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Abstract: Hypoxia is a common feature of tumor microenvironment (TME). This study aims to establish the genetic 
features related to hypoxia in Bladder urothelial carcinoma (BLCA) and investigate the potential correlation with 
hypoxia in the TME and immune cells. We established a BLCA outcome model using the hypoxia-related genes from 
The Cancer Genome Atlas using regression analysis and verified the model using the Gene Expression Omnibus 
GSE32894 cohort. We measured the effect of each gene in the hypoxia-related risk model using the Human Protein 
Atlas website. The predictive abilities were compared using the area under the receiver operating characteristic 
curves. Gene Set Enrichment Analysis was utilized for indicating enrichment pathways. We analyzed immune cell 
infiltration between risk groups using the CIBERSORT method. The indicators related to immune status between the 
two groups were also analyzed. The findings indicated that the high-risk group had better outcomes than the low-risk 
group in the training and validation sets. Each gene in the model affected the survival of BLCA patients. Our hypoxia-
related risk model had better performance compared to other hypoxia-related markers (HIF-1α and GLUT-1). The 
high-risk group was enriched in immune-related pathways. The expression of chemokines and immune cell markers 
differed significantly between risk groups. Immune checkpoints were more highly expressed in the high-risk group. 
These findings suggest that the hypoxia-related risk model predicts patients’ outcomes and immune status in BLCA 
risk groups. Our findings may contribute to the treatment of BLCA.
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Introduction

Bladder urothelial carcinoma (BLCA) is a com-
mon urinary malignant tumor [1] that can be 
diagnosed using invasive cystoscopy. Although 
this method has been routinely used in clinical 
diagnosis, it is expensive and does not predict 
outcomes [2-4]. Hypoxic regions in BLCA impair 
cellular biological functions due to insufficient 
oxygenation, allowing immune escape by inhib-
iting immune cells in the microenvironment, 
thereby interfering with the treatment of solid 
tumors [5-7]. The high expression level of the 
hypoxia-related marker in BLCA is associated 

with poor outcomes, as in other solid tumors 
[8]. Similarly, many hypoxia-related markers ha- 
ve been found in the core hypoxic regions of 
non-muscle-invasive and muscle-invasive blad-
der tumors [9, 10]. BLCA is more susceptible to 
advanced progression and distant metastasis 
under hypoxic conditions [11]. For these rea-
sons, it is critical to identify hypoxia-related bio-
markers to diagnose and treat BLCA.

Bioinformatics analysis is used to mine poten-
tial hub genes and related-biological processes 
in various diseases. Zhang et al. found that 
hypoxia participates in molecular mechanisms 
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of biological processes involved in BLCA pro-
gression using Gene Set Enrichment Analysis 
(GSEA) [12]. However, no hypoxia risk model 
has been established for BLCA.

In this study, the gene expression matrix and 
data from BLCA patients using the Cancer 
Genome Atlas (TCGA, https://cancergenome.
nih.gov/) and the Gene Expression Omnibus 
(GEO, http://www.ncbi.nlm.nih.gov/geo/) were 
used to identify hypoxia-related biomarkers 
and establish a model that predicts outcome in 
BLCA. We also explored the correlation between 
the model and immunity, which could guide 
individual clinical treatment decisions, even 
immunotherapy, and provide a scientific basis 
for developing BLCA therapies.

Materials and methods

Data processing and analysis

See Figure 1 for the diagram describing our 
process. RNA-seq clinical and transcriptome 
data were obtained for the training and valida-
tion sets from TCGA and GEO. Cohorts with  
no complete transcriptome data, overall sur-
vival, and survival status were excluded. 
Statistical analysis of data from 433 BLCA 
samples obtained from TCGA and 224 sampl- 
es from the GSE32894 data set (the corre-
sponding probe is GPL6947-13512). The “lim- 
ma” package in R software (R version3.6.2., 
https://www.r-project.org/) was used for data 
normalization.

Construction of protein-protein interaction 
(PPI) network

We built aPPI network using STRING (https://
string-db.org). The top 50 genes ranked the 
highest connected nodes of hypoxia genes 
were selected with the help of the R software 
(Rversion3.6.2.).

Generation of hypoxia-related risk model

We performed univariate and multivariate re- 
gression analysis to mine genes significantly 
associated with prognosis with the help of the 
“survival” package in R software. The risk score 
was calculated based on the formula below. 
Patients were divided into two groups, high risk 
group and low-risk group depending on the 
mid-value.

Risk score = i 1
N
=

/  (Expi×Coei)

Kaplan-meier survival analysis

We plotted overall survival (OS) for both groups 
using Kaplan-Meier analysis in R (‘survival’ 
package). We plotted receiver operating char-
acteristic curves (ROC) for determining the 
capacity of hypoxia-related risk models to pre-
dict OS. We used the “survivorROC” package in 
R software. We also performed survival analy-
sis according to hypoxia marker models pro-
posed in the literature using the Sangerbox 
website (http://sangerbox.com) to compare the 
predictive capacity of various models. ROC 
curves were drawn. P<0.05 indicates statisti-
cally significant differences.

Correlation of genes in hypoxia-related risk 
model

We used Spearman correlation analysis to cal-
culate correlations of gene expression using 
this model. Heatmaps and boxplots were uti-
lized to visualize the differential expressions of 
these genes in different stages of T.

The expression of genes in the hypoxia-related 
risk model was obtained from the normal and 
pathological tissues in the Human Protein Atlas 
(HPA, proteinatlas.org). The impact of gene ex- 
pression on BLCA survival was determined 
from the HPA.

Gene set enrichment analysis

We performed enrichment analysis on samples 
from the high-risk group using the HALLMARK 
gene set. We considered a false discovery rate 
(FDR) of <0.25, and P<0.05 was deemed to  
be significant. The top 20 significantly enriched 
pathways were selected according to the FDR-q 
values.

The proportion of infiltrating immune cells

We used CIBERSORT to calculate the fractions 
of 22 types of infiltrating immune cells in the 
two groups from TCGA and GEO. We acquired 
immune-related genes from the Tracking Tu- 
mor Immunophenotype platform (http://biocc.
hrbmu.edu.cn/TIP/index.jsp). The expression of 
immune-related genes is shown as box-and-
whisker plots. The expression of phenotypic 
markers of immune cells in both risk groups 
was visualized using bar plots. Scatter plots 
were drawn, and Pearson coefficients were cal-
culated to determine correlations between the 
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Figure 1. Flowchart of this study design.

expression of immune checkpoints and hypox-
ia-related risk scores.

Statistical analysis

Kaplan-Meier method was applied to assess 
OS and the log-rank test was used for the differ-
ence analysis. All data analyses were conduct-
ed with R software. Data with P less than 0.05 
was considered to be statistically significant.

Results

Screening hypoxia-related genes and con-
structing a prognostic risk prediction model in 
BLCA

All hypoxia-related genes were derived from the 
HALLMARK gene set, and the PPI values among 

them were calculated using PPI network analy-
sis. The top 50 hypoxia-related hub genes were 
selected according to adjacent nodes (Figure 
2A). A prognostic model was established with 
seven hypoxia-related genes (EGFR, CAV1, VE- 
GFA, FBP1, GAPDH, SDC4, BGN) using univari-
ate and multivariable Cox regression analysis 
(Figure 2B, 2C). The risk score formula was as 
follows:

Risk score = 0.256*EGFR-0.139*CAV1-0.216* 
VEGFA-0.110*FBP1+0.225*GAPDH-0.166* 
SDC4+0.166*BGN.

We validated the risk score formula using co- 
hort GSE32894. Each patient’s risk score was 
computed in TCGA training set and the GEO 
validation set. Patients were assigned to risk 
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Figure 2. Identification of the candidate hypoxia-related genes in the TCGA cohort. A. Protein-protein interaction 
(PPI) network in TCGA (left) The top 50 genes were selected based on the number of nodes (right). B. Univariate Cox 
regression analysis was used to identify candidate hypoxia-related genes. C. Multivariate Cox regression analysis 
was used to identify candidate hypoxia-related genes. D. Kaplan-Meier survival analysis for bladder cancer patients 
in TCGA (left) and GEO (right) databases, stratified according to risk scores (high vs. low). E. Receiver operating char-
acteristic curve analysis of the prognostic accuracy of the hypoxia-related risk model. F. Patient risk scores in TCGA 
and GEO databases. G. Survival in the high- and low-risk patient groups in TCGA and GEO databases. PPI, Protein-
protein interaction; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus. P values were obtained from 
independent-samples t-test. P<0.05 was considered to statistically significant. Survival analysis was conducted 
using the Kaplan-Meier method, and differences between cohorts were assessed using the log-rank test.

groups according to the median value. Based 
on Kaplan-Meier curves (Figure 2D), the low-

risk group had better outcomes than the high-
risk group. The prognostic accuracy of the risk 
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score model for OS with time-dependent ROC 
curve showed that the area under the curve 
(AUC) in the training set were 0.639, 0.684, and 
0.695, for 1-, 3-, and 5-year survival, respec-
tively; those of the validation set were 0.563, 
0.749, and 0.707, respectively. These findings 
suggest that the model predicted the outcome 
(Figure 2E). Each patient’s risk score was plot-
ted in the training and validation sets (Figure 
2F), and we found the patients in the low-risk 
group had longer OS than the patients in the 
high risk group (Figure 2G). These findings sug-
gest that the hypoxia-related risk model could 
predict survival from BLCA.

Relationship among genes in hypoxia-related 
risk model and their survival analysis

To determine the contribution of each gene to 
the risk model, we performed heatmap analy-
sis. The risk groups differed in terms of hy- 
poxia-related gene expression (Figure 3A). 
Spearman correlation analysis revealed that 
hypoxia-related genes were less correlated 
with each other, indicating these genes might 
be representative (Figure 3B). According to 
HPA, expression levels of CAV1, FBP1, SDC4, 
and VEGFA were lower in BLCA than normal tis-
sues, suggesting these genes were protective. 
Expression levels of EGFR, BGN, and GAPDH 
were higher in BLCA than in normal tissues, 
suggesting that these genes were risk factors 
(Figure 3C). These findings were consistent 
with our multivariate regression model. Genes 
in the hypoxia-related risk model were associ-
ated with survival from BLCA (Figure 3D). These 
findings might increase understanding of the 
role of these genes in BLCA.

Validation of the ability of the hypoxia-related 
risk model to predict pathological parameters 
in BLCA

To confirm the ability of the hypoxia-related risk 
model to predict outcomes, we used univariate 
and multivariate Cox regression analysis of the 
risk scores and clinicopathological parameters, 
including age, gender, and T staging, N staging, 
and grade. We found that the risk score, T stag-
ing, N staging, and age were independent out-
come predictors in TCGA training set. The risk 
score and T staging were independent prognos-
tic factors (Figure 4A, 4B). To determine the 
relationship between T staging and the expres-
sions of the gene in the hypoxia-related model, 

it has been suggested that expression levels  
of VEGFA, FBP1, CAV1, and BGN in different T 
staging exhibited significant differences, indi-
cating the hypoxia-related model is closely re- 
lated to tumor progression (Figure 4C, 4D). To 
sum up, these findings suggest that our risk 
model predicted outcome in BLCA.

Verification of hypoxia-related prognostic mark-
ers in BLCA

To further illustrate the superiority of our model 
as a prognostic marker, we compared the po- 
tential of the risk model to other hypoxia-relat-
ed markers. The glucose transporter 1 (GLUT-1) 
predicts the outcome in BLCA. Hypoxia-indu- 
cible factor-1 (HIF-1α), a hub biomarker for 
hypoxia, was selected for reference and com-
parison. All metrics established in BLCA pa- 
tients were from the Sangerbox website. We 
found that low-risk patients had longer OS in 
our hypoxia-related risk model by dividing the 
high and low-risk groups using optimal cutoff 
values. Further comparison of AUC values from 
time-dependent ROC curves revealed that, in 
the training set of our hypoxia-related risk mo- 
del, the 1-, 3-, 5-year AUC values of the nomo-
gram were 0.64, 0.68, and 0.68, respectively 
(Figure 5A), which were significantly higher 
than GLUT-1 (Figure 5B, 1-, 3-, 5-year AUC val-
ues: 0.52, 0.56, 0.54) and HIF-1α (Figure 5C, 
1-, 3-, 5-year AUC values: 0.53, 0.54, 0.51). 
Likewise, the validation dataset confirmed the 
above results. Our findings suggest that our 
risk model has more reliable predictive capa-
bilities than previously employed markers.

Validation of ability of our risk model to predict 
the tumor immune microenvironment

Hypoxia influences the tumor microenviron-
ment (TME), which in turn modulates immune 
status. To elucidate the inherent associations 
between the hypoxia-related outcome model 
and immune status and provide a basis for  
subsequent immunotherapy, GSEA was used 
for functional enrichment in high-risk BLCA 
patients. We found that a series of immune-
related pathways were enriched, including JAK-
STAT3 signaling, NF-κB signaling, IFN-γ signal-
ing, and inflammatory responses (Figure 6A; 
Table 1). We determined associations betwe- 
en hypoxia-related genes and infiltration of 
immune cells in the BLCA TME and infiltration 
of immune cells in both groups in the TCGA and 
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Figure 3. Gene expression and correlation analysis in hypoxia-related risk model. A. Heat maps of expression levels 
of the genes in the hypoxia-related risk model for the high- and low-risk groups in TCGA (left) and GEO databases 
(right). B. Correlations among the genes in the hypoxia-related risk model based on TCGA (left) and GEO (right) da-
tabases. Positive and negative correlations are indicated in red and green, respectively. C. Validation of the protein 
expression in the hypoxia-related risk model on the HPA website. D. Survival of the genes for BLCA patients in the 
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hypoxia-related model on the HPA website using Kaplan-Meier survival analysis. HPA, Human Protein Atlas; TCGA, 
The Cancer Genome Atlas; GEO, Gene Expression Omnibus; BLCA, Bladder Urothelial Carcinoma. P values were 
obtained from independent-samples t-test. P<0.05 was considered to statistically significant. Survival analysis was 
conducted using the Kaplan-Meier method, and differences between cohorts were assessed using the log-rank test.

Figure 4. Independent prognostic value of risk score and genes in hypoxia-related model. A. Single-factor prognos-
tic analysis included age, gender, TNM stage, and the risk score of BLCA patients in TCGA and GEO databases. B. 
Multifactor prognostic analysis included clinicopathological parameters and the risk score of BLCA patients in TCGA 
and GEO databases. C. Heat maps showing the expression levels of genes in the hypoxia-related risk model in TCGA 
and GEO databases for different T stages. D. Comparisons of the expression levels of hypoxia-related genes in dif-
ferent T stages from TCGA and GEO databases. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; 
TNM, Tumor-node-metastasis. P values were obtained from independent-samples t-test. P<0.05 was considered to 
statistically significant. *P<0.05, **P<0.01, ***P<0.001.



Biomarker based on hypoxia genes for BLCA patients

5083 Am J Cancer Res 2021;11(10):5076-5093

Figure 5. Comparison and verification of predictive ability of hypoxia models. A-C. Kaplan-Meier survival analysis 
for BLCA patients in TCGA and GEO databases, stratified according to risk scores or mRNA expressions. Receiver 
operating characteristic curve analysis of the prognostic accuracy of the models. TCGA, The Cancer Genome Atlas; 
GEO, Gene Expression Omnibus. P values were obtained from independent-samples t-test. P<0.05 was considered 
statistically significant. Survival analysis was conducted using the Kaplan-Meier method, and differences between 
cohorts were assessed using the log-rank test.

GEO databases (Figure 6B). The correlation 
between the hypoxia-related risk model and 
immune infiltrating cells was analyzed by the 
bubble-plot. A higher risk score correlated with 
a higher proportion of immune cells such as M0 
and M2 macrophages. By contrast, the propor-
tion of immune cells such as plasma cells, 
naïve B cells, and T cells was higher in the low-
risk group than in the high-risk group. The risk 
groups had significant differences in the pro-
portion of immune cells as visually displayed  
in a histogram (P<0.05) (Figure 6C, 6D). The 
above results suggest that our risk model 
appeared to act as a cue on immune status.

Validation of the predictive value of hypoxia-
related risk model in immune phenotypes

Further comparison of relative expression of 
immune cell marker genes in the risk groups 

revealed that the expression of phenotype-
related marker genes of plasma cells in the 
low-risk group was significantly higher than that 
of the high-risk group. However, the proportion 
of M2 macrophage phenotype-related marker 
genes was significantly higher in the high-risk 
group (Figure 7A). We analyzed the expression 
of M0-/M2-related chemokines. It was found 
that chemokines were abundantly enriched in 
the high-risk group. In particular, the chemo-
kines produced after polarization to M2, such 
as CCL18, showed significantly high expression 
in the high-risk group, possibly explaining the 
high content of M2 macrophages in the high-
risk group (Figure 7B). Using the “Tracking 
Tumor Immune Phenotype” online platform 
(http://biocc.hrbmu.edu.cn/TIP/index.jsp), a se- 
ries of immune regulation-related genes were 
further screened. Using a heat map, genes 
related to negative immune regulation were 
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Figure 6. Pathway enrichment analysis and tumor-infiltrating immune cell analysis in BLCA patients. A. Enriched gene sets in the HALLMARK collection in high-risk 
group of the training set. B. Heat map of immune cell infiltration in high- and low- risk group from TCGA or GEO databases. C. Bubble chart of the correlation between 
the patient risk score and the proportion of immune infiltrating cells in the TCGA database. D. Immune infiltrating cells are significantly associated with hypoxia-
related risk scores in TCGA database (P<0.05). GSEA, Gene Set Enrichment Analysis; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus. P values 
were obtained from independent-samples t-test. P<0.05 was considered statistically significant.
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Table 1. Gene set enrichment analyses of high-risk group in TCGA BLCA samples
Name ES NES NOM P-value FDR q-value FWER P-value Rank at MAX Leading edge
Hallmark_epithelial_mesenchymal_transition 0.785456 2.3276258 0 0 0 6237 tags = 76%, list = 11%, signal = 85%
Hallmark_inflammatory_response 0.68982 2.2883618 0 9.34E-04 0.002 7066 tags = 61%, list = 13%, signal = 69%
Hallmark_apical_junction 0.582675 2.279953 0 0.001264694 0.003 5698 tags = 46%, list = 10%, signal = 51%
Hallmark_complement 0.601588 2.2350826 0.00210084 0.001415409 0.003 6921 tags = 54%, list = 12%, signal = 61%
Hallmark_allograft_rejection 0.687183 2.1634717 0.004175365 0.003710467 0.009 7171 tags = 62%, list = 13%, signal = 70%
Hallmark_coagulation 0.59552 2.1146066 0 0.00490311 0.015 8266 tags = 51%, list = 15%, signal = 59%
Hallmark_angiogenesis 0.676715 2.0700555 0 0.006818818 0.024 7500 tags = 72%, list = 13%, signal = 83%
Hallmark_IL2_STAT5_signaling 0.514615 2.0774574 0.001996008 0.007468107 0.023 7692 tags = 48%, list = 14%, signal = 55%
Hallmark_hypoxia 0.526527 2.0419757 0.002123142 0.007637098 0.032 5688 tags = 42%, list = 10%, signal = 46%
Hallmark_KRAS_signaling_up 0.501232 2.0119126 0.004024145 0.008965819 0.044 8132 tags = 47%, list = 14%, signal = 55%
Hallmark_MTORC1_signaling 0.561707 1.9666486 0.012474013 0.013026817 0.064 5578 tags = 43%, list = 10%, signal = 48%
Hallmark_apoptosis 0.4807 1.9077333 0.006396588 0.019406212 0.095 6722 tags = 40%, list = 12%, signal = 45%
Hallmark_IL6_JAK_STAT3_signaling 0.587044 1.8920499 0.006263048 0.020746794 0.108 7090 tags = 55%, list = 13%, signal = 63%
Hallmark_myogenesis 0.508341 1.8633606 0.022633744 0.024279423 0.13 7591 tags = 44%, list = 13%, signal = 51%
Hallmark_hedgehog_signaling 0.568482 1.8527048 0.006060606 0.02462458 0.136 5864 tags = 44%, list = 10%, signal = 50%
Hallmark_TNFA_signaling_VIA_NFKB 0.53393 1.7919862 0.04526749 0.029674731 0.186 7365 tags = 52%, list = 13%, signal = 59%
Hallmark_apical_surface 0.488358 1.8005064 0.01026694 0.029942015 0.182 4284 tags = 39%, list = 8%, signal = 42%
Hallmark_UV_response_DN 0.47509 1.8080297 0.006012024 0.030107137 0.175 3806 tags = 37%, list = 7%, signal = 39%
Hallmark_interferon_gamma_response 0.636303 1.8092804 0.040339705 0.03190229 0.175 7092 tags = 58%, list = 13%, signal = 67%
Hallmark_glycolysis 0.441299 1.7679787 0.017021276 0.033044443 0.2 5690 tags = 35%, list = 10%, signal = 39%
Hallmark_reactive_oxygen_species_pathway 0.518838 1.68988 0.032989692 0.049855 0.271 7019 tags = 41%, list = 12%, signal = 47%
Hallmark_G2M_checkpoint 0.5881 1.6712279 0.06198347 0.052687917 0.293 8571 tags = 52%, list = 15%, signal = 62%
Hallmark_mitotic_spindle 0.461691 1.6442664 0.055009823 0.05769695 0.308 8399 tags = 47%, list = 15%, signal = 55%
Hallmark_interferon_alpha_response 0.65164 1.6323211 0.085365854 0.0579011 0.318 6801 tags = 60%, list = 12%, signal = 68%
Hallmark_unfolded_protein_response 0.460538 1.5964074 0.0751073 0.066218555 0.355 7780 tags = 41%, list = 14%, signal = 47%
Hallmark_HEME_metabolism 0.362973 1.5407451 0.03941909 0.072797954 0.425 7646 tags = 35%, list = 14%, signal = 40%
Hallmark_TGF_BETA_signaling 0.454284 1.5445051 0.06407767 0.07373564 0.419 5753 tags = 39%, list = 10%, signal = 43%
Hallmark_E2F_targets 0.58466 1.56686 0.115226336 0.07388786 0.391 8609 tags = 53%, list = 15%, signal = 62%
Hallmark_UV_response_UP 0.38287 1.5473924 0.039748956 0.07478651 0.412 8183 tags = 39%, list = 14%, signal = 45%
Hallmark_MYC_targets_V1 0.516636 1.5521585 0.1194332 0.07618481 0.407 8344 tags = 45%, list = 15%, signal = 52%
Hallmark_WNT_beta_catenin_signaling 0.46144 1.4933735 0.083333336 0.0864872 0.481 8778 tags = 48%, list = 16%, signal = 56%
Hallmark_P53_pathway 0.366206 1.4944457 0.074 0.08871294 0.479 7284 tags = 38%, list = 13%, signal = 44%
Hallmark_androgen_response 0.393805 1.4745541 0.06326531 0.089081176 0.503 6377 tags = 36%, list = 11%, signal = 41%
Hallmark_estrogen_response_late 0.355866 1.479784 0.059548255 0.08985082 0.5 6625 tags = 35%, list = 12%, signal = 40%
Hallmark_notch_signaling 0.406555 1.4611244 0.055226825 0.091368124 0.517 4567 tags = 34%, list = 8%, signal = 37%
Hallmark_KRAS_signaling_DN 0.324951 1.392642 0.049603175 0.115419306 0.592 10049 tags = 34%, list = 18%, signal = 41%
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Hallmark_PI3K_AKT_MTOR_signaling 0.35112 1.3770827 0.106 0.120090954 0.612 9645 tags = 34%, list = 17%, signal = 41%
Hallmark_estrogen_response_early 0.323102 1.3296219 0.13389121 0.14196703 0.67 4827 tags = 28%, list = 9%, signal = 31%
Hallmark_cholesterol_homeostasis 0.345802 1.2549059 0.21327968 0.18466736 0.746 4339 tags = 23%, list = 8%, signal = 25%
Hallmark_spermatogenesis 0.31486 1.1798246 0.24267782 0.2317077 0.807 11722 tags = 37%, list = 21%, signal = 47%
HALLMARK_MYC_targets_V2 0.409209 1.134403 0.3495935 0.26181093 0.848 8609 Tags = 41%, list = 15%, signal = 49%
Hallmark_pancreas_beta_cells 0.407702 1.1002083 0.35523614 0.28389058 0.874 16104 tags = 55%, list = 28%, signal = 77%
Hallmark_protein_secretion 0.301517 1.0280033 0.43153527 0.34483147 0.91 6377 tags = 27%, list = 11%, signal = 30%
Hallmark_DNA_repair 0.264979 0.938892 0.48140496 0.4331715 0.949 5443 tags = 23%, list = 10%, signal = 26%
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Figure 7. Relationships between immunophenotypes and hypoxia-related risk model. A. The expression of marker 
genes on the surface of tumor-infiltrating immune cells in high- and low- risk groups. B. The expression of chemo-
kines of tumor-infiltrating immune cells in high- and low- risk groups. C. Heat maps showing the expression levels of 
negative regulatory immune genes in high- and low-risk groups. D, E. Scatter plots showed the correlations between 
hypoxia-related risk scores and the expression of immune checkpoints from TCGA and GEO databases. Pearson 
coefficients were used to assess the correlation between the two factors. The box plots showed the expression 
of the immune checkpoints in high- and low-risk groups. TCGA, The Cancer Genome Atlas; GEO, Gene Expression 
Omnibus. P values were obtained from independent-samples t-test. P<0.05 was considered statistically significant. 
*P<0.05, **P<0.01, ***P<0.001.
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highly expressed in the high-risk group (Figure 
7C). We compared expression levels of immune 
checkpoints between risk groups and found 
that PD1 and CD70 positively correlated with 
the risk score. Expression levels PD1 and CD70 
were significantly higher in the high-risk group 
(Figure 7D, 7E). We verified these findings using 
data from GEO. In summary, these findings sug-
gest that our hypoxia-related risk model pro-
vides a basis for predicting immune features 
and using immunotherapy to treat BLCA.

Discussion

As a common characteristic in microenviron-
ments of solid tumors [13], intratumoral hypox-
ia is associated with poor outcomes. Hypoxic 
gene signatures have been used to predict the 
outcome of various tumors, including head and 
neck cancers, breast tumors, and carcinoma of 
the lung. The combination of biomarkers in a 
predictive model improves the predictive value 
over individual biomarkers. We established a 
prognostic model using seven hypoxia-related 
genes (EGFR, VEGFA, CAV1, BGN, FBP1, SDC4, 
GAPDH) based on the TCGA database to pre-
dict prognosis, survival, and immune status in 
BLCA. Meanwhile, it was validated in the GEO 
dataset.

The high-risk group had worse OS according  
to the hypoxia-related risk model. Oxygen is 
essential for energy metabolism. Under hypoxic 
conditions, TME is affected by the regulation of 
several energy metabolism pathways. TME also 
affects the metabolism of immune cells, tumor 
progression, and treatment resistance [14]. 
Therefore, hypoxic areas can be regarded as 
metabolic areas within the tumor, which fine-
tunes tumor-associated immune responses 
[15]. Considering that hypoxia is a critical node 
in tumor progression, we selected hypoxia as 
the starting point for the predictive outcome 
and immune status of BLCA patients.

Using Spearman analysis and HPA, we found 
that each hypoxia-related gene in the risk 
model was representative. Epidermal growth 
factor receptor (EGFR) is a receptor tyrosine 
kinase [16] frequently overexpressed or mutat-
ed in several tumors and promotes BLCA pro-
gression by means of the VEGF receptor (R)2/
nuclear factor-κB signaling pathway [17]. Vas- 
cular endothelial growth factor-a (VEGFA) is the 
first hypoxia-induced angiogenesis factor that 

promotes proliferation, migration, and forma-
tion of the endothelial matrix [18]. VEGFA is a 
pro-angiogenic factor; however, Pan et al. found 
that high levels of secreted VEGFA were induced 
by hypoxia in a mouse tumor model, causing 
tumor vascular regression and inhibiting tumor 
growth [19]. Similarly, syndecan (SDC) is highly 
expressed in almost all malignant tumors [20]. 
SDC4 silencing reversed the phenotypic trans-
formation of hypoxia-resistant endothelial cells; 
SDC4 might be an attractive target for tumor 
therapy [21]. Biglycan (BGN), first identified in 
bone tissue, is highly expressed in pancreatic 
cancer, colorectal cancer, and intrahepatic ch- 
olangiocarcinoma [22]. Zhao et al. found that 
BGN can be used as a promising prognostic 
biomarker and therapeutic target for BLCA [23]. 
BGN not only triggers pro-inflammatory Toll- 
like receptors and inflammasomes-signaling, 
but also stimulates the production of pro-
inflammatory cytokines (eg. TNF-α, IL-1β, IL-6), 
which are key mediators of inflammation in 
tumor development [24]. Fructose-1,6-bip- 
hosphatase (FBP1) is the rate-limiting enzyme 
in gluconeogenesis [25]. Nutrients are acquir- 
ed by enhancement of tumor glycolysis under 
hypoxia [26]. FBP1, as a negative regulator of 
glycolysis, is frequently down-regulated in many 
types of tumors and could increase glycolytic 
capacity to contribute to intratumoral hypoxia 
[25]. Glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) is a glycolytic enzyme that is 
upregulated in response to hypoxic stress in 
endothelial cells, and its overexpression is 
associated with upregulation of HIF-1α protein 
[27, 28]. These findings suggest that each 
hypoxia gene in the hypoxia-related risk model 
could be crucial in cancer progression.

CAV1 has been shown to promote the invasion 
and migration of tumor cells in some cancers. 
By reviewing the literature, it was found that 
CAV1 could inhibit the proliferation and metas-
tasis of CRC and pancreatic cancer cells [29, 
30]. Similarly, the loss of CAV1 is a marker of 
hypoxia and oxidative stress [31], which is inex-
tricably linked with tumor progression. There- 
fore, CAV1 might inhibit tumorigenesis, espe-
cially under hypoxic conditions. However, there 
is no clear demonstration of the mechanism of 
CAV1. We found that the effect of CAV1 on sur-
vival in univariate Cox regression analysis and 
HPA was inconsistent with the result of the  
multivariate Cox regression analysis. Similar 
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results were reported by Chen et al. [32]. Mul- 
ticollinearity analysis was used to diagnose and 
confirm that the multivariate COX regression 
model was established reasonably. It may be 
the case that multivariate Cox regression dif-
fers from the original univariate Cox regression 
because of various factors, especially the influ-
ence of hypoxia conditions on the dependent 
variables.

The predictive ability of our risk model was 
compared using GLUT-1 and HIF-1α. HIF-1α, 
critical regulators of molecular responses to 
hypoxia [33] involved in tumor cell biological 
processes [34]. HIF-1α participates in the acute 
hypoxic response and regulates adaptation to 
hypoxic conditions [35, 36]. HIF-1α is highly 
expressed in hypoxic conditions [37]. GLUT-1, a 
biomarker for tumor hypoxia, is up-regulated in 
various tumors. Boström et al. demonstrated 
that GLUT-1 independently predicted poor out-
comes [38]. We verified this in TCGA; however, 
we found the opposite results in the GEO data-
base, possibly because of the different sourc- 
es of patient samples between the two data-
bases. This phenomenon has been previously 
reported [39]. To test the sensitivity and speci-
ficity of our model, GLUT-1 and HIF-1α were 
compared with the hypoxia-related risk model. 
The 1-, 3-, 5-year AUC values showed that our 
model had a stronger predictive ability than the 
two markers and could be used to predict out-
comes in BLCA.

To better understand the characteristics of 
high-risk patients in our risk model, we em- 
ployed the GSEA function and found that the 
high-risk group displayed significant enrich-
ment in immune-related pathways, including 
JAK-STAT3, NF-κB, and IFN-γ. In TME, IL-6/JAK/
STAT3 signaling drives proliferation, invasion, 
and metastasis, while strongly inhibiting anti-
tumor immune responses [40]. NF-κB is an es- 
sential factor that could be used in tumor 
immunosurveillance [41]. Hypoxia-sensitive pa- 
thways are thought to be critical regulators of 
immune cell function [42]. For example, thera-
peutic strategies for HIF in the immune system 
might be beneficial for anti-tumor immune re- 
sponses [43]. Immune cell infiltration in tumor 
cells is closely related to tumor outcomes. 
Therefore, we focused on immune-related func-
tions. While explaining the characteristics of 
our risk model, we also analyzed the predictive 

performance of the model in the immune 
direction.

By measuring the proportions of immune-infil-
trating cells using CIBERSORT, we found that 
higher risk scores correlated with more signifi-
cant contents of M0 and M2 macrophages. 
Naïve B cells also showed differences in each 
risk group. Immune cells in the TME correlated 
with survival from tumors. Xue et al. found that 
M2 macrophages are the most common cells 
that infiltrate the microenvironment in BLCA 
[44]. This finding was consistent with our re- 
sults. M2 macrophages promote the polariza-
tion of TAM to M2 under hypoxic conditions and 
are involved in promoting angiogenesis, cell 
proliferation, and immunosuppression of tu- 
mors [37, 45]. Naïve B cells significantly po- 
sitively correlated with better survival. They me- 
diate anti-tumor effects by secreting IFN-γ and 
enhancing T cell activation [46]. Plasma cells 
exert anti-tumor immunity by participating in 
synergistic interactions among lymphocyte 
subpopulations [47]. The greater proportion of 
plasma cells in the low-risk group might explain 
their better survival and outcome.

We measured expression levels of genes and 
chemokines related to immune cells. The tran-
scription factor BCL6 enhances the function  
of high-affinity antibody-secreting plasma cells 
[48]. SDC1 (CD138) is also used as a marker 
for plasma cells [49]. M2 macrophages ex- 
pressed high levels of CD163, MS4A4A, VS- 
IG4, and chemokines (CCL17 and CCL18) [50]. 
Similarly, high levels were observed in the high-
risk group. We confirmed a relationship bet- 
ween our risk model and immune negative reg-
ulatory genes. Immune negative regulatory ge- 
nes were expressed highly in the high-risk gr- 
oup, suggesting that our model predicted the 
immune status of TME.

Immune checkpoint inhibitors, including anti-
PD-1 monoclonal antibody and anti-CD70 anti-
body, have shown great potential to control 
tumors through immune activation [51]. CD70 
can be transiently expressed on B cells [52] 
and is believed to play a role in tumor prolifera-
tion and evasion of immune surveillance [53]. 
We found that these immune checkpoints sh- 
owed markedly higher expression in the high-
risk group. The findings indicate that our risk 
model might serve as a proxy for a patient’s 
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immune status and may inform decision-mak-
ing for the treatment of BLCA.

This study has certain limitations. The outcome 
data were derived from public databases, and 
patient sample volumes were limited. More real 
clinical data are needed to validate our find- 
ings.

In conclusion, the hypoxia-related risk model 
reliably predicted outcome and immune status 
in BLCA. The model might be more helpful for 
cancer treatment and immunotherapy options 
than traditional treatment regimens. The model 
provides prospects for clinical applications as  
a biomarker and paves the way for research 
developments in BLCA.
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