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Abstract: Prostate cancer (PrCa) is the second most common malignancy in men. More than 50% of advanced 
prostate cancers display the TMPRSS2-ERG fusion. Despite extensive cancer genome/transcriptome data, little 
is known about the impact of mutations and altered transcription on regulatory networks in the PrCa of individual 
patients. Using patient-matched normal and tumor samples, we established somatic variations and differential 
transcriptome profiles of primary ERG-positive prostate cancers. Integration of protein-protein interaction and gene-
regulatory network databases defined highly diverse patient-specific network alterations. Different components of 
a given regulatory pathway were altered by novel and known mutations and/or aberrant gene expression, including 
deregulated ERG targets, and were validated by using a novel in silico methodology. Consequently, different sets of 
pathways were altered in each individual PrCa. In a given PrCa, several deregulated pathways share common fac-
tors, predicting synergistic effects on cancer progression. Our integrated analysis provides a paradigm to identify 
druggable key deregulated factors within regulatory networks to guide personalized therapies.
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Introduction

The mutational landscapes of primary and 
advanced/metastatic PrCa have been exten-
sively analyzed [1-5], as has been the preva-
lence of the androgen-sensitive TMPRSS2 pro-
moter fusion with ETS transcription factors [6], 
which endows ETS with responsiveness to the 
androgen receptor (AR) that is frequently over-
expressed in antiandrogen-resistant PrCa [7]. 
In these studies, recurrent mutations have 
been found in genes coding for factors regulat-
ing a plethora of pathways and key cellular 
functions, such as the androgen receptor sig-
naling, PI3K/RAS/RAF/WNT pathways, and fac-

tors involved in DNA repair and chromatin 
methylation, or cell cycle control. One of the 
caveats in all these studies was that, with a  
few exceptions [2, 8], information was generally 
compiled from large numbers of tumors from 
different patients. Thus, while enabling identifi-
cation of predominant mutations, these stud-
ies did not reveal the spectrum of aberrations 
that existed in individual patients’ prostates at 
diagnosis. All these aberrations may affect dif-
ferent regulatory pathways and their added, 
possibly synergistic action may be critical for 
malignancy and tumor progression. Indeed, 
restoring a normal state would require the cor-
rection of a highly complex and dynamically 
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regulated system of interactive multi-compo-
nent networks which are deregulated in dis-
ease [9]. Towards this goal, the identification of 
aberrant networks and their inherent hierar-
chies is essential to design patient-selective 
therapeutic interventions through generic or 
key factor-specific modulation of the affected 
pathways.

Material and methods

Patient sample collection

All samples were collected within 15 minutes 
after radical prostatectomy to shorten the delay 
between de-vascularization and freezing, and 
to ensure preservation of labile molecules. 
Immediately following prostatectomy, punch 
biopsies (“carrots”) of 8 mm diameter were 
taken from tumor and adjacent normal tissue, 
snap-frozen in liquid nitrogen and stored at 
-80°C. Carrots used for genomic and transcrip-
tomic studies were cut into sequential tissue 
sections and the tumor cellularity was moni-
tored at regular intervals by histological stain-
ing to ensure homogeneity of tumor and normal 
sections stored in LoBind tubes at -80°C.

Tissue microarrays 

Tissues microarrays (TMA) were made from 
paraffin-embedded tissue cores of histopathol-
ogy-confirmed prostate cancer and patient-
matched tumor-adjacent normal tissue. For 
each tumor, two representative tumor areas 
were selected and two cores of 2 mm in diam-
eter were punched and included in paraffin 
recipient blocs. Two adjacent normal tissues of 
each selected prostatic sample were arrayed 
on TMAs and constituted the “normal” counter-
parts of each tumor sample. The TMAs were 
performed on the histopathology platform of 
the Biological Resource Center (CRB) of the 
Toulouse University Hospital, in a semi-auto-
mated way using the EZ-TMA™ Manual Tissue 
Microarray Kit (IHC World). The slides were 
examined by HE coloration and immunohisto-
chemical studies were performed on TMA tis-
sues. Immunohistochemistry was done using 
an automated Dako Autostainer. The following 
antibodies were used: ERG, EZH2, Androgen 
Receptor. Slides were digitalized using a 
Hamamatsu NanoZoomer slide scanner (Japan) 
at 20× magnification with a resolution of 0.46 
microns per pixel. The results were interpreted 
under an optical microscope by two patholo-

gists (CM and M-LQ), blinded to the clinical 
data.

Whole exome sequencing (WES) and analysis 
pipeline 

For WES, DNA was isolated from frozen tumor 
and matched normal tissue (10 sections of 10 
µm for each tumor and normal sample) using 
QIAamp DNA micro kit according to manufac-
turer’s instructions. DNA was processed by 
GATC Biotech for exome capture, library prepa-
ration and sequencing. Briefly, SureSelectXT 
Human all exon V6 kit was used to capture 
exons, libraries were prepared using TruSeq 
DNA library preparation kit according to manu-
facturer’s instruction and Paired-End 125-base 
sequencing was performed on Illumina HiSeq 
2000. FastQ files provided by GATC Biotech 
were processed for variant discovery with 
Genome Analysis Toolkit (GATK, 3.7) [10] using 
default parameters. To assist in WES analysis 
we developed a WES Analysis Pipeline [written 
in Python3 with the Snakemake (3.13.3) [11] 
management tool] and used the Genome 
Analysis Toolkit (GATK, 3.7) [10] according to 
the authors’ instructions. The following tools 
were used for each step in the pipeline.

Pre-processing of the samples: FastQ files were 
first aligned to hg19 using BWA-mem (0.7.17)
[12] using standard parameters. The output 
SAM files were then converted to BAM files 
using SAM tools (1.6) [13]. BAM files were  
processed using Picard tools (2.14) to sort by 
coordinates, remove duplicates and add read 
group tags (essential to differentiate between 
Normal and Tumor samples) to samples before 
indexing them with SAM tools. Then BAM files 
were recalibrated (BQSR) using GATK, as rec-
ommended for enhancing variant calling by pro-
viding databases of known polymorphic sites: a 
set of curated INDEL entries, a Single Nucleotide 
Polymorphism database dbSNP, the COSMIC 
database of somatic cancer mutations. 

Creating the Panel of Normals (PON): The 
‘Panel of Normals’ is created from the normal 
samples using GATK. This method is used as a 
filter to reject artifacts and germline variants 
that are present in at least two normal samples 
(-minN 2). It uses as input the hg19, the dbSNP, 
the COSMIC and the intervals of the genome to 
analyze only the exons of all genes captured. It 
generates a new file that will be used when call-
ing the variants.
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Variant calling with MuTect2: After pre-process-
ing and alignment, MuTect2 (GATK) was used to 
call somatic variants [14]. Inputs are the follow-
ing files: hg19, PON, HumanAllExonV6r2, 
COSMIC and dbSNP. The normal and tumor 
samples were compared using the following 
parameters: pir_mad_threshold: 6; max_alt_
alleles_in_normal_count: 5; pir_median_thre- 
shold: 35; standard_min_confidence_thresh-
old_for_calling: 30.

Annotation of VCF: The annotations of the VCF 
files were done using SnpEFF [15] and SnpSift 
[15] with hg19 as reference genome.

Validation of mutations

Target regions were amplified by PCR. PCR 
products were purified using Qiagen gel extrac-
tion kit and sequenced by Eurofins Genomics 
using the BigDye Terminator Cycle Sequencing 
Kit and an ABI 3730xl automated sequencer 
(Applied Biosystems). The sequencing primers 
were the same as those used for PCR amplifica-
tion. Variants were confirmed using SNAP gene 
viewer.

RNA-sequencing

RNA was isolated from frozen tumor and 
matched normal tissue using Trizol reagent 
(Invitrogen). In all cases, two independent sets 
of adjacent 10 µm sections (N=10) were pro-
cessed for RNA isolation to generate biological 
duplicate RNA-seq data. For subsequent inter-
pretations only data that were consistent 
between the biological duplicates were 
retained. RNA was further cleaned up using 
RNeasy MinElute Cleanup Kit. RNA was then 
sent to GATC Biotech (Konstanz, Germany) for 
strand-specific, paired-end and Ribo-minus 
total RNA-seq. Briefly, ribosomal RNA depletion 
was done using Ribo Zero gold kit (Illumina Inc); 
libraries were prepared using TruSeq stranded 
total RNA library prep kit (Illumina Inc.). Paired-
end 125 base or 150 base sequencing was 
performed using Illumina HiSeq 2000. FastQ 
files received from GATC Biotech were used for 
further analysis.

RNA-seq analysis pipeline

The analysis pipeline consists of the following 
steps.

Pre-processing, alignment and counting raw 
reads: FastQ files were assessed for quality 
using FastQC. FastQ files were aligned to refer-
ence genome (human genome hg19) using the 
Hisat2 [16] aligner. Aligned SAM files were con-
verted to BAM files and sorted using SAMtools 
[13]. The R package Summarized Experiment 
[17] was used for counting raw reads per exon/
gene.

Differential gene expression analysis: The 
patient-specific differential gene expression 
analysis was done using DESeq2 (1.20.0) [18] 
according to the general steps described with 
the parameters given below. The samples have 
been analyzed by giving the matched raw read 
counts normal/tumor duplicates as input.

- Removing sum of row counts: 0;

- CooksCutoff: False;

- Alpha: 0.01;

- Subset genes with Adjusted P-value ≤0.01;

- Subset genes with Log2FC ≤-1 or Log2FC ≥+1.

The corresponding list of Differentially Expre- 
ssed Genes (DEGs) for each patient was used 
for further analysis.

Pathway enrichment analysis

To interpret the gene expression data, the DEG 
list was loaded into GeneCodis [19] and the 
Panther pathway analysis function was used to 
retrieve enriched pathways. Hypergeometric 
correction of P-values was applied and path-
ways displaying a corrected P-value <0.01 were 
considered enriched. We clustered all path-
ways of all samples using Plotly in R. For the 
datasets obtained from TCGA (54 PrCa patient 
data along with matched normal), HT-seq 
counts were downloaded for each patient cor-
responding to tumor and matched normal. 
DEseq2 was used to identify the DEGs for each 
patient. Pathway enrichment analysis was per-
formed as described before.

Patient-specific network generation and visu-
alization

To generate the gene networks for individual 
patients we extracted the list of mutated genes 
from WES and differentially expressed genes 



Deregulated cancer networks for personalized therapy

5302 Am J Cancer Res 2021;11(11):5299-5318

(DEGs) from RNA-seq of tumor vs normal sam-
ples for each patient. These lists of genes were 
queried against two known databases of net-
work interactions, STRING [20], a Protein-
Protein Interaction (PPI) database, and CellNet 
[21], a gene regulatory network (GRN) data-
base. For STRING, we merged the list of genes 
(DEGs and Mutation, keeping the information 
whether the gene is a DEG or a mutated gene 
as attributes), removed any duplicated genes 
and queried them using an in-house script. As 
for the parameters, we only chose edge interac-
tions that have been experimentally validated 
(exp_score ≠ 0). For CellNet, we queried only 
the differentially expressed genes on the target 
genes and retrieved along the cognate tran-
scription factors. We chose interactions that 
had only a z-score ≥5. After obtaining networks 
from both databases, we proceeded to add the 
information from WES and RNA-seq whether 
the genes were mutated, differentially ex- 
pressed or both, in addition to the information 
obtained from the databases.

Network visualization and merging using 
Cytoscape

Individual networks, created by using Cellnet 
and String for each patient, were visualized 
using Cytoscape [22]. Finally, CellNet and 
STRING networks for each patient were merged 
using the Cytoscape merge function to obtain 
master networks for each patient. Sub-
networks were then extracted for further visual-
ization and analysis.

Identification of putative AR and ERG target 
genes

A two-step approach was used. First, we col-
lected sequenced read files (bed format) asso-
ciated to public ChIP-seq assays targeting ERG 
in TMPRSS2-ERG positive human VCaP pros-
tate cancer (GSM1328978, GSM1328979) and 
RWPE-1 normal prostate epithelium cells 
(GSM2195103, GSM2195106). BED Replicate 
files per cell-type were merged together prior 
performing peak calling (MACS 1.4; no model, 
shiftsize =150 nts, P-value threshold: 1×10-5), 
followed by their genomic annotation to the 
closest transcription start sites (annoPeakR). 
This analysis allowed to pair the characterized 
DEGs and mutated genes within the patient-
derived networks with genes presenting proxi-
mal AR binding sites (<10 kb distance) on VCaP 

ChIP-seq profiles. This primary analysis has 
been validated in a second step by comparative 
visual inspection of ChIP-seq profiles. For this 
we used the qcGenomics platform, in which the 
dedicated genome browser NAVi allows to visu-
alize any publicly available ChIP-seq profile. 
Specifically, we used NAVi to extract all AR and 
ERG ChIP-seq profiles for TMPRSS2-ERG posi-
tive human VCaP prostate cancer and RWPE1 
normal prostate epithelium cells. The pre-com-
puted datasets were displayed simultaneously 
in the NAVi browser for comparative visualiza-
tion. Only tracks with an apparent high signal-
to-noise ratio were retained (VCaP-ERG: 
GSM2058880, GSM1328978, GSM1378979, 
GSM1328980, GSM1328981; VCaP-AR: GSM- 
1410768, RWEP1-ERG: GSM927071, GSM- 
2195110, GSM2195103; VCaP-GROseq: GSM- 
2235682). Promoter-proximal ERG binding  
was scored positive in this visual ‘validation’ 
(attributing a yellow color to the respective 
nodes) only when there was a clearly visible 
peak above the background at a scale of 30 to 
300 (read count intensity; depending on the 
signal and noise intensities of each profile), pro-
vided that there was no other known TSS closer 
(see Supplementary Figure 6 for examples of 
gain of ERG binding).

Data availability

The RNA-seq data sets generated in the con-
text of this study from 15 patient-matched 
tumor and normal prostate tissue are available 
in the Gene Expression Omnibus (GEO) reposi-
tory under the accession number GSE133626. 
The corresponding Exome-seq data sets from 
the prostates of the same 15 patients are avail-
able from the SRA database under the acces-
sion number PRJNA555457. Data sets for the 
pathway analysis shown in Supplementary 
Figure 3 were downloaded from The Cancer 
Genome Atlas (TGCA) as described in the meth-
ods section. The sequencing statistics of RNA-
seq and Exome-seq experiments are specified 
in Supplementary Table 4.

Results

Overview of the approach

We chose prostate cancer as a solid tumor par-
adigm to integrate patient-specific differentially 
expressed (DEGs) and mutated genes, using 
information from protein-protein interaction 
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and gene-regulatory network databases [21, 
23] (Figure 1A) to generate patient-specific 
cancer-modified networks. Extensively charac-
terized normal and tumor frozen punch biop-
sies from the same prostate were obtained 
from radical prostatectomy specimens of non-
treated patients. 15 primary ERG-positive 
tumors (T) and matched normal tissue (N) were 
selected by expert pathologists on the basis 

that consecutive sections of the same biopsy 
differed only minimally in tumor cellularity 
(>80% tumor cells), while the sections of N 
biopsies from the same prostate had 0% tumor 
cells. With one exception of patient 14 (P14), 
the proportion of infiltrating lymphocytes rela-
tive to tumor cells was close to 0%, only occa-
sionally rare scattered lymphocytes were 
observed in the stroma. The tumor sections of 

Figure 1. Analysis strategy and characterization of patient-matched samples. A. Sketch of the workflow of this study. 
B. Representative IHC images of cancer and corresponding matched normal samples from patient 15 (P15) stained 
with an anti-AR antibody (top panel) or an anti-ERG antibody (bottom panel). C. RNA-seq data of ERG expression in 
all the patients’ tumors relative to their matched normal. Differential ERG expression for all patient-matched dupli-
cate samples was supported by q value <10-69 using DEseq (see Methods for details). D. Schematic illustration of 4 
novel mutations in P1, P9, P11 and P14, which are predicted to have a high or moderate impact.
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P14 showed up to 25% (area-based) mononu-
clear immune cells. Immunohistochemistry and 
RNA-seq (biological duplicates) confirmed ERG 
overexpression relative to the matched N sam-
ples and all samples revealed increased andro-
gen receptor (AR) levels (Figure 1B, 1C).

Identification of large-scale patient-specific 
genomic changes using exome sequencing 
analysis

To identify somatic variation, we performed 
whole-exome sequencing (WES, Supplementary 
Table 1). Variants were called using MuTect2, 
which revealed between 49 and 114 mutations 
in each cancer relative to the corresponding 
normal prostate tissue; only mutations predict-
ed to have high or moderate impact were con-
sidered subsequently (Supplementary File 1). 
Intriguingly, in addition to classical mutations, 
for example in MYC, TP53, PTEN or compo-
nents of the PI3K and WNT pathways [1, 2, 24], 
unreported patient-specific mutations were 
observed in all samples (Supplementary Table 
2; for validations see Supplementary Figure 1). 
In P1 three hitherto unreported somatic muta-
tions affected the putative tumor suppressors 
BANP [25], FEZ1 [26, 27] (Figure 1D) and 
TINAGL1, which interferes with both integrin 
and EGFR signaling [28]. We also found novel 
mutations in MAPK7 (R400H) in P9, Annexin A1 
(ANXA1, frameshift deletion; P11) and a TET2 
mutation that truncates the protein and ren-
ders it non-functional (Figure 1D; P14). These 
novel somatic mutations were seen only in sin-
gle patients. However, the nature of the muta-
tions, often truncating proteins of functional 
importance, is likely to have a significant impact 
in the individual case. Moreover, several of 
those genes were found mutated in other  
cancer types, supporting their functional 
impact (Supplementary Figure 2). The ability of 
TINAGL1 to inhibit progression and metastasis 
of triple-negative breast cancer [28], provides 
strong rational for such personalized genomic 
analysis. Our data underscores the recent 
notion that “significantly mutated genes” in 
PrCa may occur at frequencies of only a few 
percent [29].

RNA-seq analysis revealed patient-specific 
altered tumor transcriptome

Mutations in regulatory elements (e.g., enhanc-
ers) and factors (e.g., transcription factors, epi-

genetic modulators, enzymes) can affect global 
gene expression. To integrate these effects in 
the network analysis, we performed high-
throughput strand-specific paired-end total 
RNA sequencing after ribosomal RNA depletion 
from matched T and N biopsy sections as bio-
logical duplicates. As expected, T vs. N analysis 
of the RNA-seq datasets identified tumor-spe-
cific differentially expressed genes (TS-DEGs; 
Supplementary File 2) with diverse functional-
ities, comprising (i) cancer-specific deregulated 
proto-oncogenes like c-MYC (all except P6, 
P11, P13) but also (ii) pleiotropic factors like 
the serine protease KLK4 (P4, P10, P14, P15), 
a regulator of AR and the PI3K/AKT/mTOR path-
way [30] and of protease-activated receptors 
[31]. Notably, deletion of KLK4 impairs PrCa 
growth [30]. Moreover, (iii) epigenetic modifiers 
like JMJD6 (P14), KDM4B (P5), KDM6A (P2, 
P8), KDM6B (P6, P9), TET3 (P12, P14), KAT2A 
(P3), KAT6A (P2) or HDAC9 (P2-5, P7-11, P13-
15) were differentially expressed in certain 
tumors. In addition to protein-coding genes, 
expression of (iv) certain regulatory RNAs was 
altered in tumors [micro-RNAs (miRs)], as well 
as long non-coding RNA (lncRNAs); for annotat-
ed miRs and lncRNAs, see Supplementary 
Table 3. Of note, the p53-inducible lncRNA 
NEAT, a promising therapeutic target whose 
ablation generates synthetic lethality with che-
motherapy and p53 reactivation therapy [32, 
33], was over-expressed in 7/15 PrCa sam- 
ples. A prominent ERG binding site in VCaP and 
in normal prostate epithelial RWPE-1 cells 
about 4.6 kb upstream of the NEAT transcrip-
tional start site may account for this deregula-
tion (e.g., GSM2086313, using the qcGenom-
ics browser). The androgen-responsive lncRNA 
ARLNC1 [34] was up-regulated in 9/15 paired 
samples but down-regulated in P5. HOTTIP, a 
component of H3K4 methyltransferase com-
plexes [35] that can act as AR co-activator [36] 
and was reported as negatively androgen-regu-
lated lncRNA [34] in prostate cancer cells, was 
downregulated in 9/15 PrCa samples. This 
included several, but not all of those with up-
regulated ARLNC1. A similar divergence was 
seen with putative tumor suppressor and onco-
genic miRNAs that are actively considered for 
clinical development [37]. For example, the 
RNA levels of tumor-suppressor miR34a were 
decreased in three samples (P10, P13 and 
P15) but increased in P4 and not affected in 11 
other samples. MiR222, which displays targe-
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table oncomiR characteristics in liver, pancreas 
and lung tumors [12, 37], was unexpectedly 
down-regulated in 8/15 PrCa samples. Toge- 
ther, these vastly divergent genetic mutations 
and altered, often counter-intuitive gene 
expression patterns revealed the need to deci-
pher for each individual patient the complexity 
of the deregulated systems to identify key tar-
gets in critical signaling pathways and/or key 
nodes in (sub)networks for concomitant inter-
vention at several functionally different levels 
to generate synergistic effects. 

Pathway analysis revealed deregulated path-
ways in a patient-specific manner

As first step towards the integration of the vari-
ous deregulated functions within each tumor, 
we performed patient-centered pathways enri- 
chment analyses for TS-DEGs using Panther in 
the GenCodis3 environment. While several 
pathways were commonly deregulated in PrCa 
of several patients-particularly cadherin, Wnt 
and integrin signaling-these analyses also  

demonstrated that in each patient different 
sets of pathways were deregulated. Indeed, P5 
and P6 had, respectively, the most and least 
severely affected PrCa in terms of numbers of 
deregulated pathways (Figure 2). This finding 
was further supported by analysis of additional 
52 patients from the TCGA repository 
(Supplementary Figure 3). Moreover, different 
numbers and components of a commonly 
deregulated pathway were altered in different 
patients. As pointed out previously [24], genetic 
mutations of core Wnt pathway components 
are rare in PrCa, while abnormal expression of 
β-catenin is frequent, suggesting that this 
deregulation occurs indirectly.

Integration of genomic and transcriptomic 
datasets to generate patient-specific networks

Genes never function in isolation but rather in a 
highly complex physiological context, which can 
be illustrated by their communication with 
other cellular components. To gain a more pre-
cise insight into the altered communication by 

Figure 2. Divergence of pathways and severity of pathway alteration in individual prostate cancer patients. A selec-
tion of pathways predicted by Panther to be significantly enriched in patient-specific DEGs are shown on the left of 
the table while patient identification numbers are given at the bottom. Panther-computed P-values for the deregu-
lation of a given pathway are illustrated as blue-to-red color-coded rectangles; grey color indicated no significant 
alteration. In the rectangles, the numbers of mutated and deregulated genes are given for each pathway and patient 
(mutated/DEG; see Methods for details).
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patient-specific gene deregulations and muta-
tions, we reconstructed master networks from 
all deregulated genes for each prostate cancer 
by integrating the connectivity provided by the 
validated STRING protein-protein and CellNet 
transcription factor-target gene interaction 
databases; in addition, we integrated all mu- 
tated genes and putative ERG and AR target 
genes identified by cognate binding sites in the 
vicinity of the transcriptional start site (TSS) 
[see Supplementary File 3 (cytoscape master-
file for each patient)]. Within these master net-
works, we studied first the components of the 
canonical and non-canonical Wnt pathways  
by merging all 183 deregulated/mutated genes 
of 15 patients (Supplementary Figure 4A). 
Displaying the affected components in color in 
the context of the entire Wnt pathway connec-
tivity revealed an unexpected heterogeneity 
(Supplementary Figures 4B-L and 5). In P2 
(Figure 3A) an important signaling factor (phos-
pholipase PLCB1) for the production of second 
messenger molecules (DAG, IP3) is mutated in 
the phospholipase domain (V571M) and the 
expression of multiple other master genes is 
deregulated, including PPP3CA, GSK3B, MYC, 
TP53, HDAC1 in addition to several WNT and 
Frizzled (FZD) receptor genes. For several of 
the upregulated DEGs (GSK3B, HDAC1, FZD8; 
red arrows) drugs exist which have been 
approved or are tested in clinical trials [39]. 
Several druggable genes (HDAC1, FZD5, FZD8, 
and MAP3K9) are also upregulated in P9 but 
not in P6 while P10 showed overexpressed 
FZD8 (Figure 3B-D). Notably, ChIP-seq data of 
TMPRSS2-ERG-positive VCaP and normal 
RWPE1 prostate epithelial cells indicate that 
WNT7B and HDAC1 are putative dual AR and 
ERG target genes, most likely affected by 
deregulated ERG and possibly, AR signaling 
(Supplementary Figure 6A, 6B). Even more 
strikingly, the genes of several key signaling 
factors (PAK1, CREM) and of the epigenetic 
modulator SMARCD3 have apparently acqu- 
ired ERG binding capability in their promoter 
regions during tumorigenesis (for SMARCC1, 
Supplementary Figure 6C), as it was reported 
for the ERG-mediated repression of checkpoint 
kinase 1 [40]. In contrast, P6 showed a very 
small number of deregulated components of 
the core Wnt pathway (Figure 3B), comprising 
three upregulated FZD receptors along with the 
cognate WNT2 ligand acquired ERG binding 
near the TSS in VCaP cells (Supplementary 
Figure 6D, 6E). Such a scenario may be 

addressed with WNT inhibitor-based therapeu-
tics [39]. Patient-specific network alteration 
was also seen for less frequently affected sig-
naling pathways. The PDGF and EGFR pathways 
were affected seriously in 10 and 7 patients, 
respectively (Figure 4A, 4E; merged networks 
of alterations). However, the scenarios were 
completely different across individual patients 
(Figure 4; Supplementary Figures 7 and 8). 
Important changes were seen in P4 and P5 
(Figure 4B, 4C) but hardly any in P13 (Figure 
4D). Note that P13, in contrast to the other 
patients, did not reveal any upregulated drug-
gable target (red arrow in Figure 4). A similar 
scenario of alterations was found for the EGFR 
pathway in P5 and P15 (Figure 4F, 4G), while 
much less nodes were affected in P8 (Figure 
4H).

Crosstalk among different deregulated path-
ways in same patient

Finally, given that pathways do not act in isola-
tion, we extracted the affected components of 
several pathways from the “master networks”. 
This analysis showed very clearly that, for P2 
and P5 several genes of the Wnt, cadherin and 
integrin pathways are shared between two or 
even three pathways (Figure 5); the same was 
observed for other combinations of pathways 
(Supplementary Figure 9). The functional con-
sequence of deregulation/mutation of such 
genes is predicted to be serious and such 
nodes may be candidates for therapeutic tar-
geting. It is worth pointing out that also genes 
at the nexus of several pathways diverged from 
one patient to another, as shown for P2 and P5 
(Figure 5A, 5B). Indeed, hypothetical treatment 
of these two patients would have to consider 
different scenarios. In the PrCa of P2, common 
to two pathways, there is a strong upregulation 
of the expression of several WNT and FZD 
genes, as well as GSK3B and LEF1. GSK3B, 
FZD8, FRK and HDAC1 are druggable targets 
and several compounds have been approved. 
These genes are functionally connected with 
important other upregulated genes of the Wnt-
pathway, such as TP53, MYC or PPP3CA. For 
P5, only two FZD genes are overexpressed in 
cancer, including ERG-induced FZD8. Moreover, 
HDAC1 is mutated and MYC is repressed. On 
the other hand, RANBP2 is uniquely overex-
pressed in P5. Given its multi-functional role in 
scaffolding for the Ran-GTPase cycle and 
nuclear pore complex binding, its overexpres-

http://www.ajcr.us/files/ajcr0133575supplfile3.cys
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Figure 3. Patient-specific aberrations of the Wnt network are highly divergent. Global networks were established 
from differentially expressed genes (DEGs, >2-fold) in duplicate patient-matched tumor vs. normal samples by 
integrating the connectivities provided by STRING (protein-protein interaction database) and CellNet (transcription 
factor-target gene interactions); this integration yielded a ‘master network’ of DEGs for each patient, revealing the 
connectivities between deregulated genes. The DEG master network of each patient was complemented by the mu-
tations of predicted high and moderate impact, and the components of the canonical and non-canonical Wnt path-
ways were extracted. DEGs and mutated genes are depicted in color for (A), P2, (B), P6, (C), P9 and (D), P10 in the 
background (grey nodes and connectivities) of all merged components of the Wnt pathways that are deregulated or 
mutated in all 15 patients (Supplementary Figure 4A). Genes for which approved drugs exist or are in clinical trials 
were identified in drug databases and are indicated by arrows. The corresponding deregulated networks of the other 
patients are shown in Supplementary Figure 4B-L. When known, connectivities are displayed as green (activation) 
or red (inhibition) lines; unknown connectivities and protein-protein interactions are displayed as grey lines. DEG 
specifics and mutations are color-coded as described below the figure.

sion may be an important component of the 
deregulated network.

Novel approach for in silico validation of de-
regulated transcription factor cistromes

Even though the above patient-specific DEG 
networks were derived from true RNA-seq 

duplicates and several mutations confirmed by 
Sanger sequencing, we sought additional evi-
dence for validating the network. Given the per-
sonalized nature of our study, we excluded cell 
line or animal studies as proxy. Organoids could 
not be established either, as all prostates had 
been deep-frozen. However, we decided to 
exploit the knowledge existing in databases to 
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provide external supportive evidence for the 
accuracy of the DEG networks. The rational was 

as follows: If a network contains upregulated 
TFs, most if not all of the cognate targets have 

Figure 4. Divergent alterations of the PDGF and EGFR signaling networks in each patient. Ten patients exhibited 
serious aberrations in the PDGF and 7 patients in the EGFR signaling networks. (A) Merged network of alterations 
(DEG, mutation) in the PDGF and (E) EGFR networks. Using this merged network as background (grey nodes and 
connectivities) the aberrations in each individual patient are depicted in color. (B, C) Patients with heavily (P4, P5) 
or (D), minimally (P13) affected PDGF networks. (F, G) Patients with heavily (P5, P15) or (H) minimally (P8) affected 
EGFR networks.
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Figure 5. Affected signaling network crosstalk divergently between each other in each patient. (A) Illustration of the 
merged networks of the affected genes from the Wnt, Cadherin and Integrin signaling pathways in the prostate of 
P2 revealing that several of the DEGs are common to different pathways. (B) Illustration as in (A) but for P5. Color 
codes are displayed below the figure.
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been already identified by ChIP-seq. As tumor 
cells may have TF targets beyond those of the 
cognate tissue, we collected high confidence 
targets (P<10-50) from all tissues available in 
the qcGenomics database [41]. We then asked, 
if the personalized DEG network of a patient 
contained also the expected cognate TGs of a 
given TF. In case a significant number of TGs 
was detected, this provided additional evidence 
for the accuracy of the network (Supplementary 
File 4). Indeed, monitoring more than 60 dereg-
ulated TFs, the large majority of the correspond-
ing experimentally validated TGs were co-
deregulated (Figure 6, Supplementary Table 5). 

In silico validation of deregulated ERG reveals 
ribosomal protein genes as frequent targets in 
addition to patient-specific ones

We tested the validation approach using the TF 
ERG which is overexpressed in all patient sam-
ples due to the TMPRSS2-ERG fusion. In P1, 
462 genes were deregulated of which 150 cor-
responded to ERG TGs. Notably, these ERG tar-
get genes contained a strong cluster of ribo-
somal protein and translation regulatory genes, 

like EEF1B2, UBA52 or NCL (Figure 7A). That 
these genes are bona fide ERG target genes 
was confirmed by qcGenomics profiling of ERG 
ChIP-seq data sets revealing ERG binding in 
VCaP (GSM2086309 to GSM2086314) but  
not in RPWE (GSM2195103, GSM2195106, 
GSM2195110) cells. While similar results con-
cerning the ERG activation of ribosomal genes 
were seen for other samples (e.g., P8) with gen-
erally less ERG targets being deregulated, sev-
eral cancers did not reveal such effects despite 
the overexpression of ERG (e.g., P10, P11, P13, 
P15; Figure 7B, Supplementary Figure 10) but 
in all cases a network of deregulated ERG tar-
get genes was noted. This variability may reflect 
patient-specific alterations of the chromatin 
landscape. Together these results show that 
our novel in silico approach is a valuable meth-
od to validate patient-specific deregulated 
TF-TG networks.

Several patient-specific overexpressed TFs 
deregulate their cognate cistromes

To test if the above approach is also valid for 
TFs other than ERG we established patient- 

Figure 6. Upregulated TFs associated to DEGs identified for each prostate cancer patient (P1-P15). A large col-
lection of qualified (QC quality A to C) public ChIP-seq datasets for TFs was used for identifying their binding sites 
(MACS peak calling, pval <10-50). Each binding site has been annotated to its most proximal gene promoter (10 kb 
distance). Only TF-TG (target gene) associations for DEGs retrieved within the 15 patients have been retained. The 
matrix presents upregulated TFs per patient, the heatmap corresponds to the number of associated DEGs.

http://www.ajcr.us/files/ajcr0133575supplfile4.xlsx
http://www.ajcr.us/files/ajcr0133575supplfile4.xlsx
http://www.ajcr.us/files/ajcr0133575suppltabs.pdf
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specific DEG TG networks for PAX5 (Figure 7C, 
7D) and MAZ (Supplementary Figure 11). In  
all cases the DEG networks are significantly 
populated by PAX5 and MAZ target genes.  
Note however, that the repertoire of target 
genes for a given TF can significantly differ  
from patient to patient, despite its common 
overexpression. Interestingly, MAZ can also 
bind to ribosomal protein genes. Indeed this  
is fully supported by the corresponding  

ChIP-seq data using qcGenomics (GSM93- 
5337, GSM1003613, GSM935272, GSM935- 
335), even though data are only available  
for K562, IMR90, Hela and HepG2 cells. The 
above integration of TF cistrome data fur- 
ther supports our overall notion that in  
individual tumors very different gene net- 
works can be deregulated with different  
sets of overexpressed potentially druggable 
targets.

Figure 7. Patient-specific networks of upregulated transcription factor target genes are highly dissimilar. (A) Network 
of qcGenomics-predicted ERG target genes in P1 and (B) P10. ERG target genes were identified (see text) and the 
ERG-regulated gene networks were extracted from the master network for each patient. (C) Networks of predicted 
PAX5 target genes in P12 and (D) P4. Note the strong divergence between the ERG and PAX5 target gene networks 
between different patient-matched samples. When known, connectivities are displayed as green (activation) or 
red (inhibition) lines; unknown connectivities and protein-protein interactions are shown as black lines. DEGs and 
gene mutations are color-coded as described below the figure. The blue circle in (A) reveals tumor-selectively ERG-
upregulated ribosomal and translation-associated genes in P1.
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Discussion

Subsequent to the discoveries of oncogenes 
and tumor suppressors, and the concept of 
drivers and passengers of tumorigenesis [42, 
43], the enormous progress in genome-wide 
sequencing together with a plethora of func-
tional genomics applications has raised hopes 
that cancer genomics will rapidly reveal genome 
alterations causal to the disease and provide 
novel targets for therapy. However, like in 
human genetics, we face a scenario in which 
the origin of monogenic diseases has been 
largely deciphered, while the deregulated net-
works underlying multigenic diseases remain 
unknown. Indeed, despite several success  
stories, the anticipated rapid translation from 
cancer genomics to therapies did not occur. 
Rather, these studies revealed an ever-increas-
ing complexity of multiple deregulated systems 
in tumors, intra-tumor and inter-patient hetero-
geneity and the incomplete understanding of 
the affected regulatory pathways operating 
within and between cells and tissues. This com-
plexity is likely the major caveat for translating 
cancer genomics towards therapy. Moreover, 
the common approach of comparing hundreds 
to thousands of patients to identify individual 
targets may be conceptually problematic, as (i) 
new single denominators, in addition to those 
already discovered, may not exist and the 
deregulation/mutation of multiple interacting 
genes/pathways may be critically involved in 
the origin/evolution of the disease. Moreover, 
(ii) inter-tumoral/inter-individual variation will 
be disregarded by this approach, as well as (iii) 
the altered cross-talks between pathways. 
Finally, (iv) genes may exert distinct functions in 
different pathways/communication networks 
and (v) act as functionally divergent paralogues, 
like the multiple Wnt genes.

Previously, numerous studies were performed 
to unravel novel potential therapeutic targets 
using large-scale genomic [2, 44, 45] and inte-
grative transcriptome-genome analyses [1, 8, 
46, 47]. Multiple genome-wide association 
studies led to the identification of more than 
160 disease-susceptible loci, most of which 
have unknown clinical implications [reviewed 
by 3]. A recent study involving large numbers of 
PrCa transcriptome profiles from 38 cohorts, 
developed a classification system based on 
pathway activation signals and presented a 

37-gene signature which can classify PrCa into 
3 subtypes [48]. More recently, the analysis of 
18 recurrent DNA- and RNA-based genomic 
alterations, including androgen receptor vari-
ant expression and transcriptional output, and 
neuroendocrine expression signatures revealed 
RB1 as the only gene associated with clinical 
outcome [4]. All these studies focused on com-
mon high-frequency targets. Somewhat dis-
turbingly, each study revealed different (sets 
of) targets and a potential therapeutic applica-
tion was postulated in several cases. In addi-
tion, as pointed out in a recent report that high-
lighted the role of low-frequency mutations in 
cancer progression [29], these approaches will 
miss low-frequency targets. That all the above-
mentioned studies do not focus on individual 
patients builds strong case for a thorough anal-
ysis of mutations/aberrations at the individual 
level. In this respect, a recent network-based 
integrative study used genomic, transcriptomic 
and phosphoproteomic datasets to compare 
treatment-naive and metastatic PrCa and sug-
gested personalized signatures in individual 
patients [49].

To provide insight into the various aspects of 
heterogeneity and with the aim of developing a 
pathway/network-centric rather than a gene-
centric approach, we assessed the complexity 
of alteration occurring during tumorigenesis in 
the well-defined main class of prostate tumors 
with the TMPRSS2-ERG fusion [6] by comparing 
the tumor and its adjacent apparently normal 
tissue from the same untreated patients. 
Indeed, a recent report revealed that the use of 
paired tumor-normal samples improved muta-
tion identification and decreased false-positive 
rates [50].

This patient-centered network analysis revealed 
highly divergent patient-specific deregulated 
and mutated genomic landscapes. All 15 
patients except P6 revealed aberrations (muta-
tion, expression) of one or several components 
of the WNT, Cadherin and Integrin pathways 
with large differences between deregulated 
pathway components in each of the patients, 
thus advocating the need for a patient-centered 
analysis. As previously pointed out, targeting 
the WNT pathway is challenging due to its com-
plex nature driving diverse biological processes 
and cross-talk with multiple other pathways 
[51]. Therefore, a thorough understanding 
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about each component of these interacting 
pathways and key nodes as potential therapeu-
tic target, based on a systems medicine app- 
roach [52] with patient-specific networks, is the 
ideal way to move forward towards targeted 
therapy. Indeed, patients who received a per-
sonalized therapy adapted to their genomic 
aberrations, as recommended by a multidisci-
plinary molecular tumor board, had improved 
oncological outcomes including survival [53]. 
Our patient-specific network analysis facilitated 
the identification of key nodes involved in the 
cross-talk between different deregulated path-
ways in the same patient. In this respect, we 
have identified a significant number of genes 
which correspond to validated drug targets 
(Figure 8). The extent of these deregulated 
genes varies largely between patients and sev-
eral highly upregulated genes occur in individu-

al patients (e.g. P1, P7, P9, P12, P14). This 
information will be useful to decide about com-
binatorial therapies for individual patients by 
targeting key nodes of different deregulated 
pathways. For example, in P2, the upregulated 
direct ERG targets ITGAV and ITGA6 (Integrin 
pathway) along with FZD8 and GSK3B (Wnt  
and Cadherin pathway) could be used as poten-
tial drug targets for combinatorial therapy. 
Similarly, ETS family members ERG and ETV1, 
overexpressed due to the fusion with TMPRSS2, 
were reported to directly suppress CHK1 pro-
moting tumorigenesis bypassing DNA damage 
response [40]. Our patient-specific network 
analysis in the present study revealed several 
deregulated genes that acquired additional 
ERG binding in their respective promoters. 
These direct targets of ERG, which are involved 
in different cooperating pathways, correspond 

Figure 8. Heat map revealing the extent of upregulation of genes whose products correspond to validated drug 
targets. As discussed in the text, only gene products for which drugs have been approved or have been/are enrolled 
in clinical trials are considered, irrespective of the disease for which they have been/are being developed. In the 
network figures, these genes are marked with a red asterisk. Color codes represent log2-fold changes. P1 to P15, 
patients 1 to 15. Color codes represent log2 fold change.
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to potential therapeutic targets. Based on the 
above results and reflections, we propose to 
develop therapeutic options in the context of a 
personalized integrative functional genomics 
analysis rather than trying to identify common 
single targets from the analysis of large num-
bers of patients. 

Around 97 percent of potential drugs undergo-
ing clinical trials fail to get FDA approval [54]. 
The off-target toxicity of cancer drugs undergo-
ing clinical trials [55] suggests the need for 
more robust genetic analysis when predicting 
the potential drug target. Multilayered patient-
specific network analysis will be useful to iden-
tify not only putative drug targets but also pre-
dict potential off-target effects resulting from 
pathway cross-talks. Apart from identifying tar-
gets of potential therapeutic use, there is 
strong need for development of novel drugs 
which can target components of complex path-
ways like WNT signaling. In this respect, patient-
derived organoid cultures [56] which recapitu-
late the diversity of primary tumors may 
facilitate screening of novel molecules against 
these putative therapeutic targets.

In addition, there is a growing importance of 
single-cell functional genomics done with circu-
lating tumor cells for diagnosis. Recent study 
involving pan-cancer analysis of chromatin 
accessibility revealed novel protein-DNA inter-
actions in primary cancer tissues [57]. Inte- 
grating chromatin accessibility data from indi-
vidual patients can identify cancer-specific 
novel regulatory connections which can be 
used as potential drug target. Ultimately, addi-
tional dimensions like RNA regulators, such as 
the newly described circular RNAs [58, 59], as 
well as metabolomics changes, may be inte-
grated in this analysis to reveal what communi-
cation networks are at the origin, maintenance 
and progression of the disease and which regu-
latory circuits can be modulated for therapeutic 
purposes, including escape from resistance to 
therapy.
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Supplementary Figure 1. Validation of four selected different types of mutations from Exome-seq analysis using 
PCR coupled to Sanger sequencing. A. Single base deletion in MGA gene in patient 5. B. Single base insertion in 
CFTR in patient 12. C. Missense mutation in MST1R in patient 14. D. Point mutation in RASSF8 in patient 13. Red 
ovals highlight the regions of the mutations. Original (color-coded at the top) and mutated sequences are depicted 
below each sequence for comparison.
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Supplementary Figure 2. Frequency of mutations in the 4 genes of Figure 1D in other cancer types (ACC, Adre-
nocortical Carcinoma; AML, Acute Myeloid Leukemia; BLCA, Bladder Urothelial Carcinoma; BRCA, Breast Invasive 
Carcinoma; CC, Cervical Cancer; CCRCC, Clear Cell Renal Cell Carcinoma; CESC, Cervical Squamous Cell Carcinoma; 
CHOL, Cholangiocarcinoma; CRC, Colorectal Cancer; DG, Diffuse Glioma; DLBCL, Diffuse Large B-Cell Lymphoma; 
EOC, Epithelial Ovarian Cancer; ESCA, Esophagogastric Adenocarcinoma; ESCC, Esophageal Squamous Cell Car-
cinoma; GBM, Glioblastoma; HCC, Hepatocellular carcinoma; HNSC, Head and Neck Squamous Cell Carcinoma; 
LGG, Low Grade Glioma; LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous Cell Carcinoma; MSC, Melanoma 
Skin Cancer; NCCRCC, Non-clear Cell Renal Cell Carcinoma; NSCLC, Non-Small Cell Lung Cancer; PAAD, Pancreatic 
Adenocarcinoma; PCC, Pheochromocytoma; PRAD, Prostate Adenocarcinoma; SARC, Sarcoma; TET, Thymic Epithe-
lial Tumor; THCA, Thyroid Carcinoma; UCEC, Uterine Corpus Endometrial Carcinoma; Green, mutation; Red, fusion).
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Supplementary Figure 3. Heatmap showing enriched pathways in 51 individual patients using gene expression data from TCGA for prostate cancer. Note that we 
selected only datasets for which patient-matched normal and prostate cancer tissue was available. The Y-axis specifies the pathways predicted by PANTHER to be 
enriched in the DEGs of each individual patient; numbers in parentheses indicate the number of total genes known to constitute the pathways. In the X-axis, TCGA 
codes for patients are given. Each box provides the following information: total number of mutated genes/total number of DEGs affected in each patient for the con-
cerned pathway. P-values corresponding to the PANTHER-predicted alteration of a given pathway are shown in color code (scale is shown on the right of the table).
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Supplementary Figure 4. Patient-specific deregulations of the Wnt pathway components for the indicated patients (P). (A) Merged network of all 15 patients used a 
background in (B-L). Frame and color codes are shown below P5. (B-L) Deregulated and/or mutated components of the Wnt pathway in each patient. Note that for 
the Wnt pathways components both inhibitory and activating drugs are in clinical trails such as Foxy-5 (WNT5A-mimicking peptide that activating Fzd2 and Fzd5) 
and Ipafricept (Fzd8 antibody blocking). (Clara et al (2020) Nat Rev Clin Onc 17,204).
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Supplementary Figure 5. Heat map showing differentially expressed genes of the WNT pathway. Color codes repre-
sent log2 fold changes. P1 to P15: Patients 1 to 15. 
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Supplementary Figure 6. AR binding and acquisition of ERG binding sites in VCaP prostate cancer cells relative to 
RWPE-1 prostate epithelial cells. Screenshots of qcGenomics browser NAVi displaying genes that show AR and/or 
ERG binding in their promoter regions. (A), HDAC1; (B), WNT7B; (C), SMARCCl; (D), WNT2; (E), FDZ8. ChlP-seq data 
sets in (A and B) are from GEO accession numbers (from top to bottom) GSM2058880 (AR, VCaP), GSM1328978 
(ERG, VCaP) and GSM927071 (ERG, RWPE-1), as specified. Note that in (A) ERG binding at the HDAC1 promoter is 
seen in VCaP and RWPE-1 cells, while in (B) for WNT7B a promoter-proximal ERG binding is seen in ‘normal’ RWPE-1 
but not in VCaP cells; this ERG binding site is distant from the AR binding site. The ERG ChlP-seq data sets in (C-E) 
are from GEO accession numbers (from top to bottom) GSM927071 for RWPE-1, GSM1328978 for VCaP (both use 
anti-ERG antibody Epitomics 2805-1), GSM2195110 for RWPE-1 and GSM2086313 for VCaP. GSM2195110 was 
done by using Anti-ERG Clone 9FY Biocare #CM421 C, GSM2195110 used an anti-ERG antibody but did not provide 
the source. Note the consistency between corresponding experiments with different antibodies.
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Supplementary Figure 7. Patient-specific deregula-
tions of the PDGF and EGFR pathway components 
for the indicated patients (P). (A) Merged network 
of 10 patients used a background in (B) to (L) for 
PDGF pathway. (J) Merged network of 7 patients 
used as a background in (K) to (O) for EGFR path-
way. Frame and color codes are shown below P12. 
(B-I) Deregulated and/or mutated components of 
the PDGF pathway in each patient. (K-O) Deregulat-
ed and/or mutated components of EGFR pathway 
in each patient.
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Supplementary Figure 8. Heat maps showing differentially expressed genes of the EGFR (A) and PDGF (B) pathway. 
Color codes represent log2 fold changes. Px, patient number.
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Supplementary Figure 9. Patient-specific deregulations of the PDGF and EGFR pathway components for the indi-
cated patients (P). A. Network display of deregulated and mutated factors of patient P1 in the WNT, Angiogenesis 
and Cytokine Pathways to reveal connectivities between the different pathways. B. Similar representation of the 
de-regulated and mutated factors in P2 for the WNT, PDGF and EGFR pathways. 
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Supplementary Figure 10. Patient-specific networks comprising ERG transcription factor regulated DEGs. Majority 
of ERG-regulated DEGs are not common among (A) patient 8, (B) patient 11, (C) patient 13 and (D) patient 15 sug-
gesting the need for a patient-centric approach.
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Supplementary Figure 11. Patient-specific networks comprising MAZ transcription factor regulated DEGs. Majority of MAZ-regulated DEGs are not common among 
(A) patient 7 and (B) patient 12 suggesting the need for a patient-centric approach.


