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Abstract: Prostate cancer (PrCa) is the second most common malignancy in men. More than 50% of advanced
prostate cancers display the TMPRSS2-ERG fusion. Despite extensive cancer genome/transcriptome data, little
is known about the impact of mutations and altered transcription on regulatory networks in the PrCa of individual
patients. Using patient-matched normal and tumor samples, we established somatic variations and differential
transcriptome profiles of primary ERG-positive prostate cancers. Integration of protein-protein interaction and gene-
regulatory network databases defined highly diverse patient-specific network alterations. Different components of
a given regulatory pathway were altered by novel and known mutations and/or aberrant gene expression, including
deregulated ERG targets, and were validated by using a novel in silico methodology. Consequently, different sets of
pathways were altered in each individual PrCa. In a given PrCa, several deregulated pathways share common fac-
tors, predicting synergistic effects on cancer progression. Our integrated analysis provides a paradigm to identify
druggable key deregulated factors within regulatory networks to guide personalized therapies.
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Introduction tors involved in DNA repair and chromatin

methylation, or cell cycle control. One of the

The mutational landscapes of primary and
advanced/metastatic PrCa have been exten-
sively analyzed [1-5], as has been the preva-
lence of the androgen-sensitive TMPRSS2 pro-
moter fusion with ETS transcription factors [6],
which endows ETS with responsiveness to the
androgen receptor (AR) that is frequently over-
expressed in antiandrogen-resistant PrCa [7].
In these studies, recurrent mutations have
been found in genes coding for factors regulat-
ing a plethora of pathways and key cellular
functions, such as the androgen receptor sig-
naling, PI3K/RAS/RAF/WNT pathways, and fac-

caveats in all these studies was that, with a
few exceptions [2, 8], information was generally
compiled from large numbers of tumors from
different patients. Thus, while enabling identifi-
cation of predominant mutations, these stud-
ies did not reveal the spectrum of aberrations
that existed in individual patients’ prostates at
diagnosis. All these aberrations may affect dif-
ferent regulatory pathways and their added,
possibly synergistic action may be critical for
malignancy and tumor progression. Indeed,
restoring a normal state would require the cor-
rection of a highly complex and dynamically
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regulated system of interactive multi-compo-
nent networks which are deregulated in dis-
ease [9]. Towards this goal, the identification of
aberrant networks and their inherent hierar-
chies is essential to design patient-selective
therapeutic interventions through generic or
key factor-specific modulation of the affected
pathways.

Material and methods
Patient sample collection

All samples were collected within 15 minutes
after radical prostatectomy to shorten the delay
between de-vascularization and freezing, and
to ensure preservation of labile molecules.
Immediately following prostatectomy, punch
biopsies (“carrots”) of 8 mm diameter were
taken from tumor and adjacent normal tissue,
snap-frozen in liquid nitrogen and stored at
-80°C. Carrots used for genomic and transcrip-
tomic studies were cut into sequential tissue
sections and the tumor cellularity was moni-
tored at regular intervals by histological stain-
ing to ensure homogeneity of tumor and normal
sections stored in LoBind tubes at -80°C.

Tissue microarrays

Tissues microarrays (TMA) were made from
paraffin-embedded tissue cores of histopathol-
ogy-confirmed prostate cancer and patient-
matched tumor-adjacent normal tissue. For
each tumor, two representative tumor areas
were selected and two cores of 2 mm in diam-
eter were punched and included in paraffin
recipient blocs. Two adjacent normal tissues of
each selected prostatic sample were arrayed
on TMAs and constituted the “normal” counter-
parts of each tumor sample. The TMAs were
performed on the histopathology platform of
the Biological Resource Center (CRB) of the
Toulouse University Hospital, in a semi-auto-
mated way using the EZTMA™ Manual Tissue
Microarray Kit (IHC World). The slides were
examined by HE coloration and immunohisto-
chemical studies were performed on TMA tis-
sues. Immunohistochemistry was done using
an automated Dako Autostainer. The following
antibodies were used: ERG, EZH2, Androgen
Receptor. Slides were digitalized using a
Hamamatsu NanoZoomer slide scanner (Japan)
at 20x maghnification with a resolution of 0.46
microns per pixel. The results were interpreted
under an optical microscope by two patholo-
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gists (CM and M-LQ), blinded to the clinical
data.

Whole exome sequencing (WES) and analysis
pipeline

For WES, DNA was isolated from frozen tumor
and matched normal tissue (10 sections of 10
pum for each tumor and normal sample) using
QlAamp DNA micro kit according to manufac-
turer’'s instructions. DNA was processed by
GATC Biotech for exome capture, library prepa-
ration and sequencing. Briefly, SureSelectXT
Human all exon V6 kit was used to capture
exons, libraries were prepared using TruSeq
DNA library preparation kit according to manu-
facturer’s instruction and Paired-End 125-base
sequencing was performed on Illumina HiSeq
2000. FastQ files provided by GATC Biotech
were processed for variant discovery with
Genome Analysis Toolkit (GATK, 3.7) [10] using
default parameters. To assist in WES analysis
we developed a WES Analysis Pipeline [written
in Python3 with the Snakemake (3.13.3) [11]
management tool] and used the Genome
Analysis Toolkit (GATK, 3.7) [10] according to
the authors’ instructions. The following tools
were used for each step in the pipeline.

Pre-processing of the samples: FastQ files were
first aligned to hg19 using BWA-mem (0.7.17)
[12] using standard parameters. The output
SAM files were then converted to BAM files
using SAM tools (1.6) [13]. BAM files were
processed using Picard tools (2.14) to sort by
coordinates, remove duplicates and add read
group tags (essential to differentiate between
Normal and Tumor samples) to samples before
indexing them with SAM tools. Then BAM files
were recalibrated (BQSR) using GATK, as rec-
ommended for enhancing variant calling by pro-
viding databases of known polymorphic sites: a
setof curated INDEL entries, a Single Nucleotide
Polymorphism database dbSNP, the COSMIC
database of somatic cancer mutations.

Creating the Panel of Normals (PON): The
‘Panel of Normals’ is created from the normal
samples using GATK. This method is used as a
filter to reject artifacts and germline variants
that are present in at least two normal samples
(-minN 2). It uses as input the hg19, the dbSNP,
the COSMIC and the intervals of the genome to
analyze only the exons of all genes captured. It
generates a new file that will be used when call-
ing the variants.
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Variant calling with MuTect2: After pre-process-
ing and alignment, MuTect2 (GATK) was used to
call somatic variants [14]. Inputs are the follow-
ing files: hgl9, PON, HumanAIlExonV6r2,
COSMIC and dbSNP. The normal and tumor
samples were compared using the following
parameters: pir_mad_threshold: 6; max_alt_
alleles_in_normal_count: 5; pir_median_thre-
shold: 35; standard_min_confidence_thresh-
old_for_calling: 30.

Annotation of VCF: The annotations of the VCF
files were done using SnpEFF [15] and SnpSift
[15] with hg19 as reference genome.

Validation of mutations

Target regions were amplified by PCR. PCR
products were purified using Qiagen gel extrac-
tion kit and sequenced by Eurofins Genomics
using the BigDye Terminator Cycle Sequencing
Kit and an ABI 3730xl automated sequencer
(Applied Biosystems). The sequencing primers
were the same as those used for PCR amplifica-
tion. Variants were confirmed using SNAP gene
viewer.

RNA-sequencing

RNA was isolated from frozen tumor and
matched normal tissue using Trizol reagent
(Invitrogen). In all cases, two independent sets
of adjacent 10 uym sections (N=10) were pro-
cessed for RNA isolation to generate biological
duplicate RNA-seq data. For subsequent inter-
pretations only data that were consistent
between the biological duplicates were
retained. RNA was further cleaned up using
RNeasy MinElute Cleanup Kit. RNA was then
sent to GATC Biotech (Konstanz, Germany) for
strand-specific, paired-end and Ribo-minus
total RNA-seq. Briefly, ribosomal RNA depletion
was done using Ribo Zero gold kit (lllumina Inc);
libraries were prepared using TruSeq stranded
total RNA library prep kit (lllumina Inc.). Paired-
end 125 base or 150 base sequencing was
performed using lllumina HiSeq 2000. FastQ
files received from GATC Biotech were used for
further analysis.

RNA-seq analysis pipeline

The analysis pipeline consists of the following
steps.
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Pre-processing, alignment and counting raw
reads: FastQ files were assessed for quality
using FastQC. FastQ files were aligned to refer-
ence genome (human genome hg19) using the
Hisat2 [16] aligner. Aligned SAM files were con-
verted to BAM files and sorted using SAMtools
[13]. The R package Summarized Experiment
[17] was used for counting raw reads per exon/
gene.

Differential gene expression analysis: The
patient-specific differential gene expression
analysis was done using DESeqg2 (1.20.0) [18]
according to the general steps described with
the parameters given below. The samples have
been analyzed by giving the matched raw read
counts normal/tumor duplicates as input.

- Removing sum of row counts: O;

- CooksCutoff: False;

- Alpha: 0.01;

- Subset genes with Adjusted P-value <0.01;

- Subset genes with Log2FC <-1 or Log2FC >+1.

The corresponding list of Differentially Expre-
ssed Genes (DEGs) for each patient was used
for further analysis.

Pathway enrichment analysis

To interpret the gene expression data, the DEG
list was loaded into GeneCodis [19] and the
Panther pathway analysis function was used to
retrieve enriched pathways. Hypergeometric
correction of P-values was applied and path-
ways displaying a corrected P-value <0.01 were
considered enriched. We clustered all path-
ways of all samples using Plotly in R. For the
datasets obtained from TCGA (54 PrCa patient
data along with matched normal), HT-seq
counts were downloaded for each patient cor-
responding to tumor and matched normal.
DEseq2 was used to identify the DEGs for each
patient. Pathway enrichment analysis was per-
formed as described before.

Patient-specific network generation and visu-
alization

To generate the gene networks for individual

patients we extracted the list of mutated genes
from WES and differentially expressed genes
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(DEGs) from RNA-seq of tumor vs normal sam-
ples for each patient. These lists of genes were
queried against two known databases of net-
work interactions, STRING [20], a Protein-
Protein Interaction (PPI) database, and CellNet
[21], a gene regulatory network (GRN) data-
base. For STRING, we merged the list of genes
(DEGs and Mutation, keeping the information
whether the gene is a DEG or a mutated gene
as attributes), removed any duplicated genes
and queried them using an in-house script. As
for the parameters, we only chose edge interac-
tions that have been experimentally validated
(exp_score # 0). For CellNet, we queried only
the differentially expressed genes on the target
genes and retrieved along the cognate tran-
scription factors. We chose interactions that
had only a z-score >5. After obtaining networks
from both databases, we proceeded to add the
information from WES and RNA-seq whether
the genes were mutated, differentially ex-
pressed or both, in addition to the information
obtained from the databases.

Network visualization and merging using
Cytoscape

Individual networks, created by using Cellnet
and String for each patient, were visualized
using Cytoscape [22]. Finally, CellNet and
STRING networks for each patient were merged
using the Cytoscape merge function to obtain
master networks for each patient. Sub-
networks were then extracted for further visual-
ization and analysis.

Identification of putative AR and ERG target
genes

A two-step approach was used. First, we col-
lected sequenced read files (bed format) asso-
ciated to public ChiP-seq assays targeting ERG
in TMPRSS2-ERG positive human VCaP pros-
tate cancer (GSM1328978, GSM1328979) and
RWPE-1 normal prostate epithelium cells
(GSM2195103, GSM2195106). BED Replicate
files per cell-type were merged together prior
performing peak calling (MACS 1.4; no model,
shiftsize =150 nts, P-value threshold: 1x107%),
followed by their genomic annotation to the
closest transcription start sites (annoPeakR).
This analysis allowed to pair the characterized
DEGs and mutated genes within the patient-
derived networks with genes presenting proxi-
mal AR binding sites (<10 kb distance) on VCaP
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ChIP-seq profiles. This primary analysis has
been validated in a second step by comparative
visual inspection of ChlP-seq profiles. For this
we used the gcGenomics platform, in which the
dedicated genome browser NAVi allows to visu-
alize any publicly available ChlIP-seq profile.
Specifically, we used NAVi to extract all AR and
ERG ChiIP-seq profiles for TMPRSS2-ERG posi-
tive human VCaP prostate cancer and RWPE1L
normal prostate epithelium cells. The pre-com-
puted datasets were displayed simultaneously
in the NAVi browser for comparative visualiza-
tion. Only tracks with an apparent high signal-
to-noise ratio were retained (VCaP-ERG:
GSM2058880, GSM1328978, GSM1378979,
GSM1328980, GSM1328981; VCaP-AR: GSM-
1410768, RWEP1-ERG: GSM927071, GSM-
2195110, GSM2195103; VCaP-GROseq: GSM-
2235682). Promoter-proximal ERG binding
was scored positive in this visual ‘validation’
(attributing a yellow color to the respective
nodes) only when there was a clearly visible
peak above the background at a scale of 30 to
300 (read count intensity; depending on the
signal and noise intensities of each profile), pro-
vided that there was no other known TSS closer

(see Supplementary Figure 6 for examples of
gain of ERG binding).

Data availability

The RNA-seq data sets generated in the con-
text of this study from 15 patient-matched
tumor and normal prostate tissue are available
in the Gene Expression Omnibus (GEO) reposi-
tory under the accession number GSE133626.
The corresponding Exome-seq data sets from
the prostates of the same 15 patients are avail-
able from the SRA database under the acces-
sion number PRIJNA555457. Data sets for the
pathway analysis shown in Supplementary
Figure 3 were downloaded from The Cancer
Genome Atlas (TGCA) as described in the meth-
ods section. The sequencing statistics of RNA-
seq and Exome-seq experiments are specified

in Supplementary Table 4.

Results

Overview of the approach

We chose prostate cancer as a solid tumor par-
adigm to integrate patient-specific differentially

expressed (DEGs) and mutated genes, using
information from protein-protein interaction
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Figure 1. Analysis strategy and characterization of patient-matched samples. A. Sketch of the workflow of this study.
B. Representative IHC images of cancer and corresponding matched normal samples from patient 15 (P15) stained
with an anti-AR antibody (top panel) or an anti-ERG antibody (bottom panel). C. RNA-seq data of ERG expression in
all the patients’ tumors relative to their matched normal. Differential ERG expression for all patient-matched dupli-
cate samples was supported by q value <10°° using DEseq (see Methods for details). D. Schematic illustration of 4
novel mutations in P1, P9, P11 and P14, which are predicted to have a high or moderate impact.

and gene-regulatory network databases [21, that consecutive sections of the same biopsy
23] (Figure 1A) to generate patient-specific differed only minimally in tumor cellularity
cancer-modified networks. Extensively charac- (>80% tumor cells), while the sections of N
terized normal and tumor frozen punch biop- biopsies from the same prostate had 0% tumor
sies from the same prostate were obtained cells. With one exception of patient 14 (P14),
from radical prostatectomy specimens of non- the proportion of infiltrating lymphocytes rela-
treated patients. 15 primary ERG-positive tive to tumor cells was close to 0%, only occa-
tumors (T) and matched normal tissue (N) were sionally rare scattered lymphocytes were
selected by expert pathologists on the basis observed in the stroma. The tumor sections of
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P14 showed up to 25% (area-based) mononu-
clear immune cells. Immunohistochemistry and
RNA-seq (biological duplicates) confirmed ERG
overexpression relative to the matched N sam-
ples and all samples revealed increased andro-
gen receptor (AR) levels (Figure 1B, 1C).

Identification of large-scale patient-specific
genomic changes using exome sequencing
analysis

To identify somatic variation, we performed
whole-exome sequencing (WES, Supplementary
Table 1). Variants were called using MuTect2,
which revealed between 49 and 114 mutations
in each cancer relative to the corresponding
normal prostate tissue; only mutations predict-
ed to have high or moderate impact were con-
sidered subsequently (Supplementary File 1).
Intriguingly, in addition to classical mutations,
for example in MYC, TP53, PTEN or compo-
nents of the PI3K and WNT pathways [1, 2, 24],
unreported patient-specific mutations were
observed in all samples (Supplementary Table
2; for validations see Supplementary Figure 1).
In P1 three hitherto unreported somatic muta-
tions affected the putative tumor suppressors
BANP [25], FEZ1 [26, 27] (Figure 1D) and
TINAGLZ1, which interferes with both integrin
and EGFR signaling [28]. We also found novel
mutations in MAPK7 (R400H) in P9, Annexin A1
(ANXA1, frameshift deletion; P11) and a TET2
mutation that truncates the protein and ren-
ders it non-functional (Figure 1D; P14). These
novel somatic mutations were seen only in sin-
gle patients. However, the nature of the muta-
tions, often truncating proteins of functional
importance, is likely to have a significant impact
in the individual case. Moreover, several of
those genes were found mutated in other
cancer types, supporting their functional
impact (Supplementary Figure 2). The ability of
TINAGL1 to inhibit progression and metastasis
of triple-negative breast cancer [28], provides
strong rational for such personalized genomic
analysis. Our data underscores the recent
notion that “significantly mutated genes” in
PrCa may occur at frequencies of only a few
percent [29].

RNA-seq analysis revealed patient-specific
altered tumor transcriptome

Mutations in regulatory elements (e.g., enhanc-
ers) and factors (e.g., transcription factors, epi-
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genetic modulators, enzymes) can affect global
gene expression. To integrate these effects in
the network analysis, we performed high-
throughput strand-specific paired-end total
RNA sequencing after ribosomal RNA depletion
from matched T and N biopsy sections as bio-
logical duplicates. As expected, T vs. N analysis
of the RNA-seq datasets identified tumor-spe-
cific differentially expressed genes (TS-DEGs;
Supplementary File 2) with diverse functional-
ities, comprising (i) cancer-specific deregulated
proto-oncogenes like c-MYC (all except PG,
P11, P13) but also (ii) pleiotropic factors like
the serine protease KLK4 (P4, P10, P14, P15),
a regulator of AR and the PISBK/AKT/mTOR path-
way [30] and of protease-activated receptors
[31]. Notably, deletion of KLK4 impairs PrCa
growth [30]. Moreover, (iii) epigenetic modifiers
like JMJD6 (P14), KDM4B (P5), KDM6A (P2,
P8), KDMEB (P6, P9), TET3 (P12, P14), KAT2A
(P3), KAT6A (P2) or HDAC9 (P2-5, P7-11, P13-
15) were differentially expressed in certain
tumors. In addition to protein-coding genes,
expression of (iv) certain regulatory RNAs was
altered in tumors [micro-RNAs (miRs)], as well
as long non-coding RNA (IncRNAs); for annotat-
ed miRs and IncRNAs, see Supplementary
Table 3. Of note, the p53-inducible IncRNA
NEAT, a promising therapeutic target whose
ablation generates synthetic lethality with che-
motherapy and p53 reactivation therapy [32,
33], was over-expressed in 7/15 PrCa sam-
ples. A prominent ERG binding site in VCaP and
in normal prostate epithelial RWPE-1 cells
about 4.6 kb upstream of the NEAT transcrip-
tional start site may account for this deregula-
tion (e.g., GSM2086313, using the qcGenom-
ics browser). The androgen-responsive INcCRNA
ARLNC1 [34] was up-regulated in 9/15 paired
samples but down-regulated in P5. HOTTIP, a
component of H3K4 methyltransferase com-
plexes [35] that can act as AR co-activator [36]
and was reported as negatively androgen-regu-
lated IncRNA [34] in prostate cancer cells, was
downregulated in 9/15 PrCa samples. This
included several, but not all of those with up-
regulated ARLNC1. A similar divergence was
seen with putative tumor suppressor and onco-
genic miRNAs that are actively considered for
clinical development [37]. For example, the
RNA levels of tumor-suppressor miR34a were
decreased in three samples (P10, P13 and
P15) but increased in P4 and not affected in 11
other samples. MiR222, which displays targe-
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Figure 2. Divergence of pathways and severity of pathway alteration in individual prostate cancer patients. A selec-
tion of pathways predicted by Panther to be significantly enriched in patient-specific DEGs are shown on the left of
the table while patient identification numbers are given at the bottom. Panther-computed P-values for the deregu-
lation of a given pathway are illustrated as blue-to-red color-coded rectangles; grey color indicated no significant
alteration. In the rectangles, the numbers of mutated and deregulated genes are given for each pathway and patient

(mutated/DEG; see Methods for details).

table oncomiR characteristics in liver, pancreas
and lung tumors [12, 37], was unexpectedly
down-regulated in 8/15 PrCa samples. Toge-
ther, these vastly divergent genetic mutations
and altered, often counter-intuitive gene
expression patterns revealed the need to deci-
pher for each individual patient the complexity
of the deregulated systems to identify key tar-
gets in critical signaling pathways and/or key
nodes in (sub)networks for concomitant inter-
vention at several functionally different levels
to generate synergistic effects.

Pathway analysis revealed deregulated path-
ways in a patient-specific manner

As first step towards the integration of the vari-
ous deregulated functions within each tumor,
we performed patient-centered pathways enri-
chment analyses for TS-DEGs using Panther in
the GenCodis3 environment. While several
pathways were commonly deregulated in PrCa
of several patients-particularly cadherin, Wnt
and integrin signaling-these analyses also
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demonstrated that in each patient different
sets of pathways were deregulated. Indeed, P5
and P6 had, respectively, the most and least
severely affected PrCa in terms of numbers of
deregulated pathways (Figure 2). This finding
was further supported by analysis of additional
52 patients from the TCGA repository
(Supplementary Figure 3). Moreover, different
numbers and components of a commonly
deregulated pathway were altered in different
patients. As pointed out previously [24], genetic
mutations of core Wnt pathway components
are rare in PrCa, while abnormal expression of
B-catenin is frequent, suggesting that this
deregulation occurs indirectly.

Integration of genomic and transcriptomic
datasets to generate patient-specific networks

Genes never function in isolation but rather in a
highly complex physiological context, which can
be illustrated by their communication with
other cellular components. To gain a more pre-
cise insight into the altered communication by
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patient-specific gene deregulations and muta-
tions, we reconstructed master networks from
all deregulated genes for each prostate cancer
by integrating the connectivity provided by the
validated STRING protein-protein and CellNet
transcription factor-target gene interaction
databases; in addition, we integrated all mu-
tated genes and putative ERG and AR target
genes identified by cognate binding sites in the
vicinity of the transcriptional start site (TSS)
[see Supplementary File 3 (cytoscape master-
file for each patient)]. Within these master net-
works, we studied first the components of the
canonical and non-canonical Wnt pathways
by merging all 183 deregulated/mutated genes
of 15 patients (Supplementary Figure 4A).
Displaying the affected components in color in
the context of the entire Wnt pathway connec-
tivity revealed an unexpected heterogeneity
(Supplementary Figures 4B-L and 5). In P2
(Figure 3A) an important signaling factor (phos-
pholipase PLCB1) for the production of second
messenger molecules (DAG, IP3) is mutated in
the phospholipase domain (V571M) and the
expression of multiple other master genes is
deregulated, including PPP3CA, GSK3B, MYC,
TP53, HDAC1 in addition to several WNT and
Frizzled (FZD) receptor genes. For several of
the upregulated DEGs (GSK3B, HDAC1, FZDS;
red arrows) drugs exist which have been
approved or are tested in clinical trials [39].
Several druggable genes (HDAC1, FZD5, FZDS,
and MAP3K9) are also upregulated in P9 but
not in P6 while P10 showed overexpressed
FZD8 (Figure 3B-D). Notably, ChIP-seq data of
TMPRSS2-ERG-positive VCaP and normal
RWPE1 prostate epithelial cells indicate that
WNT7B and HDAC1 are putative dual AR and
ERG target genes, most likely affected by
deregulated ERG and possibly, AR signaling
(Supplementary Figure 6A, 6B). Even more
strikingly, the genes of several key signaling
factors (PAK1, CREM) and of the epigenetic
modulator SMARCD3 have apparently acqu-
ired ERG binding capability in their promoter
regions during tumorigenesis (for SMARCC1,
Supplementary Figure 6C), as it was reported
for the ERG-mediated repression of checkpoint
kinase 1 [40]. In contrast, P6 showed a very
small number of deregulated components of
the core Wnt pathway (Figure 3B), comprising
three upregulated FZD receptors along with the
cognate WNT2 ligand acquired ERG binding
near the TSS in VCaP cells (Supplementary
Figure 6D, 6E). Such a scenario may be

5306

addressed with WNT inhibitor-based therapeu-
tics [39]. Patient-specific network alteration
was also seen for less frequently affected sig-
naling pathways. The PDGF and EGFR pathways
were affected seriously in 10 and 7 patients,
respectively (Figure 4A, 4E; merged networks
of alterations). However, the scenarios were
completely different across individual patients
(Figure 4; Supplementary Figures 7 and 8).
Important changes were seen in P4 and P5
(Figure 4B, 4C) but hardly any in P13 (Figure
4D). Note that P13, in contrast to the other
patients, did not reveal any upregulated drug-
gable target (red arrow in Figure 4). A similar
scenario of alterations was found for the EGFR
pathway in P5 and P15 (Figure 4F, 4G), while
much less nodes were affected in P8 (Figure
4H).

Crosstalk among different deregulated path-
ways in same patient

Finally, given that pathways do not act in isola-
tion, we extracted the affected components of
several pathways from the “master networks”.
This analysis showed very clearly that, for P2
and P5 several genes of the Wnt, cadherin and
integrin pathways are shared between two or
even three pathways (Figure 5); the same was
observed for other combinations of pathways
(Supplementary Figure 9). The functional con-
sequence of deregulation/mutation of such
genes is predicted to be serious and such
nodes may be candidates for therapeutic tar-
geting. It is worth pointing out that also genes
at the nexus of several pathways diverged from
one patient to another, as shown for P2 and P5
(Figure 5A, 5B). Indeed, hypothetical treatment
of these two patients would have to consider
different scenarios. In the PrCa of P2, common
to two pathways, there is a strong upregulation
of the expression of several WNT and FZD
genes, as well as GSK3B and LEF1. GSK3B,
FZD8, FRK and HDAC1 are druggable targets
and several compounds have been approved.
These genes are functionally connected with
important other upregulated genes of the Wnt-
pathway, such as TP53, MYC or PPP3CA. For
P5, only two FZD genes are overexpressed in
cancer, including ERG-induced FZD8. Moreover,
HDAC1 is mutated and MYC is repressed. On
the other hand, RANBP2 is uniquely overex-
pressed in P5. Given its multi-functional role in
scaffolding for the Ran-GTPase cycle and
nuclear pore complex binding, its overexpres-

Am J Cancer Res 2021;11(11):5299-5318


http://www.ajcr.us/files/ajcr0133575supplfile3.cys

Deregulated cancer networks for personalized therapy

A coRs  (GNGH KON popyig KONES oo
FATI| | NKD2

wrarcy ANKFDD DL gygs cont| | COH3

GHG?
COLIAT (504 ges

COHID

Doy CTNNCZ

M peds2
= TBLIv

MEGA

FOOHED  ooomey gpria ARRE2-

5 CELSRI
SRGAPIC PCOHEY

»coHE BRI

PCDHBS ac2 - GNAI4
PCOHB14

FCDH3 16

@h m.u HLTF

ﬁ:l
TYRO3 Prml: sicp PRI 5 Logy) sz
LRnJK-zNFsus R PPP2RSE

MAP3KZ

P2
C COHs| | GNG4

GNG2
nFaTc2 ANKRDS DI s

KCMJD  popHrg KCNE4
EORUhan | rkm

COLIA! cspo4 cest

—— LEF1| [cowm| COH
FzDI | sPRp4  SNE4 TLRe \ f

HKDI A | coHi

TELIXGOHI
[Z1/740N =

COM__pewsz
-

BEND4

CDH2

HUDT 18

I
FOF R4~ PPﬁRD /’Zy

r;El.st| &

oy

N
{coHBIp €0 BMPRIA, ARRB2 m ssmsa.:mcm |/
CELSRI AcTE | PH3C2G o

@ T =T - SR TSR ey

PCDHES f mms GHal

=) e 0y
SMAHGEI

FEDHE 18
CDHB NREA2
i [ e
[LNg = “_TPMIHLTF

ey O ey o
"" ~ITPRL \ivirel L
G )6 v o

ARRBI sTABI

FCDHE|5

F / e
MMRNT rvog) /

EREBd

K3

LDB3 SYCP2

P9

Coecup T oeG

Down
» Nodes having potential to be a drug target

ERG target AR target

D COHS LNGE

B COH5|  ONG4|  KCNJB popnig KONEY

EGRU - (pamy | (e

ferarca AHKRDE DWT) (Gygs * coua L5PG4 | cESI — LEFI  cpHy  COHS

Foxcy e -'-\mm" W2 - Nk COHiD

a7 | WNTEB i TBLIX COH 1!
i RS2 oomiL STHNER

COHZ COMG
NEL e srca T
Hi

nACt
NUDT 10

DCHs2

IRS1 BEND4
=] DACTI

ForRg EPAeg WEGA

MYCN

CELSR2 l'm} N

~ SHIPI TLE4 MYG
A
PCOHBIS BUB1E

ARRBI STABI - swARGDe CCHD! o %

MWMRNT 4voq / PSR WMYHE DNAHS ALCTB
poorez BRI ARRED /D3I SMARCD POTED BYNGHY
LSRI L e PKacs MY T
SRGAP2C popypy  SREBF IS Py N7
— pakes PP apce

PCDHBS sMAngmmmz"m
A PCOHD

CELSRY
PEDHI 1Y L]

PCDHBID ANF68A

ACTR3B

Sl AR CA
avprip  ONAIT WEF2G PRKCO

GNAI4

KON

202
POOHBI ERSB4 POTEL e pPPIRI RCOHBY

cFIR
POOHBI1S N PRECA-(CREM SON | | er SWARGE!
POOMB g Laugt TP
Treas) PPrace PLES! TRME | HUIF
MAPIKE WraTcy AFTEZ (PAKL

POT|
TyRog PPPICC piopy ITPRI

EE
MYHTB LoB:  SYCP2

P6

LRGUK RYRZ ZNF3® PR3 FPPZRIE

KENIS popHig Kumed oo

nearca AKRDS DML gygs

2
COLIAI G5pG4 | cEsi

CELSR2

FCoHB 1S ARRBI_STABI
CELSRI -

PCOHITY PPl

PCOHBID

MMANT g

peorez evpRIA PRFEZ o,
ACTRIS CELSRI N
SROAPIC penigy  SREBFI GNAL
PCOHES
PCOHES

BMPRIE  GNAT
acz _GNAI4
ERBB4
PODHBIA e —
CFTR —fRKCA
PCOHBIZ 1
Wi LMNB'TRERH pPP2C3 )._F"cal

MAPIKD NFAI\

FCOHE1A

TyRo3  PPRICC PLcB v O (Lows) SYGR2

LRBUK RYR2 DUF3E PR3 FFPIRSE P10

ERG and Mutetion ke Additional ERG binding site(s)
AR target in VCaP but notin RWPEL

Figure 3. Patient-specific aberrations of the Wnt network are highly divergent. Global networks were established
from differentially expressed genes (DEGs, >2-fold) in duplicate patient-matched tumor vs. normal samples by
integrating the connectivities provided by STRING (protein-protein interaction database) and CellNet (transcription
factor-target gene interactions); this integration yielded a ‘master network’ of DEGs for each patient, revealing the
connectivities between deregulated genes. The DEG master network of each patient was complemented by the mu-
tations of predicted high and moderate impact, and the components of the canonical and non-canonical Wnt path-
ways were extracted. DEGs and mutated genes are depicted in color for (A), P2, (B), P6, (C), P9 and (D), P10 in the
background (grey nodes and connectivities) of all merged components of the Wnt pathways that are deregulated or

mutated in all 15 patients ( lementary Fi

re 4A). Genes for which approved drugs exist or are in clinical trials

were identified in drug databases and are indicated by arrows. The corresponding deregulated networks of the other
patients are shown in Supplementary Figure 4B-L. When known, connectivities are displayed as green (activation)
or red (inhibition) lines; unknown connectivities and protein-protein interactions are displayed as grey lines. DEG
specifics and mutations are color-coded as described below the figure.

sion may be an important component of the
deregulated network.

Novel approach for in silico validation of de-
regulated transcription factor cistromes

Even though the above patient-specific DEG
networks were derived from true RNA-seq
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duplicates and several mutations confirmed by
Sanger sequencing, we sought additional evi-
dence for validating the network. Given the per-
sonalized nature of our study, we excluded cell
line or animal studies as proxy. Organoids could
not be established either, as all prostates had
been deep-frozen. However, we decided to
exploit the knowledge existing in databases to
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Figure 4. Divergent alterations of the PDGF and EGFR signaling networks in each patient. Ten patients exhibited
serious aberrations in the PDGF and 7 patients in the EGFR signaling networks. (A) Merged network of alterations
(DEG, mutation) in the PDGF and (E) EGFR networks. Using this merged network as background (grey nodes and
connectivities) the aberrations in each individual patient are depicted in color. (B, C) Patients with heavily (P4, P5)
or (D), minimally (P13) affected PDGF networks. (F, G) Patients with heavily (P5, P15) or (H) minimally (P8) affected
EGFR networks.

provide external supportive evidence for the as follows: If a network contains upregulated
accuracy of the DEG networks. The rational was TFs, most if not all of the cognate targets have
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Figure 6. Upregulated TFs associated to DEGs identified for each prostate cancer patient (P1-P15). A large col-
lection of qualified (QC quality A to C) public ChIP-seq datasets for TFs was used for identifying their binding sites
(MACS peak calling, pval <10®°). Each binding site has been annotated to its most proximal gene promoter (10 kb
distance). Only TF-TG (target gene) associations for DEGs retrieved within the 15 patients have been retained. The
matrix presents upregulated TFs per patient, the heatmap corresponds to the number of associated DEGs.

been already identified by ChlP-seq. As tumor
cells may have TF targets beyond those of the
cognate tissue, we collected high confidence
targets (P<10%°) from all tissues available in
the qcGenomics database [41]. We then asked,
if the personalized DEG network of a patient
contained also the expected cognate TGs of a
given TF. In case a significant number of TGs
was detected, this provided additional evidence
for the accuracy of the network (Supplementary
File 4). Indeed, monitoring more than 60 dereg-
ulated TFs, the large majority of the correspond-
ing experimentally validated TGs were co-
deregulated (Figure 6, Supplementary Table 5).

In silico validation of deregulated ERG reveals
ribosomal protein genes as frequent targets in
addition to patient-specific ones

We tested the validation approach using the TF
ERG which is overexpressed in all patient sam-
ples due to the TMPRSS2-ERG fusion. In P1,
462 genes were deregulated of which 150 cor-
responded to ERG TGs. Notably, these ERG tar-
get genes contained a strong cluster of ribo-
somal protein and translation regulatory genes,
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like EEF1B2, UBA52 or NCL (Figure 7A). That
these genes are bona fide ERG target genes
was confirmed by gcGenomics profiling of ERG
ChlP-seq data sets revealing ERG binding in
VCaP (GSM2086309 to GSM2086314) but
not in RPWE (GSM2195103, GSM2195106,
GSM2195110) cells. While similar results con-
cerning the ERG activation of ribosomal genes
were seen for other samples (e.g., P8) with gen-
erally less ERG targets being deregulated, sev-
eral cancers did not reveal such effects despite
the overexpression of ERG (e.g., P10, P11, P13,
P15; Figure 7B, Supplementary Figure 10) but
in all cases a network of deregulated ERG tar-
get genes was noted. This variability may reflect
patient-specific alterations of the chromatin
landscape. Together these results show that
our novel in silico approach is a valuable meth-
od to validate patient-specific deregulated
TF-TG networks.

Several patient-specific overexpressed TFs
deregulate their cognate cistromes

To test if the above approach is also valid for
TFs other than ERG we established patient-
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Figure 7. Patient-specific networks of upregulated transcription factor target genes are highly dissimilar. (A) Network
of gcGenomics-predicted ERG target genes in P1 and (B) P10. ERG target genes were identified (see text) and the
ERG-regulated gene networks were extracted from the master network for each patient. (C) Networks of predicted
PAX5 target genes in P12 and (D) P4. Note the strong divergence between the ERG and PAX5 target gene networks
between different patient-matched samples. When known, connectivities are displayed as green (activation) or
red (inhibition) lines; unknown connectivities and protein-protein interactions are shown as black lines. DEGs and
gene mutations are color-coded as described below the figure. The blue circle in (A) reveals tumor-selectively ERG-
upregulated ribosomal and translation-associated genes in P1.

specific DEG TG networks for PAX5 (Figure 7C,
7D) and MAZ (Supplementary Figure 11). In
all cases the DEG networks are significantly
populated by PAX5 and MAZ target genes.
Note however, that the repertoire of target
genes for a given TF can significantly differ
from patient to patient, despite its common
overexpression. Interestingly, MAZ can also
bind to ribosomal protein genes. Indeed this
is fully supported by the corresponding
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ChlP-seq data using gcGenomics (GSM93-
5337, GSM1003613, GSM935272, GSM935-
335), even though data are only available
for K562, IMR9O, Hela and HepG2 cells. The
above integration of TF cistrome data fur-
ther supports our overall notion that in
individual tumors very different gene net-
works can be deregulated with different
sets of overexpressed potentially druggable
targets.
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Discussion

Subsequent to the discoveries of oncogenes
and tumor suppressors, and the concept of
drivers and passengers of tumorigenesis [42,
43], the enormous progress in genome-wide
sequencing together with a plethora of func-
tional genomics applications has raised hopes
that cancer genomics will rapidly reveal genome
alterations causal to the disease and provide
novel targets for therapy. However, like in
human genetics, we face a scenario in which
the origin of monogenic diseases has been
largely deciphered, while the deregulated net-
works underlying multigenic diseases remain
unknown. Indeed, despite several success
stories, the anticipated rapid translation from
cancer genomics to therapies did not occur.
Rather, these studies revealed an ever-increas-
ing complexity of multiple deregulated systems
in tumors, intra-tumor and inter-patient hetero-
geneity and the incomplete understanding of
the affected regulatory pathways operating
within and between cells and tissues. This com-
plexity is likely the major caveat for translating
cancer genomics towards therapy. Moreover,
the common approach of comparing hundreds
to thousands of patients to identify individual
targets may be conceptually problematic, as (i)
new single denominators, in addition to those
already discovered, may not exist and the
deregulation/mutation of multiple interacting
genes/pathways may be critically involved in
the origin/evolution of the disease. Moreover,
(i) intertumoral/inter-individual variation will
be disregarded by this approach, as well as (iii)
the altered cross-talks between pathways.
Finally, (iv) genes may exert distinct functions in
different pathways/communication networks
and (v) act as functionally divergent paralogues,
like the multiple Wnt genes.

Previously, numerous studies were performed
to unravel novel potential therapeutic targets
using large-scale genomic [2, 44, 45] and inte-
grative transcriptome-genome analyses [1, 8,
46, 47]. Multiple genome-wide association
studies led to the identification of more than
160 disease-susceptible loci, most of which
have unknown clinical implications [reviewed
by 3]. A recent study involving large numbers of
PrCa transcriptome profiles from 38 cohorts,
developed a classification system based on
pathway activation signals and presented a
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37-gene signature which can classify PrCa into
3 subtypes [48]. More recently, the analysis of
18 recurrent DNA- and RNA-based genomic
alterations, including androgen receptor vari-
ant expression and transcriptional output, and
neuroendocrine expression signatures revealed
RB1 as the only gene associated with clinical
outcome [4]. All these studies focused on com-
mon high-frequency targets. Somewhat dis-
turbingly, each study revealed different (sets
of) targets and a potential therapeutic applica-
tion was postulated in several cases. In addi-
tion, as pointed out in a recent report that high-
lighted the role of low-frequency mutations in
cancer progression [29], these approaches will
miss low-frequency targets. That all the above-
mentioned studies do not focus on individual
patients builds strong case for a thorough anal-
ysis of mutations/aberrations at the individual
level. In this respect, a recent network-based
integrative study used genomic, transcriptomic
and phosphoproteomic datasets to compare
treatment-naive and metastatic PrCa and sug-
gested personalized signatures in individual
patients [49].

To provide insight into the various aspects of
heterogeneity and with the aim of developing a
pathway/network-centric rather than a gene-
centric approach, we assessed the complexity
of alteration occurring during tumorigenesis in
the well-defined main class of prostate tumors
with the TMPRSS2-ERG fusion [6] by comparing
the tumor and its adjacent apparently normal
tissue from the same untreated patients.
Indeed, a recent report revealed that the use of
paired tumor-normal samples improved muta-
tion identification and decreased false-positive
rates [50].

This patient-centered network analysis revealed
highly divergent patient-specific deregulated
and mutated genomic landscapes. All 15
patients except P6 revealed aberrations (muta-
tion, expression) of one or several components
of the WNT, Cadherin and Integrin pathways
with large differences between deregulated
pathway components in each of the patients,
thus advocating the need for a patient-centered
analysis. As previously pointed out, targeting
the WNT pathway is challenging due to its com-
plex nature driving diverse biological processes
and cross-talk with multiple other pathways
[51]. Therefore, a thorough understanding
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Figure 8. Heat map revealing the extent of upregulation of genes whose products correspond to validated drug
targets. As discussed in the text, only gene products for which drugs have been approved or have been/are enrolled
in clinical trials are considered, irrespective of the disease for which they have been/are being developed. In the
network figures, these genes are marked with a red asterisk. Color codes represent log2-fold changes. P1 to P15,
patients 1 to 15. Color codes represent log2 fold change.

about each component of these interacting
pathways and key nodes as potential therapeu-
tic target, based on a systems medicine app-
roach [52] with patient-specific networks, is the
ideal way to move forward towards targeted
therapy. Indeed, patients who received a per-
sonalized therapy adapted to their genomic
aberrations, as recommended by a multidisci-
plinary molecular tumor board, had improved
oncological outcomes including survival [53].
Our patient-specific network analysis facilitated
the identification of key nodes involved in the
cross-talk between different deregulated path-
ways in the same patient. In this respect, we
have identified a significant number of genes
which correspond to validated drug targets
(Figure 8). The extent of these deregulated
genes varies largely between patients and sev-
eral highly upregulated genes occur in individu-
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al patients (e.g. P1, P7, P9, P12, P14). This
information will be useful to decide about com-
binatorial therapies for individual patients by
targeting key nodes of different deregulated
pathways. For example, in P2, the upregulated
direct ERG targets ITGAV and ITGA6 (Integrin
pathway) along with FZD8 and GSK3B (Wnt
and Cadherin pathway) could be used as poten-
tial drug targets for combinatorial therapy.
Similarly, ETS family members ERG and ETV1,
overexpressed due to the fusion with TMPRSS2,
were reported to directly suppress CHK1 pro-
moting tumorigenesis bypassing DNA damage
response [40]. Our patient-specific network
analysis in the present study revealed several
deregulated genes that acquired additional
ERG binding in their respective promoters.
These direct targets of ERG, which are involved
in different cooperating pathways, correspond
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to potential therapeutic targets. Based on the
above results and reflections, we propose to
develop therapeutic options in the context of a
personalized integrative functional genomics
analysis rather than trying to identify common
single targets from the analysis of large num-
bers of patients.

Around 97 percent of potential drugs undergo-
ing clinical trials fail to get FDA approval [54].
The off-target toxicity of cancer drugs undergo-
ing clinical trials [55] suggests the need for
more robust genetic analysis when predicting
the potential drug target. Multilayered patient-
specific network analysis will be useful to iden-
tify not only putative drug targets but also pre-
dict potential off-target effects resulting from
pathway cross-talks. Apart from identifying tar-
gets of potential therapeutic use, there is
strong need for development of novel drugs
which can target components of complex path-
ways like WNT signaling. In this respect, patient-
derived organoid cultures [56] which recapitu-
late the diversity of primary tumors may
facilitate screening of novel molecules against
these putative therapeutic targets.

In addition, there is a growing importance of
single-cell functional genomics done with circu-
lating tumor cells for diagnosis. Recent study
involving pan-cancer analysis of chromatin
accessibility revealed novel protein-DNA inter-
actions in primary cancer tissues [57]. Inte-
grating chromatin accessibility data from indi-
vidual patients can identify cancer-specific
novel regulatory connections which can be
used as potential drug target. Ultimately, addi-
tional dimensions like RNA regulators, such as
the newly described circular RNAs [58, 59], as
well as metabolomics changes, may be inte-
grated in this analysis to reveal what communi-
cation networks are at the origin, maintenance
and progression of the disease and which regu-
latory circuits can be modulated for therapeutic
purposes, including escape from resistance to
therapy.
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ATTGEGTCCCCTGGG AAAATGGAGGATATC TCTCCTGTG

100

Original TTGTCCCCTGGGAAAATGGAGGATATCTCTCCTGTG
Alternate TTGTCCCCTGG AAAATGGAGGATATCTCTCCTGTG
Patient 5 (MGA- Chr:15, Pos:42028731-42028732; Deletion)

B TCTGTTTAAAAGATTGTTTTTTT GTTTCTGT

100 110 120
Original TCTGTTTAAAAGATTG TGTTTCTGT
Alternate TCTGTTTAAAAGATTG ITGTTTCTG

Patient 12 (CFTR- Chr:7, Pos:117232268; Insertion)

C AGGACCCACCTGCAGGATACGCCCATCCA

110 120 130
Original AGGACCCACCTGCAGGATACGCCCA
Alternate AGGACCCACCTGCAGGATATGCCCA

Patient 14 (MST1R- Chr:3, P0s:49936518; R470H)

DCTTTT GATCTTTTGCTCTAGACGGACAATTT

60 70
Original CTTTTGATCTTTTGCTCTAGACGGACAATTT
Alternate CTTTTGATC GCTCTAGATGGACAATTT

Patient 13 (RASSF8- Chr:3, Pos:26217950; R208H)

Supplementary Figure 1. Validation of four selected different types of mutations from Exome-seq analysis using
PCR coupled to Sanger sequencing. A. Single base deletion in MGA gene in patient 5. B. Single base insertion in
CFTR in patient 12. C. Missense mutation in MST1R in patient 14. D. Point mutation in RASSF8 in patient 13. Red
ovals highlight the regions of the mutations. Original (color-coded at the top) and mutated sequences are depicted
below each sequence for comparison.
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Supplementary Figure 2. Frequency of mutations in the 4 genes of Figure 1D in other cancer types (ACC, Adre-
nocortical Carcinoma; AML, Acute Myeloid Leukemia; BLCA, Bladder Urothelial Carcinoma; BRCA, Breast Invasive
Carcinoma; CC, Cervical Cancer; CCRCC, Clear Cell Renal Cell Carcinoma; CESC, Cervical Squamous Cell Carcinoma;
CHOL, Cholangiocarcinoma; CRC, Colorectal Cancer; DG, Diffuse Glioma; DLBCL, Diffuse Large B-Cell Lymphoma;
EOC, Epithelial Ovarian Cancer; ESCA, Esophagogastric Adenocarcinoma; ESCC, Esophageal Squamous Cell Car-
cinoma; GBM, Glioblastoma; HCC, Hepatocellular carcinoma; HNSC, Head and Neck Squamous Cell Carcinoma;
LGG, Low Grade Glioma; LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous Cell Carcinoma; MSC, Melanoma
Skin Cancer; NCCRCC, Non-clear Cell Renal Cell Carcinoma; NSCLC, Non-Small Cell Lung Cancer; PAAD, Pancreatic
Adenocarcinoma; PCC, Pheochromocytoma; PRAD, Prostate Adenocarcinoma; SARC, Sarcoma; TET, Thymic Epithe-
lial Tumor; THCA, Thyroid Carcinoma; UCEC, Uterine Corpus Endometrial Carcinoma; Green, mutation; Red, fusion).
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Supplementary Figure 3. Heatmap showing enriched pathways in 51 individual patients using gene expression data from TCGA for prostate cancer. Note that we
selected only datasets for which patient-matched normal and prostate cancer tissue was available. The Y-axis specifies the pathways predicted by PANTHER to be
enriched in the DEGs of each individual patient; numbers in parentheses indicate the number of total genes known to constitute the pathways. In the X-axis, TCGA

codes for patients are given. Each box provides the following information: total number of mutated genes/total number of DEGs affected in each patient for the con-
cerned pathway. P-values corresponding to the PANTHER-predicted alteration of a given pathway are shown in color code (scale is shown on the right of the table).
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Supplementary Figure 4. Patient-specific deregulations of the Wnt pathway components for the indicated patients (P). (A) Merged network of all 15 patients used a
background in (B-L). Frame and color codes are shown below P5. (B-L) Deregulated and/or mutated components of the Wnt pathway in each patient. Note that for
the Wnt pathways components both inhibitory and activating drugs are in clinical trails such as Foxy-5 (WNT5A-mimicking peptide that activating Fzd2 and Fzd5)

and Ipafricept (Fzd8 antibody blocking). (Clara et al (2020) Nat Rev Clin Onc 17,204).
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Supplementary Figure 5. Heat map showing differentially expressed genes of the WNT pathway. Color codes repre-
sent log2 fold changes. P1 to P15: Patients 1 to 15.
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Supplementary Figure 6. AR binding and acquisition of ERG binding sites in VCaP prostate cancer cells relative to
RWPE-1 prostate epithelial cells. Screenshots of gcGenomics browser NAVi displaying genes that show AR and/or
ERG binding in their promoter regions. (A), HDACZ1; (B), WNT7B; (C), SMARCCI; (D), WNT2; (E), FDZ8. ChIP-seq data
sets in (A and B) are from GEO accession numbers (from top to bottom) GSM2058880 (AR, VCaP), GSM1328978
(ERG, VCaP) and GSM927071 (ERG, RWPE-1), as specified. Note that in (A) ERG binding at the HDAC1 promoter is
seen in VCaP and RWPE-1 cells, while in (B) for WNT7B a promoter-proximal ERG binding is seen in ‘normal’ RWPE-1
but not in VCaP cells; this ERG binding site is distant from the AR binding site. The ERG ChIP-seq data sets in (C-E)
are from GEO accession numbers (from top to bottom) GSM927071 for RWPE-1, GSM1328978 for VCaP (both use
anti-ERG antibody Epitomics 2805-1), GSM2195110 for RWPE-1 and GSM2086313 for VCaP. GSM2195110 was
done by using Anti-ERG Clone 9FY Biocare #CM421 C, GSM2195110 used an anti-ERG antibody but did not provide
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the source. Note the consistency between corresponding experiments with different antibodies.
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Supplementary Figure 7. Patient-specific deregula-
tions of the PDGF and EGFR pathway components
for the indicated patients (P). (A) Merged network
of 10 patients used a background in (B) to (L) for
PDGF pathway. (J) Merged network of 7 patients
used as a background in (K) to (O) for EGFR path-
way. Frame and color codes are shown below P12.
(B-l) Deregulated and/or mutated components of
the PDGF pathway in each patient. (K-O) Deregulat-
ed and/or mutated components of EGFR pathway
in each patient.
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Supplementary Figure 8. Heat maps showing differentially expressed genes of the EGFR (A) and PDGF (B) pathway.
Color codes represent log2 fold changes. Px, patient number.
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Supplementary Figure 9. Patient-specific deregulations of the PDGF and EGFR pathway components for the indi-
cated patients (P). A. Network display of deregulated and mutated factors of patient P1 in the WNT, Angiogenesis
and Cytokine Pathways to reveal connectivities between the different pathways. B. Similar representation of the
de-regulated and mutated factors in P2 for the WNT, PDGF and EGFR pathways.
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Supplementary Figure 10. Patient-specific networks comprising ERG transcription factor regulated DEGs. Majority
of ERG-regulated DEGs are not common among (A) patient 8, (B) patient 11, (C) patient 13 and (D) patient 15 sug-
gesting the need for a patient-centric approach.

13



Deregulated cancer networks for personalized therapy

A
LARP18)ANKR D13} ["HUWI (_car_)(mocvs) (riekt ) (Freru) (otwa] (servz)(Piicer) revrery M e A TR Ried 20 T 50 DIXDCT o [warza)
“[CFL2 POUMZ Jlcousat GASS MYLGE PINE oL csAr1 | senoz EEF2K
- - Eﬂ A | ecrr CCNO ) 7P ) [ e TRIB3 - —
/ 4 m s\.\mza o082 /‘l ll' THBSt oo d(mess ey ams Jol Muct H mear an
IE'.B} IEIIEEEI)-& cone Hveara R BLt il €283 ) Fos J Al pick 2o Tiney RaRPL2IA NOP2
-"-"3'r CD44 bA na | wrcs ) VDR s
mm - -Il.w ﬂ‘mﬁi’ !"-Jﬂﬂ:l -4m‘ s R e — ITGA3 A=) [T e Loz
..\ 1 é' POLIM? R INFATCA| 12 FKBP10
— —‘ [ — @l» - ; ALDH2
(73] Gormer [PHLDB2) pHLHE -w---’ @\ ﬂ_mﬂ [ STMN1 | TEADs [ _DBF4 |/ \ - PGC RPS16
N S 4 1&-‘“ \ /i | TP ez P sen | cap R trrrz ) 7 -
ovoi)[[erz ] presssg A== {Hoaci| TEAPZA)S 4 TESc ToFBIIY e
CREBS oy L 1@ — . (kiFca ) > IE {IST3H2A™ | HsPB1 TN
ALDH2 m{ """=’ﬁ/ co8o KAT7 RPL26 | A RASIP1 [T va TRIPS s = RPS3A
N TPM2 \
m. 7 Covan] QHER Sy Wiz =X an Tesais Jf cAsP2 L i -
E"' 4 S i I g BT P, il YT HSPAS [Shemcans FOXF1
in e e o, e m CCNAZ - Z
,&ﬁ RPL36 M RPL24 | TRERF1 L] ex2 =
2| €ors | fanas] [ccno2)\ @ ~= o2 CRYAB) [ wnrzs Ji{ xcL2
— , siGT6]foucros
gmﬁm nRaal |[cs |- 41_} Sl e PSS F207 ] wos W oz
\\ — (ouse! oo e om0t wrov RPLPO JoH PYCR! K rots . I ] A0S ) RPL3S T
BFMS ‘. <- -"1""“ m' ~ "l——-—r T Tm - = MRPL1S S Do oL —r RACS TiH CHEK2 \
EE!IE ‘r‘m,m m MEIS1 NCS1 ~ WiT4
_NETH | rPS2 PDE2A
[GRase ) [RNF157) 00X30% PLONGS ZnF 589
R IFRDZ
<-: ] G2 = e U o
—&\ —— \ ; SPHEEA Priot C1 AJUBA .
T \ T ?‘uw1 — o MEIS2 T NBL1 =% \ = - m. 1 MAZ
m EEEJ»'("“' = (X NFKB2 DXt PRROC R T TAGLN =] eavt K caon | [6Pans
m m MNCT 5‘"3 A '"“"lnssz] e AKTIS1 , = — K11} :
wua- St T T CueL TACCS TuBBS
f"“m e m S Lt LU I—IKU‘ !_] Mmp1g |_PBX1 T8 IGFBPE 1 SAT1 SNHG15) | KCNH2
} ‘\'4 iy . = EFS
T ferer) (ona ) [YIVED | T oy e M G F1 J ™ (Peere [ osrz ~ Mk PEXI0 ) (Tracy conDz
wuspse) [ prs | [Peske}{vesFa p7 = Yy o) o) | ) e D15
CODEG Up CODEG Down E@Mutationup EDMutation Down ERG target

*Nodes having potential to be a drug target

Supplementary Figure 11. Patient-specific networks comprising MAZ transcription factor regulated DEGs. Majority of MAZ-regulated DEGs are not common among
(A) patient 7 and (B) patient 12 suggesting the need for a patient-centric approach.
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