, 
these structure diagrams come from PubCh- 
em: https://pubchem.ncbi.nlm.nih.gov/) These 
inhibitors can be roughly divided into four cate-
gories: (i) Aurora-A, Aurora-B, and Aurora-C 
inhibitors, consisting of PHA-79358 (danusert-
ib), MK-0457 (VX-680, tozasertib), MSC19923- 
71A, ABT-348 (ilorasertib), BI-847325, and 
ENMD-2076; (ii) Aurora-A and Aurora-B inhi- 
bitors, consisting of AT9283, AMG900, and 
PF-03814735; (iii) specific Aurora-A inhibitors, 
consisting of MLN8237, MLN8054, and MK- 
5108 (VX-689); and (iv) specific Aurora-B inhi- 
bitors, including AZD-1152 (barasertib), BI-83- 
1266, and BI-811283. Here we focus on the 
specific Aurora-A inhibitors.

MLN8237, which is a second generation Au- 
rora-A inhibitor, is currently in a phase 3 clini- 
cal trial. The main mode of administration is 
oral and its metabolites are mainly excreted 
from feces [135]. In the phase 1 and 2 clinical 
trial results, most of dose-limiting toxicities 
(DLTs) and the most common drug-related 
adverse events (AEs) were 1/2 grade adver- 
se events, while 3/4 grade adverse events  
rarely occurred. Regarding the effectiveness  
of drug treatment, the overall response rate  
in lymphoma, NSCLC, pancreatic cancer, and 
esophageal cancer has been relatively optimis-
tic, and the median progression-free survival 
(PFS) and time to progression (TTP) improved. 
The current phase 3 clinical trial of MLN8237  
is mainly focused on hematologic tumors [136-
161]. Unfortunately, phase 3 clinical research 
shows no prospective improvement of thera-
peutic effect using MLN8237 in relapsed or 
refractory peripheral T-cell lymphoma patients 
[162]. The clinical dose of MLN8237 has no 
effects on the QTc interval of patients [163]. 
Some researchers studied the effect of food on 
the effect of MLN8237 and found no difference 
in the distribution of MLN8237 after high-fat 
meals and in fasting states [164]. In advanced 
breast cancer and recurrent ovarian cancer, 
the combination of MLN8237 with paclitaxel 

showed better therapeutic effect than paclitax-
el monotherapy [165]. Some studies found that 
patients should avoid the simultaneous use of 
MLN8237 with gastric acid-reducing agents, 
potent CYP3A inhibitors, and strong metabolic 
enzyme inducers [166]. 

MLN8054 is a first generation Aurora-A inhibi-
tor. It is currently in a phase 1 clinical trial and 
the main mode of administration is oral. The 
DLTs of MLN8054 are somnolence and transa-
minitis [167, 168]. In a phase 1 clinical study, it 
was found DLT with benzodiazepine-like effects 
[169]. 

MK-5108 (VX-689) is currently in a phase 1 
clinical trial and its treatment was associated 
with DLTs such as febrile neutropenia and 
infection and AEs including blood and lymphat-
ic system disorders and gastrointestinal disor-
ders [170]. 

Clinical trial results of first-generation inhibi- 
tors to second-generation inhibitors show that 
DLTs and AEs are continuously decreasing, 
which shows promise for the clinical use of 
Aurora-A inhibitors. Some studies have found 
that the functional single nucleotide polymor-
phism (SNP) of Aurora-A is related to the prog-
nosis of patients with solid tumors and sensitiv-
ity to inhibitors [171-181].

Conclusion

Since the discovery of the Aurora kinase family 
in 1993, research on the Aurora kinase family 
has continued to increase and its clinical trans-
formation is entering the final stage. The sec-
ond-generation Aurora-A inhibitor MLN8237 
has entered phase III clinical trials, which are 
mainly focused on hematologic malignancies. 
However, the single-agent treatment of MLN- 
8237 showed limited benefit for patients, so 
the road to market of MLN8237 remains long. 
Aurora-A not only affects tumorigenesis and 
development, but also mediates tumor cell ch- 
emotherapy and radiotherapy resistance and 
participates in tumor immunotherapy. Thus, 
Aurora-A inhibitors have a wide range of clini- 
cal applications, not only as a therapeutic drug 
to kill tumor cells but also as an adjuvant drug 
in combination with other chemotherapy drugs 
or radiotherapy to improve the efficacy of exist-
ing treatments. Notably, the Aurora-A regulato-



Regulatory of Aurora-A in cancer cells

2716 Am J Cancer Res 2020;10(9):2705-2729



Regulatory of Aurora-A in cancer cells

2717 Am J Cancer Res 2020;10(9):2705-2729

ry pathways in cells are very complex. It is 
unlikely that blocking one of them will com-
pletely prevent tumor progression and induce 
large-scale tumor cell apoptosis in vivo. Given 
that the combination of Aurora-A inhibitors and 
other antineoplastic drugs has achieved sur-
prising anti-tumor effects in in vitro and in vivo 
experiments, the possibility of combining medi-
cations may be an effective strategy.
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