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Abstract: DNA methyltransferase 1 (DNMT1) is scientifically validated as a molecular target to treat chemo-resistant 
pancreatic ductal adenocarcinoma (PDAC). Results of clinical studies of the pyrimidine nucleoside analog decitabine 
to target DNMT1 in PDAC have, however, disappointed. One reason is high expression in PDAC of the enzyme cyti-
dine deaminase (CDA), which catabolizes decitabine within minutes. We therefore added tetrahydrouridine (THU) 
to inhibit CDA with decitabine. In this pilot clinical trial, patients with advanced chemorefractory PDAC ingested 
oral THU ~10 mg/kg/day combined with oral decitabine ~0.2 mg/kg/day, for 5 consecutive days, then 2X/week. 
We treated 13 patients with extensively metastatic chemo-resistant PDAC, including 8 patients (62%) with ascites: 
all had received ≥ 1 prior therapies including gemcitabine/nab-paclitaxel in 9 (69%) and FOLFIRINOX in 12 (92%). 
Median time on THU/decitabine treatment was 35 days (range 4-63). The most frequent treatment-attributable ad-
verse event was anemia (n=5). No deaths were attributed to THU/decitabine. Five patients had clinical progressive 
disease (PD) prior to week 8. Eight patients had week 8 evaluation scans: 1 had stable disease and 7 PD. Median 
overall survival was 3.1 months. Decitabine systemic exposure is expected to decrease neutrophil counts; however, 
neutropenia was unexpectedly mild. To identify reasons for limited systemic decitabine effect, we measured plasma 
CDA enzyme activity in PDAC patients, and found a > 10-fold increase in those with metastatic vs resectable PDAC. 
We concluded that CDA activity is increased not just locally but also systemically in metastatic PDAC, suggesting a 
need for even higher CDA-inhibitor doses than used here. 
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Introduction

Pancreatic ductal adenocarcinoma (PDAC), 
commonly referred to as pancreatic cancer, is a 
recalcitrant, deadly problem [1]. Most patients 
have advanced metastatic disease at presen-
tation, and therefore receive aggressive multi-
agent chemotherapy, either combinations of 
5-fluorouracil, irinotecan and oxaliplatin or 
gemcitabine and nab-paclitaxel. Despite the 
substantial intensity and toxicity of such treat-

ments, Median overall survival is < 1 year [2-4]. 
Several reasons for limited chemotherapy 
responsiveness have been proposed, but one 
well-established basis is mutation and deletion 
in most PDAC of the master regulator of apopto-
sis p53 [5, 6]: absence of p53 undermines the 
ability of cytotoxic (apoptosis-intending) agents 
- all the agents listed above - to achieve tumor 
kill by apoptosis induction [7, 8]. Meanwhile, 
normal dividing cells, with intact p53, are killed, 
causing onerous toxicity profiles [3, 9]. Thus, 
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alternative treatment modalities that do not 
rely on cell cycle exits via the p53-apoptosis 
pathway are needed.

Tumor cytoreduction despite absence of p53, 
e.g., via activation of terminal epithelial pro-
grams, can be achieved by inhibiting/deleting 
the key epigenetic regulator DNA methyltrans-
ferase 1 (DNMT1) that mediates repression  
of these programs in cancer cells [10-16]. 
Moreover, DNMT1 can be inhibited/depleted by 
the pyrimidine nucleoside analog pro-drugs 
decitabine or 5-azacytidine that are approved 
by the Food and Drug Administration (FDA) to 
treat myeloid cancers. In fact, succesful pre-
clinical validation of DNMT1 as a molecular tar-
get for treating PDAC has motivated several 
clinical trials of decitabine, 5-azacytidine or 
analogs thereof to treat PDAC. Several of  
these trials have been completed, and more 
are ongoing as of April 2019 (Clinicaltrials.gov 
identifiers NCT02959164, NCT03257761, NC- 
T03264404, NCT02961101) [17-29] (reviewed 
in [30]). Results from completed trials, howev-
er, have been discouraging [17-30]. Correlative 
studies in one prior trial of decitabine suggest-
ed a basis for disappointing clinical results: 
analyses of cancer tissue resected post-treat-
ment revealed decitabine pharmacodynamic 
effect in solid cancer tissue in < 25% of the 
treated patients, despite continuous infusion 
of decitabine that sustained plasma Cmax > 40 
nM for hours, enough to cause grade 3/4 
myelotoxicity (particularly neutropenia) [31, 
32]. Decitabine and 5-azacytidine are pro-
drugs that must be processed by pyrimidine 
metabolism in order to deplete DNMT1, and 
accordingly, tissue-differences in expression  
of key pyrimidine metabolism enzymes have 
been shown to underlie tissue-differences in 
pharmacodynamic effect. One key enzyme is 
cytidine deaminase (CDA) which rapidly catabo-
lizes decitabine and 5-azacytidine into uridine 
counterparts that cannot deplete DNMT1 [33]. 
Naturally high CDA expression in gastro-intesti-
nal tissues is the reason decitabine, 5-azacyti-
dine and gemcitabine (first-line treatment for 
PDAC that is also a pyrimidine nucleoside ana-
log) are not administered orally, and CDA is why 
the plasma half-lives of decitabine, 5-azacyti-
dine or gemcitabine are ~15 minutes after par-
enteral administration [34, 35]. Accordingly, 
the addition of a CDA inhibitor tetrahydrouridine 
(THU) to oral decitabine produced decitabine 
plasma pharmacokinetics comparable to con-

tinuous intravenous infusion of decitabine 
alone, to produce DNMT1-depleting pharmaco-
dynamic effect in the myeloid compartment 
that was substantial and clinically significant 
[17, 27, 29]. 

Here, we examined contributions of CDA to 
PDAC resistance to decitabine and evaluated 
the use of THU to reverse this mechanism-of-
resistance. We found that gemcitabine-resis-
tance PDAC cells have upregulated CDA 
(observed also by others [36-39]), and that 
such cells are also resistant to decitabine. In 
pre-clinical in vitro and in vivo models, the addi-
tion of THU to inhibit CDA overcame this basis 
for resistance. Then, to translate the pre-clini-
cal observations, we conducted a pilot clinical 
trial in 13 patients with advanced chemore- 
fractory PDAC. The doses of THU and decita- 
bine were derived from prior clinical studies in 
patients without PDAC. The frequent and dis-
tributed schedule of administration of THU/
decitabine was intended to increase possibili-
ties of overlap between malignant S-phase 
entries and drug exposures, needed for S- 
phase dependent DNMT1-depletion in PDAC 
tissue. Unfortunately, there was no clinical ben-
efit, but correlative observations suggested 
why: there was surprisingly little neutropenia  
in this clinical trial, a sensitive indicator of 
decitabine systemic activity (the myeloid com-
partment is the most sensitive tissue compart-
ment to systemic decitabine exposures [34, 
35, 40-43]), and showing why, plasma CDA en- 
zyme activity was > 10-fold higher in patients 
with metastatic vs resectable PDAC. That is, 
CDA activity was increased not just within PDAC 
tissue, but also systemically, and the THU dos-
ages used, enough for CDA inhibition and 
decitabine exposure in patients without PDAC, 
were insufficient in patients with advanced 
PDAC. Since CDA contributes to resistance not 
just to decitabine/5-azacytidine, but also to 
resistance to standard first-line PDAC therapy 
with gemcitabine [38, 39, 44, 45], this informa-
tion is pertinent to future clinical evaluations of 
decitabine, 5-azacytidine or gemcitabine to 
treat PDAC. 

Patients and methods

Study design and patients

This was an open-label, single-arm pilot clinical 
trial in patients with metastatic PDAC that had 
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progressed on prior chemotherapy. The study 
was reviewed and approved by the Case 
Comprehensive Cancer Center Protocol Review 
and Monitoring Committee, and the Cleveland 
Clinic Institutional Review Board. The study  
was registered on clinicaltrials.gov (NCT028- 
47000). Patients were enrolled at Cleveland 
Clinic and University Hospitals of the Case 
Western Reserve University from April to  
August 2017. Key inclusion criteria were: a con-
firmed pathologic diagnosis of pancreatic  
cancer (histologies other than carcinoma or 
adenocarcinoma were not eligible); one or  
more prior systemic chemotherapy regimens 
with treatment cessation due to disease pro-
gression or intolerable toxicity; adult patients 
with Eastern Cooperative Oncology Group 
(ECOG) Performance Score (PS) of 0, 1, or 2; 
with measurable disease per RECIST 1.1 crite-
ria; adequate organ function (hemoglobin ≥ 8 
g/dl; absolute neutrophil count (ANC) ≥ 1500/
µl; platelets ≥ 75000/µl; serum creatinine ≤  
2.9 mg/dl; serum total bilirubin ≤ 2 times up- 
per limit of laboratory normal; serum AST/ALT ≤ 
2.5 times upper limit of laboratory normal; 
serum calcium ≤ 12 mg/dl); eligible and agree-
able for baseline and week 16 percutaneous 
tumor biopsies. All prior cancer-directed thera-
pies had to be completed/stopped at least 14 
days prior to enrollment. Any uncontrolled 
comorbidities were exclusionary.

Study procedures

After written informed consent, patients under-
went baseline screening, including a complete 
history and physical exam, laboratory evalua-
tion (including organ function assessment, 
pregnancy test as applicable, CA19.9 levels), 
tumor imaging using CT or MRI scans, and a 
baseline tumor biopsy. After confirmation of eli-
gibility, patients were started on treatment. 

The doses were as follows: THU was supplied 
as 250 mg/capsules, and decitabine as 5 mg/
capsules. Starting doses were by weight: 
Weight 40-60 kg: 2 capsules of each drug. 
Weight 61-80 kg: 3 capsules of each drug. 
Weight 81 kg or higher: 4 capsules of each 
drug. Patients were instructed to take the 
decitabine capsules ~60 minutes after taking 
the THU capsules, to generate sufficient time 
for the intended biological effect of THU of sys-
temic CDA-inhibition.

The treatment schedule consisted of an induc-
tion cycle (4 weeks) and maintenance thereaf-
ter. During the induction cycle, the drugs were 
taken for 5 consecutive days (typically, Mon- 
day-Friday) in week 1. In week 2, the same 
doses were used if no grade 3 or higher hema-
tologic toxicities were noted. Based on the 
absolute neutrophil count (ANC) at the start  
of week 2, treatments during this week were 
given for 2, 3, 4, or 5 consecutive days. During 
weeks 3 and 4, treatments were given for 2 
consecutive days (typically, Monday and 
Tuesday) at the same doses, if no grade 3 or 
higher hematologic toxicities were noted. After 
the induction cycle, a maintenance phase was 
introduced, where treatments were given for  
2 consecutive days (typically, Monday and 
Tuesday) of each week, for up to 52 weeks. 

If hematologic toxicities precluded the above 
plan, then dose and schedule modifications 
were prespecified in the study protocol. If sta-
ble disease with absence of at least partial 
response by RECIST1.1 at week 8 or 16 staging 
scans was noted, and no treatment-related tox-
icities were seen, an increase in THU and Dec 
dosage by one capsule each was allowed.

Endpoints and statistics

The primary endpoint of this pilot study was  
to detect decitabine therapy-induced DNMT1 
protein level decrease in tumor tissue. DNMT1 
levels were to be assessed using quantitative 
immunofluorescence, on baseline tumor biopsy 
and the week 16 biopsy. We chose an effect 
size of 1, assessed using a paired t-test and 
alpha =0.05. The effect size was defined as  
the difference in mean DNMT1-protein levels 
between post-treatment and pre-treatment 
divided by the standard deviation and was thus 
a metric of change in the natural units of the 
distribution, its standard deviation. Our goal 
was thus to detect drops in DNMT1 of at least 
one standard deviation. To have 90% power to 
detect this change, a sample size of 12 patients 
was required.

Secondary endpoints included safety of the 
treatment regimen, response rate per RECIST 
1.1 criteria, and overall survival, calculated 
from date of patient registration on study to 
date of death.

All patients enrolled into the study are included 
in the analyses.
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Plasma CDA enzyme activity assay

Conversion of cytidine into uridine by plasma at 
37°C was measured by high performance  
liquid chromatography (HPLC) based on pub-
lished methods [46]. Reaction buffer 0.1 M 
Tris/HCL pH 7.5 (265 µl) was added to 25 µl of 
human plasma followed by addition of cytidine 
(Sigma-Aldrich C122106) to a final concentra-
tion of 4.1 mM and 5-flourouridine (Sigma-
Aldrich F5130) 0.381 mM (not metabolized by 
CDA) as an internal control. After incubation at 
37°C for 4 hours the reaction was terminated 
with 50 µl of hydrochloric acid 1 N. Blanks used 
in calculations consisted of the above but with 
cytidine substrate added at the end of the 60 
minute incubation. After reaction termination, 
protein was precipitated with perchloric acid 
(TCA, 2%). 100 µl of supernatant was injected 
for HPLC using ammonium acetate (5 mM) as 
the mobile phase with a flow rate of 0.35 ml/
min through ZORBAX eclipse XDB 80°A C18, 
4.6 × 150 mm, 3.5 µM (Agilent 963967-902) 
High Performance Liquid Chromatography 
(HPLC) column on Dionex UltiMate 3000 
µ-HPLC system supported with Chromeleon 7.1 
data system (Dionex Corporation, Sunnyvale, 
CA). Retention time and peak area of uridine  
at 260 nm were compared to the internal con-
trol for each injection. The average net uridine 
peak area of test minus blank was calculated 
for each test sample. Known concentrations of 
uridine (0.0 to 95.8 µM) (Sigma-Aldrich U3750) 
were used to construct a standard curve to cal-
culate the amount of uridine based on the net 
uridine peak area normalized to the net peak 
area of the internal standard 5-fluorouridine. 
One unit (U) of CDA enzyme activity is defined 
as the amount of enzyme needed to produce 1 
µmole of uridine in 1 minute. Multiple runs with 
known concentrations of uridine were used to 
confirm accuracy and precision: between run 
variability was < 5%.

Pre-clinical in vitro studies of gemcitabine-
resistant PDAC

MIA PaCa2 parental, MIA PaCa2 gemcitabine 
resistant and PANC-1 cells were a gift from 
John Pink (Case Western Reserve University). 
Gemcitabine resistant cells were kept under 
drug selection at 2 μM gemcitabine. The pan-
creatic cell lines and K562 cells (ATCC) were 
cultured in RPMI-1640 with 10% FBS at 37°C in 
a humidified atmosphere with 5% CO2 in air. 

Decitabine stock solution (5 mM) was generat-
ed by reconstituting lypholized decitabine in 
100% DMSO. Stock solution aliquots were 
stored at -80°C for up to 3 weeks. Working 
solution was generated by diluting the stock 
solution 1:100 in phosphate-buffered saline 
(PBS) immediately before addition to the cells 
at a further dilution as per the intended final 
concentration. Similar amounts of PBS are 
added to untreated control cells. Cells were 
treated with increasing concentrations of 
decitabine (0-100 μM) to generate a dose-
response curve or with 0.2 μM decitabine on 
day 1 and 2 of culture for the rest of the experi-
ments. THU stock solution 12 mM was gener-
ated by reconstituting THU in 100% PBS. Cells 
were treated with 1 μM THU.

Approximately 60 μg of protein extracts, togeth-
er with molecular weight markers, were sub-
jected to 1D SDS-PAGE on 4-12% gradient gels 
(Invitrogen). After electrophoresis per manufac-
turer’s manual (Invitrogen), proteins were trans-
ferred to PVDF membranes (Millipore) at a con-
stant voltage for 1 hour using Invitrogen’s 
semidry blotting apparatus. Western analyses 
of PVDF membranes utilized established proto-
cols and antibodies for DNMT1 (Cell Signaling, 
#5032S), cMYC (Cell Signaling, #D84C12),  
and anti-β-Actin peroxidase (Sigma-Aldrich, 
#A3854).

mRNA levels were assayed by QRT-PCR using 
standard methods. Briefly, GAPDH was ampli-
fied as control. Primer sequences were as fol-
low: CDA Forward 5’-AAGGGTACAAGGATTTC- 
AGGG-3’ and CDA Reverse 5’-ACAATATACG- 
TACCATCCGGC-3’. Real-time detection of the 
emission intensity of SYBR Green bound to 
double-stranded DNA was detected using the 
iCycler instrument (Bio-Rad). Data is reported 
as ‘relative expression value’ which was deter-
mined by raising 2 to the power of the negative 
value of delta-delta CT for each sample. 

Cytospins of cells were fixed for 2 minutes in 
methanol, air-dried, and stained for 20 minutes 
with filtered modified solution of Giemsa stain 
(Sigma Aldrich, Cat #48900, St Louis, MO), 
diluted (1:20) with buffer solution pH6.5, rinsed 
with distilled water, air-dried and examined 
using low and high magnifications with a Leica 
DMR microscope (Leica Microsystems, Wetzlar 
GmbH, Germany) connected to Nuance multi-
spectral imaging system FX using Nuance ver-
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sion 3.0.2 software (PerknElmer, Inc., Hop- 
kinton, MA). 

Pre-clinical in vivo studies of gemcitabine-
resistant PDAC

All experiments were approved by the Cleve- 
land Clinic IACUC and followed approved  
procedures. Gemcitabine Resistant MIA PaCa2 
cells were subcutaneously injected into the 
right and left flanks of 6- to 8-week-old immu-
nocompromised male BALB/c nu/nu mice (2 
million cells per injection in 200 μl sterile con-
trol). When tumor volumes reached an average 
of 100 mm3, mice were randomized to the 
treatment groups, and tumor volume was 
assessed by caliper measurement twice  
weekly throughout the study using the equa-
tion: volume (mm3) = long (mm) × wide2 (mm)/2 
(at least four mice with two tumors each for 
adequate power > 0.08). Mice were treated 
subcutaneously twice a week with vehicle  
control, twice a week with 60 mg/kg gem-
citabine for two weeks followed by a week off, 
or a combination of THU (10 mg/kg) and 
decitabine (0.1 mg/kg) twice a week. The 
reagents were formulated in a PBS solution. 
Mice body weights were recorded weekly and 
percentage of mice body weights during treat-
ment was calculated as: weight at each time 
point/initial weight × 100. Animals were 
observed for signs of toxicity (mucous diar-
rhea, abdominal stiffness, and weight loss) and 
were euthanized when tumor volume reached 
1000 mm3 using CO2 inhalation and followed by 
cervical dislocation. Statistical analysis was 
performed using ANOVA with significance 
reached at P < 0.05. 

Results

PDAC cells resist gemcitabine and decitabine 
by upregulating CDA

Clinical trials are typically conducted in pa- 
tients with PDAC that has progressed through 
earlier therapy with gemcitabine. Therefore, we 
evaluated sensitivity of gemcitabine-resistant 
patient-derived PDAC cells (MiaPaCa [37]) to 
decitabine 0-50 µM: the gemcitabine-resistant 
PDAC cells were also resistant to high concen-
trations of decitabine - the concentration of 
decitabine needed to produce 50% growth  
inhibition of the cells (IC50) was ~40 µM (Fi- 
gure 1A). Gemcitabine and decitabine are both 
inactivated by CDA [47, 48], and CDA expres-

sion was > 100-fold higher in gemcitabine-
resistant PDAC cells compared to decitabine 
and gemcitabine-sensitive K562 cells, a model 
of decitabine-sensitive myeloid malignancy 
(Figure 1B). We also compared expression of 
CDA in several PDAC cancer cell lines (n=19) vs 
other cancer cell types (n=351) in the Cancer 
Cell Line Encyclopedia (CCLE): PDAC cells inher-
ently express higher levels of CDA than almost 
any other cancer cell type (public RNA sequenc-
ing data) (Figure 1C). 

We reasoned that if decitabine-resistance of 
the PDAC cells was mediated by CDA, then 
addition of the CDA-inhibitor THU might confer 
sensitivity to decitabine: addition of THU 1 µM 
enabled a clinically relevant concentration of 
decitabine 0.2 µM to deplete DNMT1 from the 
gemcitabine-resistant PDAC cells, decrease 
levels of the master regulator of proliferation 
MYC (Figure 1D), and substantially decrease 
proliferation of the gemcitabine-resistant PDAC 
cells (Figure 1E), accompanied by morphologic 
changes (e.g., decreased nuclear/cytoplasmic 
ratio) (Figure 1F). We then engrafted mice with 
gemcitabine-sensitive or gemcitabine-resis- 
tant PDAC cells and compared cytotoxic gem-
citabine therapy with non-cytotoxic DNMT1-
targeting regimens of decitabine: both a cyto-
toxic regimen of gemcitabine and non-cytotox-
ic, DNMT1-targeting regimens of decitabine or 
THU/decitabine controlled gemcitabine-sensi-
tive PDAC tumor growth (Panc-1) (the non-cyto-
toxic, DNMT1-targeting properties of the 
decitabine regimens were documented previ-
ously [33, 49, 50]) (Figure 2A, 2B). However, 
the gemcitabine regimen was not able to con-
trol in vivo growth of gemcitabine-resistant 
PDAC cells (gemcitabine-resistant MiaPaCa- 
2 that were also resistant to decitabine),  
while the THU/decitabine regimen suppressed 
growth of these tumors (Figure 2C, 2D). 

Clinical trial study population

To translate pre-clinical observations into the 
clinic, we conducted a pilot clinical trial of THU/
decitabine to treat advanced, chemorefractory 
PDAC. From April to August 2017, we enrolled 
13 patients. Their median age was 65 years 
(range 44-74), and 7 were male (54%) (Table 1). 
The primary site of PDA within the pancreas 
was the head/neck in 4 (31%) and body/tail in 
9 (69%) (Table 1). The median time from diag-
nosis was 13 months (range 3.9-53.5) (Table 
1). Baseline ECOG PS was 0 or 1 in 12 (92%) of 
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the patients. They had received a median of 2 
prior lines of therapy (range 1-3), including 

FOLFIRINOX or its variants in 12 (92%) and 
gemcitabine/nab-paclitaxel in 9 (69%) patients. 

Figure 1. The addition of a CDA-inhibitor to decitabine enabled DNMT1-depletion by decitabine and hence cyto-
reduction of gemcitabine-resistant PDAC cells. A. Concentrations of decitabine needed to produce 50% growth 
inhibition (GI50) in parental and gemcitabine-resistant PDAC cells (MiaPaCa-2). Mean ± SD. B. CDA expression 
in gemcitabine-resistant PDAC cells (MiaPaCa-2) vs decitabine- and gemcitabine-resistant myeloid leukemia cells 
(K562). QRT-PCR. Mean ± SD. P-value 2-sided unpaired t-test. C. CDA expression is inherently higher in pancreatic 
cancer vs other cancers. CDA expression in cancer cell lines (n=370) grouped by histology of origin and ordered by 
median CDA expression level (analysis of public RNA-sequencing data from CCLE). Box-plots median ± IQR, whis-
kers range. D. The addition of the CDA-inhibitor THU (1 mM) to a clinically-relevant concentration of decitabine (0.2 
mM) enabled depletion of DNMT1 and MYC from gemcitabine-resistant PDAC cells (MiaPaCa-2). Western blots 72 
hours after a single addition of decitabine and/or THU. E. Cell counts of the cells 72 hours after a single addition 
of decitabine and/or THU as per panel D. Mean ± SD. P-value 2-sided unpaired t-test. F. Giemsa-stained cytospin 
preparations of the cells 72 hours after a single addition of decitabine and/or THU as per panel D. 
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All patients had multiple sites of metastases, 
including 8 (62%) with ascites. Baseline CA19.9 
levels were > 1000 U/ml in 8 (67%) patients 
(Table 1). 

Clinical safety

All enrolled patients started planned treatment. 
Median time on treatment was 35 days (range 

4-63); median time on study was 72 days 
(range 25-105). The most frequent adverse 
events deemed to be possibly, probably, or defi-
nitely related to treatment were anemia (n=5), 
and in 3 patients each, increased alkaline 
phosphatase, anorexia, dehydration, nausea, 
fatigue, febrile neutropenia, decreased lympho-
cyte count, hyponatremia, and hypokalemia 
(Table 2). There were no deaths (grade 5 toxic-

Figure 2. Combination THU+Decitabine significantly cytoreduced gemcitabine-resistant PDAC in vivo. A. Experiment 
schema gemcitabine-sensitive Panc-1 PDAC cells: Once tumor volumes reached 100 mm3 (~Day 7), mice were 
randomized to the indicated treatments. The experiment was terminated on Day 18 for analysis. Mpk = mg/kg; SC 
= subcutaneous; IP = intra-peritoneal; Dec = decitabine. n=8/treatment group. B. Tumor volume measurements. 
Mean ± SE. ***P < 0.001 vs gemcitabine-treatment, 2-sided t-test. C. Experiment schema gemcitabine-resistant 
MiaPaCa-2 PDAC cells: Once tumor volumes reached 100 mm3 (~Day 7), mice were randomized to the indicated 
treatments. Mice were euthanized when their tumor volume measurement reached 1000 mm3 or when they exhib-
ited signs of distress as defined in the Animal Protocol; D. Tumor volume measurements. Mean ± SE. ***P < 0.001 
vs gemcitabine-treatment, 2-sided t-test. 
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ity) attributed to the study drugs. Six patients 
required study drug holds per protocol for labo-
ratory abnormalities (grade 3 alkaline phospha-
tase rise, n=2; grade 3 hyperbilirubinemia, n=1; 
thrombocytopenia, n=1). One patient required 
study drug hold for grade 3 nausea and vomit-
ing, and another for atrial fibrillation (n=1). 

Clinical efficacy

Eight (62%) patients underwent evaluation 
scans at week 8. The best response was stable 
disease in 1 patient; the other 7 had progres-
sive disease. Reasons for coming off of study 
drug treatment before or after week 8 were pro-
gressive disease (n=6), treating physician dis-
cretion (clinical progressive disease) (n=3), ad- 

verse events (n=2), and others (n=2). During 
follow-up, 6 patients died. Median overall sur-
vival in this cohort of patients from time of 
enrollment was 3.1 months. 

Limited systemic pharmacodynamic effect of 
the THU/decitabine therapy could be from sys-
temically elevated CDA enzyme activity

Toxicological studies have demonstrated that 
the myeloid compartment is the most sensitive 
tissue compartment to decitabine (with or with-
out THU) systemic effect - neutropenia concur-
rent with thrombocytosis are expected side-
effects of non-cytotoxic DNMT1-targeting regi-
mens [34, 35, 40, 42, 43]. Most of the patients 
in this study, however, developed neither neu-
tropenia nor thrombocytosis (Figure 3A) [34, 
35, 42, 43]. To identify a possible reason for 
limited systemic decitabine effect, we com-
pared plasma CDA enzyme activity in patients 
with resectable vs advanced/metastatic PDAC, 
and found a significant increase in the patients 
with advanced disease (Figure 3B). Moreover, 
PDAC metastatic to liver or peritoneum express-
es significantly higher (~2-fold) CDA levels than 
primary PDAC or normal pancreas tissue (analy-
sis of public data [51] (Figure 3C). 

Discussion

DNMT1 has been scientifically validated by sev-
eral research groups as a molecular target for 
cytoreduction of PDAC, importantly, offering a 

Table 1. Baseline Characteristics of Study Patients

Patient # Age, Sex ECOG PS # Prior Rx* Serum CA19.9 Level Liver Lesions Lung Lesions Peritoneal  
Disease/Ascites

1 44M 0 3 9,187  

2 65M 1 3 NL  

3 69M 1 1 351  

4 59F 1 2 1,699  

5 59F 0 2 171,630  

6 74M 1 2 9,747   

7 69F 0 1 376 

8 65F 1 1 NL   

9 64M 1 2 618   

10 44F 2 2 2,864  

11 67M 1 2 3,824  

12 67F 1 2 12,668   

13 60F 1 1 3,707  

Notes: ECOG PS: ECOG Performance Score (scale from 0 to 4; 0= best, with no impairments; 4= bedridden); # Prior Rx = 
number of prior lines of therapy; *prior therapy includes radiation if given separately from chemotherapy; NL = normal; NA = 
not available).

Table 2. Most Frequent Treatment-Related Ad-
verse Events (N=13)

Grade 
1 or 2

Grade 
3 or 4 Total

Anemia 4 1 5
Febrile neutropenia 0 3 3
Decreased lymphocyte count 1 2 3
Fatigue 3 0 3
Nausea 3 0 3
Anorexia 2 1 3
Dehydration 1 2 3
Increased alkaline phosphatase 2 1 3
Hyponatremia 1 2 3
Hyperkalemia 3 0 3
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p53-independent pathway for cell cycle exits, 
distinct from that used by intensive chemother-
apy. Encouraged by pre-clinical science, several 
clinical trials have been conducted with the 
pyrimidine nucleoside analog decitabine to tar-
get DNMT1 in PDAC, but with disappointing re- 
sults. The pyrmidine metabolism enzyme CDA 
rapidly catabolizes decitabine into a uridine 
analog that does not deplete DNMT1. CDA also 
catabolizes the pyrimidine nucleoside analog 
gemcitabine that is a first-line agent for treat-
ment of PDAC, and CDA in PDAC cells [37-39], 

or from other cells, and even from bacteria in 
the PDAC micro-environment [36, 52], has 
been implicated as in PDAC resistance to first-
line gemcitabine therapy. As expected with CDA 
as the cause of resistance, we found here that 
PDAC cells resistant to gemcitabine were also 
resistant to decitabine. Accordingly, the addi-
tion of a CDA-inhibitor THU to clinically relevant 
concentrations/doses of decitabine enabled 
cytoreduction of gemcitabine/decitabine-resis-
tant PDAC in pre-clinical models. To translate 
these observations, we used doses of oral THU 

Figure 3. The THU/decitabine therapy had minimal effects on blood counts in most patients, most likely because 
of systemically elevated CDA enzyme activity in patients with advanced PDAC. A. Neutropenia and increase platelet 
counts expected with systemic decitabine exposure and DNMT1-depletion mostly did not occur. Serial blood counts 
during therapy. B. Plasma CDA enzyme activity is increased in patients with metastatic vs resectable PDAC. Plasma 
CDA enzyme activity was measured using an HPLC-based assay in a separate cohort of patients with PDAC enrolled 
in a sample collection protocol, grouped by resectable vs metastatic disease (n=17). Median ± IQR, Mann-Whitney 
test, 2-sided. C. CDA expression is significantly higher in PDAC metastases in the liver and peritoneum than in 
primary tumor. Analysis of public gene expression data GeoDatabase GSE71729, gene expression by microarray 
(n=223). Median ± IQR, Mann-Whitney test, 2-sided.
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and oral decitabine that we had previously 
identified as being sufficient for clinically mean-
ingful engagement of the DNMT1-target in the 
myeloid compartment in human beings without 
PDAC [35]: that is, these doses of oral de- 
citabine, administered after oral THU, success-
fully distributed through CDA-enriched intes-
tines and liver in order to produce clinically sig-
nificant pharmacodynamic effect in the my- 
eloid compartment. Since the oral decitabine 
(administered with THU) successfully distribut-
ed through CDA-rich intestines and liver, we 
inferred that the decitabine could also distrib-
ute through CDA-enriched PDAC. To increase 
the fraction of PDAC subject to S-phase depen-
dent DNMT1-depletion, these doses of oral 
THU/decitabine were administered frequently 
and in distributed fashion (for 5 consecutive 
days then 2X/week). Unfortunately, no clinical 
benefit was observed. Neither did we observe 
neutropenia concurrent with an increase in the 
platelet count, the side-effect expected with 
systemic exposure to non-cytotoxic, DNMT1-
depleting concentrations of decitabine (the 
myeloid compartment is the most sensitive 
compartment to systemic decitabine exposures 
[35, 40, 42]). A reason for this was indicated by 
measurements of serum CDA enzyme activity: 
in 17 PDAC patients, we found ~10-fold higher 
levels in those with advanced versus resect-
able PDAC. Additionally, in analyses of public 
datasets, we found that PDAC cells express 
higher CDA levels than almost every other type 
of cancer, and CDA expression is especially 
high in PDAC metastatic to liver or peritoneum 
vs primary PDAC. Corroborating our findings are 
published observations from others: in 40 
patients with PDAC, serum CDA activity was 
more than 2-fold increased in those with pro-
gressive vs controlled disease [45]; differences 
in systemic CDA activity between individual 
patients [53] has been implicated as contribut-
ing to PDAC resistance to first-line gemcitabine; 
and generally higher serum CDA enzyme activi-
ty in solid tumor versus other patients has been 
documented [53, 54). Also worth noting, 
decitabine is used at several-fold lower doses 
than gemcitabine (5-20 mg/m2/day versus 
1000 mg/m2/day), suggesting it would be even 
more vulnerable to CDA upregulation [55].

Deoxycytidine kinase (DCK), which executes 
the initial, rate-limiting modification of de- 
citabine towards the nucleotide form that 

depletes DNMT1, is another pyrimidine metab-
olism enzyme essential to DNMT1-depletion by 
decitabine. DCK also executes the initial rate-
limiting modification of gemcitabine, and thus, 
gemcitabine-therapy can select for DCK-low as 
well as CDA-high PDAC cells [56]. Thus, it is 
conceivable that even with adequate CDA inhi-
bition to permit decitabine distribution through 
PDAC tissue, that DNMT1-depletion may not be 
achieved if the gemcitabine-resistant PDAC 
does not express sufficient DCK. Nevertheless, 
inhibiting CDA to prevent rapid systemic catab-
olism of decitabine is a needed first-step for 
decitabine to have even the possibility of being 
captured by DCK in PDAC cells.

In sum, CDA activity is increased not just within 
PDAC tissue, but also systemically in patients 
with advanced PDAC, likely requiring higher 
THU dosages then found enough for CDA inhibi-
tion in other clinical contexts. Since CDA con-
tributes to resistance not just to decitabine/5-
azacytidine, but also to standard first-line PDAC 
therapy gemcitabine [38, 39, 44, 45], this infor-
mation is pertinent to future clinical evalua-
tions of decitabine, 5-azacytidine or gem-
citabine to treat PDAC. 
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