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Abstract: Progesterone, the ovarian steroid hormone, regulates a plentitude of biological processes in tissues rang-
ing from the brain to bones. Recognizing the role of progesterone and its receptors in physiological processes 
and maladies can prevent and treat various diseases. Apart from its physiological functions, its role in developing 
diseases, especially breast cancer, is a recent topic of deliberation. There exists conflicting experimental and epide-
miological evidence linking progesterone to breast cancer. This review tries to describe the physiological functions 
of progesterone and its receptors, genomic and non-genomic signaling, splice variants, and a different aspect of 
progesterone signaling. Furthermore, we seek to address or attempt to discuss the following pertinent questions on 
steroid hormone signaling; How does progesterone influence breast cancer progression? How does it change the 
molecular pathways in breast cancer with different receptor statuses, the specific role of each isoform, and how 
does the ER/and PR ratio affect progesterone signaling?
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Physiology of progesterone and progesterone 
receptor

Progesterone (P4) is an endogenous steroid 
hormone with 21 carbon atoms originating 
from cholesterol and regulates normal female 
reproductive functions. Endocrine glands pri-
marily synthesize the hormone progesterone, 
which belongs to the group of steroid hormones 
called progestogens [1]. Table 1 summarizes 
the primary physiological functions of proges- 
terone.

Ovarian follicles serve as the source of proges-
terone on target tissues. The effects of proges-
terone are mediated by the progesterone 
receptor (PR), a member of the nuclear recep-
tor superfamily of transcription factors that 
regulate gene expression upon hormonal stim-
ulation. Progesterone receptors were first 
cloned in 1986 using the same strategies, 
simultaneously in the laboratories of Pierre 
Chambon, Edwin Milgrom, and Bert O’Malley; 
also, it is the first receptor to be identified hav-
ing genuine isoforms [11]. The receptor exists 

in the cytoplasm as a multiprotein chaperone 
complex and functions in a ligand-dependent 
and independent manner [12]. In the ligand-
dependent pathway, when progesterone binds 
to the inactive PR, it causes a conformational 
change and releases the chaperone. It then 
dimerizes and binds to progesterone response 
elements (PRE) of the target gene and recruit 
specific transcription factors and coactivators 
to regulate the transcription of the target gene. 
The ligand-independent pathway functions in a 
cell type and promoter-specific manner through 
cytoplasmic and membrane-generated signals 
[12]. The structure of the progesterone receptor 
consists of a highly conserved central DNA 
binding domain (DBD), a C terminal hormone-
binding domain (HBD) which is moderately con-
served, and a poorly conserved N terminal 
region [12] (Figure 1). In addition to these 
regions, progesterone receptor contains activa-
tion function (AF) elements and inhibitory func-
tion (IF) elements, which along with co regula-
tors control PR’s transcriptional activity. And PR 
gene consists of 8 coding exons separated by 
seven noncoding introns [12, 13].
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Isoforms and splice variants of progesterone 
receptor

Two significant isoforms of PR, PRA and PRB, 
mediates most of the physiological functions of 
progesterone in humans. These two isoforms 
are transcribed from a single gene and from a 
defined promoter site within the gene [14]. PRA 
and PRB are identical in structure except for a 
- region of 164 amino acids (that forms the AF3 
in PRB) missing in the amino-terminal of PRA. 
To simply put, PRA is a truncated form of PRB.

factors in mediating reproductive functions 
rather than depend on tissue-specific PRA/PRB 
ratio.

PRA and PRB are present in the endometrium 
epithelium during the proliferative phase of the 
menstrual cycle and increases accordingly with 
estrogen. At the time of the secretory phase of 
the menstrual cycle, PRB remains constant, 
and the level of PRA decreases, suggesting a 
role for PRB in glandular secretion. Interestingly, 
over the course of the menstrual cycle, PRA 

Table 1. Overview of functions of progesterone in different tissues and systems
Target system/tissue Function
Endometrium ● The transition of endometrium from proliferative to secretory phase (Taraborrelli S 2015)

● Promotes ovulation (Taraborrelli S 2015)
Pregnancy ● Essential for implantation and maintenance of early pregnancy

● Progesterone suppresses myometrial contractility during pregnancy (Conneely OM et al. 2002)
Mammary gland ● Promotes lobular-alveolar development in preparation for milk secretion (Taraborrelli S 2015)
Brain ● Progesterone controls neurobehavioral expression associated with sexual responsiveness 

(González-Orozco JC, Camacho-Arroyo I 2019)
● It is related to neuroprotection, neuromodulation, myelination, neurogenesis, neuronal plasticity, 
and mood (Genazzani AR et al. 2000)
● Progesterone can act as a neuroprotective agent to treat traumatic brain injury (Wei J, Xiao GM 
2013)

Bone ● Prevent bone loss (Balasch J 2003)
Cardio vascular system ● Exert protective effect on the cardiovascular system, induces vasodilation, and decreases blood 

pressure (Pang Y et al. 2015)
Metabolism ● Progesterone induces hyperinsulinemia and stimulates deposition of body fat

● It also influences ketone body production (Kalkhoff RK 1982)
Immune system ● Progesterone inhibits inflammatory innate immune response

● It also alters the distribution and activity of T cells (Hall OJ, Klein SL 2017)

Figure 1. Structure of different isoforms of progesterone receptors. The PR 
consist of four different domains, NTD represents the N-terminal transactiva-
tion domain, DBD represents the DNA binding domain, a hinge region, and 
LBD represent the Ligand-binding domain. AF1, AF2, and AF3 are activation 
function domains.

Though being isoforms, PRA 
and PRB regulate different 
target genes in response to 
progesterone. PR knock-out 
mice (both isoforms ablated 
mice), have shown pleiotropic 
reproductive abnormalities. 
To study the reproductive 
functions of each isoform, 
Conneely et al. (2001) selec-
tively knocked out the PRA 
gene. They identified that PRB 
mediates a subset of repro-
ductive functions of proges-
terone in PRA knock-out mice 
models [15]. But the response 
of the thymus or mammary 
gland to progesterone was 
not affected by this ablation. 
Further, they concluded that 
PRA and PRB act as two func-
tionally different transcription 
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predominates in the stromal cells indicating its 
role in establishing pregnancy [16]. Knockdown 
experiments in mice have also shown that PRA 
is sufficient for the normal uterine functions, 
including the functioning of ovaries, and neces-
sary for puberty, implantation, and pregnancy. 
At the same time, PRB alone leads to hyperpla-
sia and inflammation of the endometrial epithe-
lium [16]. Several studies have demonstrated 
that overexpression of PRA can result in uterine 
enlargement and endometrial hyperplasia [15, 
16]. “Progesterone block hypothesis” is a wide-
ly accepted hypothesis which states that preg-
nancy is maintained by progesterone and pre-
vents premature labor. Progesterone withdraw-
al is a crucial trigger for parturition. Methylation 
in the promoter region of PRA increases its 
expression in human pregnancy and accom-
plishes progesterone withdrawal associated 
with parturition [16-18]. But expression of pro-
inflammatory genes by progesterone depends 
on PRA: PRB ratio. During pregnancy in myome-
trial cells, when this ratio favors PRB, it medi-
ates the anti-inflammatory effects of progester-
one, and when the ratio favors PRA it promotes 
pro-inflammatory effects [16, 17]. In other 
words, in pregnancy, trans repressive actions 
of PRA inhibit the ability of progesterone to 
exert anti-inflammatory activity via PRB .

In 1990 Wei et al. [19] described a third iso-
form of progesterone, termed progesterone 
receptor C in the T47d cell line, which is abun-
dantly synthesized in PR positive cells. PRC is a 
45-50KDa protein and results from translation 
initiation at methionine start codon Met-595. It 
can form a homodimer or heterodimer with 
other isoforms [14, 19]. AF1, AF3, and an entire 
DNA binding domain are missing in PRC, so it 
cannot interact with PRE. But it possesses a 
nuclear localization signal and two dimerization 
domains, so PRC can interact with nuclear co-
factors and thus influence PRA and PRB [14]. 
However, Samalecos et al. [20] later proved 
that PRC does not originate from AUG595 and 
is not a naturally occurring PR isoform [20, 21].

Condon et al. made a striking observation that 
PRC is overexpressed in the myometrium dur-
ing labor, and this increase is associated with 
increased expression of PRB [22]. When PRC: 
PRB ratio favors PRC, it leads to withdrawal of 
progesterone by sequestering progesterone 
from PRB and making it unable to bind to DNA 
in the laboring myometrium. This altered recep-
tor ratio is contributed by activation of NF-KB 

pathway in both laboring human fundus and 
pregnant mouse uterus, resulting in inhibition 
of PR transactivation and changes in uterine 
quiescence, leading to labor. In addition to PRA, 
PRB, and PRC, other isoforms of PRmRNA, PRS, 
and PRT, have been described from the human 
testis cDNA library [23]. PRS consists of a novel 
sequence before exon four termed ‘exon S’ and 
exon 4-8 of PR gene. The protein encoded by 
this mRNA lacks the DNA binding domain, but 
the progesterone binding domain makes it 
capable of binding to the hormone and medi-
ates nongenomic signaling [23]. The cDNA of 
isoform T consists of an independent exon, 
‘exon T’ before exon four, and exons 4-8 of the 
PR gene. Like PRS isoform PRT could mediate 
non-genomic signaling and recruitment of 
co-factors.

Indeed, PRS and PRT were similar in structure, 
‘exonT’ is located in the 5’ region of ‘exonS’, and 
‘exonS’ and ‘exonT’ are located between exon 3 
and 4 in the human PR gene. Neither S nor T 
contains a translation initiation site, so the 
translation is likely to start at the first methio-
nine in exon 4-8 [23].

A study by Marshburn PB et al. [24] revealed 
the existence of splice variants of PR mRNA 
lacking exon 4 (del-4 PR), exon 6 (del-6 PR), 
exons 4 and 6 (del-4&6 PR), and part of exon 4 
(del-p4 PR) or part of exon 6 (del-p6 PR) with 
wild type progesterone receptor in the human 
endometrium throughout menstrual cycle 
development. Studies have not followed up on 
these variants, and their effects on infertility, 
cancer, and other diseases are unknown. 
Another splice variant, isolated from endome-
trial carcinoma cells, contains an insertion of a 
232 bp sequence between exon 4 and 5 [25]. 
They termed it as i45PR mRNA, derived from 
two independent exons, i45a and i45b. The 
protein from this mRNA in endometrial cancer 
cells confers a role for this variant in normal/
pathophysiology of the endometrium [25].

Saner KJ et al. [26] described another non-
nuclear PR, PR-M (consisting of 314 amino 
acids), located in the mitochondria. A truncated 
version of nuclear PR, PR-M gene originates in 
the distal 3rd intron of the PR gene. It consists 
of a translation start site that encodes 16 novel 
N-terminus amino acids followed by a sequence 
identical to exons 4-8 of nuclear PR. These 16 
amino acids have sequence similarity to the N 
terminal sequence of the outer mitochondrial 
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membrane and are hydrophobic, suggesting a 
transmembrane domain function for PR-M. It 
possesses the hinge region and LBD of nPR but 
lacks the N-terminal domain, the DBD, and a 
complete NLS. The primary role of this receptor, 
localized in the outer mitochondrial membrane, 
is regulation of cellular respiration within the 
mitochondria [27]. Hitherto any physiological 
function for other splice variants of progester-
one receptor is not known.

The reports of action of progesterone on cells 
devoid of nuclear PR have led to the discovery 
of non-genomic participants of progesterone 
signaling, i.e., the membrane progesterone re- 
ceptor (mPR), and progesterone receptor mem-
brane components (PGRMCs). mPR belongs to 
the family of Progestin and AdipoQ Receptors 
(PAQR), and exist as five isoforms - mPRα, 
mPRβ, mPRγ, mPRδ, and mPRε [28]. Zhu et al., 
in 2003 [28, 29], first described the presence 
of mPRα on the membrane of the fish oocyte. 
Later, this receptor and two other isoforms, 
namely mPRβ and mPRγ, were identified in ver-
tebrates, including humans [28, 30]. It has 
characteristics of G protein-coupled receptors 
and possesses seven transmembrane do- 
mains. The isoforms, δ, and ε were identified in 
the Yeast recombination protein expression 
system [31].

PGRMC is a member of an omnipresent protein 
family, Membrane-Associated Progesterone 
Receptor (MAPR), and contains a cytochrome 
b5 domain [32] (Figure 2). PGRMC1 and 
PGRMC2 are two members of this group 
involved in various physiological and pathologi-
cal processes like breast cancer, ovarian can-
cer, estrous cycle etc. Together with the serpi-
nel mRNA binding protein I (SERBP1), PGRMC1 
controls the anti-apoptotic effect of progester-
one in granulosa cells [33], and, its expression 
may be related to ovarian tumor invasion and 
metastasis [34].

oligodendrocytes macroglial cells like astro-
cytes, Schwann cells, and peripheral and cen-
tral nervous system [35, 36]. Remarkably, pro-
gesterone level increases up to 10 fold during 
fetal growth to support the development of neu-
rons. Progesterone could affect the behavioral 
and cognitive spheres in lactating mice, promis-
ing a therapeutic substitute for hostile psychiat-
ric behavior, anxiety, and depression [37]. In a 
study conducted in 122 healthy premenstrual, 
reproductive-age women, a low level of proges-
terone-induced a high intensity of premenstru-
al mood symptoms such as aggressive behav-
ior and fatigue [38]. Further, higher progester-
one levels throughout the post-partum period 
in lactating rats are related to less aggressive 
behavior [39] -these all studies suggesting the 
potential therapeutic use of progesterone in 
mood disorders.

The action of progesterone and its metabolites 
in the brain are pleiotropic, and it includes 
effects on myelination, cognition, glial cell func-
tions, inflammation, neurogenesis, and neural 
progenitor cell proliferation [40]. Several pre-
clinical and clinical studies clearly showed the 
neuroprotective properties of progesterone. 
Allopregnanolone, a progesterone metabolite, 
acts on glial cells by endorsing myelin produc-
tion and decelerating the evolution of Alzhei- 
mer’s disease [36]. Progesterone also has a 
neuroprotective effect on neurodegenerative 
diseases,brain trauma, stroke, anoxic brain 
injury, and spinal cord injury [41]. Traumatic 
brain injury (TBI) is a multifactorial process, 
causes sudden damages to the brain caused 
by an external force. Notably, after traumatic 
brain injury, progesterone treatment helps to 
correct and maintain neuronal homeostasis 
[42, 43]. Administration of progesterone in 
post-injury experimental models of head injury 
confers protection against TBI-induced cere-
bral edema and secondary neuronal death 
[44]. Progesterone may inhibit inflammatory 

Figure 2. Structure of PGRMC1. PGRMC1 consist of an N terminal TM do-
main, a cytochrome b5 domain, SH2, and SH3 binding domains, and sites 
for kinase binding (indicated by asterisks).

Physiological functions of PR 
isoforms and progesterone 
signaling

Progesterone and neuropro-
tection

Besides ovaries and placenta, 
progesterone is synthesized 
in both sexes by adrenal 
glands and within the brain by 
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cytokines IL-β and TNF-α in the frontal cortex of 
the traumatic brain injury (TBI), thus prevent 
cerebral edema by stabilizing the blood-brain 
barrier and inhibiting water, ions, and inflam-
matory molecules from crossing the blood-
brain barrier. The sex steroid hormones, espe-
cially progesterone, activate MAPK, ERK, and 
Akt signaling pathways which are known to be 
associated with neuroprotection [45]. The pro-
gesterone receptors localized near the plasma 
membrane could interact with signal transduc-
tion kinases and activate the MAPK pathway 
[46, 47]. Further, progesterone also up-regu-
lates the expression of brain-derived neuro-
trophic factor (BDNF), a neurotrophin present 
in CNS, and reduces mitochondrial dysfunc-
tion, and all these mechanisms are linked to 
neuroprotection [45]. Progesterone receptors 
are localized at different brain parts, mainly the 
hypothalamus, hippocampus, and cortex. Other 
than nuclear PR, membrane receptor PGRMC1 
also mediates the effects of progesterone in 
the brain by activating Jak/STAT, Src, and pro-
tein kinase G pathways. mPR also identified in 
several parts of the brain and acts through 
MAPK and G-protein pathways [48]. These two 
membrane receptors mediate the neuroprotec-
tive effects of progesterone after TBI.

Progesterone and male reproduction

Though considered a female hormone, proges-
terone also modulates male reproduction. It is 
now understood that progesterone regulates 
spermiogenesis, acrosome reaction, and tes-
tosterone biosynthesis in Leydig cells [49]. 
Higher levels of progesterone were identified in 
testicular tissues. Steroid acute regulatory ge- 
ne (StAR) necessary for testosterone synthesis 
is also stimulated by progesterone in the rat 
testis [50]. Leydig cells in aged rats produce an 
increased amount of progesterone. Further 
studies in humans pointed out that testoster-
one production in testicular cells decreased in 
older men, and testosterone precursors pro-
gesterone and 17a-hydroxyprogesterone in- 
creased in the testicular tissue and the sper-
matic vein, thus having a deleterious effect on 
the testicular tissue [49].

Further, progesterone promotes sperm acro-
some reaction in capacitated spermatozoa, 
where progesterone has been produced by 
cumulus cells of oocyte and is present in the 
follicular fluid [51]. The presence of intracellular 

and membrane-bound progesterone receptor 
was identified in human adult testis by Shah C. 
A. et al. [50]. They recognized PRA, PRB, and a 
55kDa band, from the testis and spermatogen-
ic cell lysate. Progesterone receptor isoform S 
was also identified from the human testicular 
cDNA library [24].

Progesterone and immune function

Several studies have established the anti-
inflammatory role of progesterone in the brain 
and other tissues such as the intestine [52- 
56]. Progesterone is found to reduce lipid per-
oxidation, cellular apoptosis, oxidative stress, 
and the release of inflammatory cytokines [45, 
57]. Downregulation of inflammation is a well-
established function of progesterone, and it 
allows maternal immune tolerance of fetal 
allograft [59]. Progesterone also induces the 
expression of HLA-G (Human leukocyte anti-
gen), a non-classical MHC-1 molecule express- 
ed on Extravillous trophoblasts (EVTs), respon-
sible for maintaining immune tolerance during 
pregnancy [58]. Moreover, the presence of pro-
gesterone receptors on a wide variety of 
immune cells suggests a role for progesterone 
in immune modulation. Progesterone generally 
inhibits innate immune responses. Studies 
show that progesterone can suppress the acti-
vation of macrophages and dendritic cells also.

When progesterone binds to its receptor, it 
obstructs the NF-kB pathway and inhibits down-
stream activation of the NF-κB pathway, in- 
cluding cyclooxygenase-2, to decrease inflam-
mation. It also affects the production of pro-
inflammatory cytokines like TNF-α, IFN-γ, and 
IL-12 and stimulates the anti-inflammatory 
cytokine IL-10. In vitro treatment of T-cells with 
progesterone, biased naive T cells from Th1 to 
Th2 type response and induced synthesis of 
IL-10, IL-13, and IL-27. In vivo studies showed 
an increased production of TNF-α in the preg-
nant endometrium in the presence of proges-
terone. Lymphocytes in pregnant individuals 
show higher sensitivity compared to non-preg-
nant individuals. In B cells, progesterone induc-
es the production of protective asymmetric 
antibodies. Ex vivo experiments have demon-
strated that progesterone causes the differen-
tiation of blood monocytes into dendritic cells, 
explaining the presence of monocyte-derived 
dendritic cells in human deciduas. These den-
dritic cells then modulate the immune response 
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during pregnancy, regulating TH1/TH2 bias 
through IL12 secretion. This extraordinary 
interaction between the endocrine and the 
immune system leads to a dominance of TH2 
immune response and successful pregnancy 
[58].

Progesterone and oxidative stress

Reactive oxygen species are produced due to 
normal cellular metabolism and initiate various 
signaling pathways in response to changes in 
intra and extracellular conditions [59]. Oxida- 
tive stress engenders cell survival, prolifera-
tion, and metastasis of multiple cancers, but 
uncontrolled stress leads to cell death. So har-
nessing oxidative stress as a treatment strate-
gy for various cancers is a topic of current inter-
est [60]. Progesterone induces nitric oxide (NO) 
production, a regulator of vascular homeosta-
sis, in primary kidney arterial endothelial cells. 
It functions in these cells by oxidative stress 
signal/HIFα/eNOS/NO pathway. Here, proges-
terone inhibits the antioxidant system, increas-
ing oxidative stress and expression of Hypoxia-
inducible factors (HIF) and H2O2 level thus  
leads to NO production [61]. Several studies 
broached the effect of progesterone on lipid 
peroxidation and oxidative stress. In repeated 
mild traumatic brain injuries, progesterone 
treatment could attenuate neuroinflammation 
and oxidative stress [62]. Likewise, Lipid peroxi-
dation was reduced consequent to progester-
one treatment in a dose-dependent manner in 
various in vitro free radicle generating systems 
[63]. When cerebral edema models are treated 
with progesterone, it increases inhibitory neu-
rotransmitter GABAα and reduces oxidative 
stress and lipid peroxidation. In pregnancy, the 
same effects are observed in the brain homog-
enates and mitochondria, suggesting a role for 
progesterone in this effect [45]. A recent study 
reported that long-term progesterone treat-
ment could rescue ovariectomized mice from 
impaired learning and memory [64] by increas-
ing the antioxidant enzyme SOD activity and 
reducing Malondialdehyde (MDA), a marker of 
lipid peroxidation. Further studies identified 
that in the brain, progesterone is converted to 
5α-di-hydro progesterone and further allopreg-
nanolone. Allopregnanolone alleviates lipid per-
oxidation and ROS production, thus averting 
peroxide-induced apoptosis and NF-kB activa-
tion due to its ability to restore the intracellular 

redox state [65-67]. In conclusion, progester-
one exerts a protective role by reducing oxida-
tive stress and enhancing endogenous free 
radical scavenging systems. Recent studies in 
our laboratory have identified role of oxidative 
stress in progesterone-treated breast cancer 
cell line MCF-7. Progesterone treatment induc-
es the release of reactive oxygen species in 
MCF-7 cells in a time- and concentration depen-
dent manner and thus regulates the anti-prolif-
erative activity in breast cancer cell lines [68]. 
The Enhanced ROS production altered the 
expression of antioxidant enzymes SOD1 and 
SOD2 in progesterone treated MCF-7 cells. 
Further detailed molecular and proteomics 
studies identified a role for calcium signaling in 
progesterone-induced growth inhibition by reg-
ulating essential proteins VDAC1 and SERCA3, 
involved in calcium signaling and transport 
[69].

Progesterone and cardiovascular system

Progesterone exhibits a beneficial effect on the 
cardiovascular system. It lowers blood pres-
sure, hinders coronary hyperactivity, and has 
vasodilatory and natriuretic effects [8]. Human 
aorta vascular smooth muscle cells express 
both PRA and PRB, and expression of PRA is 
more in women than males. Most of the rapid 
actions of progesterone in the cardiovascular 
system are attributed to membrane progester-
one receptors. Progesterone increases rapid 
nitric oxide production in both human and ani-
mal vascular endothelial cell models by regulat-
ing the synthesis of endothelial NO synthase 
(eNOS) and activating membrane progesterone 
receptor alpha [8]. NO is the primary regulator 
of blood vessel dilation and acts by relaxing the 
surrounding vascular smooth muscle cells. 
mPRβ and mPRγ is also reported in human 
endothelial and smooth muscle vascular cells. 
Mitochondrial PR in the myocardial cells regu-
lates oxidative cellular respiration and beta-
oxidation in a ligand-dependent mechanism 
that assigns the increased myocardial energy 
production during pregnancy [70].

Progesterone and bone metabolism

In females, estradiol, and progesterone-func-
tion together to maintain bone balance. Es- 
tradiol prevents bone resorption, while proges-
terone increases bone formation or bone turn-
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over, a slow process mediated by progesterone 
receptors A and B expressed on human osteo-
blasts [71, 72]. Several studies have suggested 
the importance of oral micronized progester-
one, similar to ovarian progesterone, in pre-
venting and treating bone loss in pre-or peri-
menopausal women with regular, estrogen-suf-
ficient menstrual cycles who are also experi-
encing ovulatory disturbances [73]. However, 
the role of PR signaling in bone remains contro-
versial [74, 75].

Metabolic effects of progesterone

Progesterone affects carbohydrate metabolism 
by inducing hyperinsulinemia via a direct action 
on pancreatic islets while promoting glycogen 
storage in the liver. Interestingly, progesterone 
has a negative impact on the effect of insulin 
on glucose metabolism in adipose tissues and 
skeletal muscle. In lipid metabolism, it has an 
anabolic effect and catabolic effect on protein 
metabolism. All, these actions of progesterone 
appears to be the body’s adaptation for normal 
pregnancy [9]. Two randomized studies in post-
menopausal women concluded that progester-
one does not affect lipid profile [76, 77], mak-
ing it favorable for HRT as it doesn’t modify 
blood lipids induced by estrogen, as done by 
other progestogens [78, 79]. It has also been 
shown that rat adipocytes express PR, and 
inhibiting lipolysis [80]. A recent study on blood 
glucose level showed that progesterone induc-
es the transcription of gluconeogenic genes 
and increases blood glucose level through 
induction of hepatic PGRMC1 under insulin-
resistant conditions [81, 82].

Furthermore, progesterone activates Glycogen 
phosphorylase, a key enzyme in glycogen 
metabolism, leading to a rise in blood sugar lev-
els [83]. In pregnancy,several studies point out 
a direct relationship between higher progester-
one levels and gestational diabetics character-
ized by glucose intolerance, a consequence of 
inadequate insulin supply [84-86]. Pregnant 
rats treated with progesterone were more 
prone to insulin resistance than placebo con-
trol [87] due to reduced expression of Glut4 in 
skeletal muscles, leading to decreased glucose 
uptake [83]. PR knock-out female mice demon-
strated greater glucose tolerance and lower 
fasting blood sugar due to increased βcell mass 
and βcell proliferation [88].

Progesterone signaling in multiple diseases

Covid-19

Covid-19 belongs to the ß coronavirus cluster, a 
zoonotic coronavirus disease, behind the SARS 
and the Middle East respiratory syndrome [89]. 
Despite limited knowledge on its source, cur-
rent data suggests that SARS-CoV-2 was an 
amalgamation of unknown origin of coronavirus 
and bat coronavirus [89]. Although in the begin-
ning, much attention was laid down on the 
elderly or those with morbidities as being at 
high risk for contracting/dying of COVID-19, epi-
demiological studies have revealed that males 
are more susceptible than females. In Italy and 
Spain, the majority of COVID-19 deaths were 
male than in females. Apart from this, figures 
from China also indicated a gender gap in mor-
tality rate. Data from other countries, including 
the USA, South Korea, Germany, and United 
Kingdom also confirmed the similar pattern of 
death rate [89]. One of the possible reasons 
could be the expression and distribution of 
Angiotensin-converting enzyme-2 (ACE 2), a 
responsible receptor for SARS-CoV-2 encoded 
by the ACE 2 gene [90], implying a positive cor-
relation between the ACE 2 receptor and coro-
navirus infection [91]. Taken this into account, 
many studies have quantified the expression of 
ACE 2 receptors in human cells based on gen-
der ethnicity.

Single-cell RNA-sequencing (RNA-seq) analysis 
revealed that Asian males are more vulnerable 
to the virus than females since they had higher 
expression of ACE 2 receptors compared to 
females [92]. In addition, a study conducted in 
the Chinese population indicated that the 
expression level of ACE-2 was excessively high 
in Asian males than females [92]. Another rea-
son could be the presence of steroid hormones 
like 17β-estradiol (E2) and progesterone (P4) 
and their strong immunomodulatory action at 
peak concentrations [93]. Among them, pro- 
gesterone (P4) is an important immunomodula-
tory and anti-inflammatory hormone produced 
at high concentrations during pregnancy by the 
placenta. Pinna G et al. [37] from the University 
of Illinois in Chicago outlines some of the evi-
dence in Trends in Endocrinology & Metabolism, 
pointing out that female reproductive hor-
mones possibly play a role in sex preference 
trends of the coronavirus disease 2019 (COVID-
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19). Progesterone, the well-known steroid hor-
mone functioning in reproduction, also regu-
lates essential immunomodulatory functions 
such as redesigning the competence of  
immune cells and bringing strong anti-inflam-
matory actions [94]. By activating the proges-
terone-induced blocking factor, progesterone 
can suppress cellular cytotoxicity, regulate T 
cell receptor signaling, and may also suppress 
degranulation [58]. Most immune cells, includ-
ing epithelial cells, macrophages, dendritic 
cells, lymphocytes, mast cells, eosinophils, ex- 
press progesterone receptors [95]. In humans 
and rodents, progesterone prevents the syn-
thesis of pro-inflammatory cytokines IL-1β and 
interleukin 12 by macrophages and dendritic 
cells. Progesterone also influences the skewing 
of CD4+ T-helper cell responses from Th1-type 
to Th2-type and thus the production of anti-
inflammatory cytokines IL-4 and IL-10 [95-97]. 
Progesterone treatment of cord blood cells 
increases the percentage of FOXP3+ Treg cells 
(thus promoting immune tolerance), and de- 
creases pro-inflammatory Th17 cells. Proges- 
terone-depleted adult female mice confer pro-
tection from lethal influenza A virus pneumonia 
when administered with progesterone at con-
centrations sufficient to mimic the luteal phase 
[98]. Progesterone treatment in mice ensued 
an earlier recovery without effects on viral load 
by decreasing the lung inflammation, improving 

progesterone, a recent study described proges-
terone treatment as a safe and effective proce-
dure in hospitalized men with COVID-associated 
hypoxia [100]. Clinical trials are also testing the 
effectiveness of progesterone or estradiol 
treatment in COVID-19 patients [93].

Breast cancer

As a partner to estrogen, progesterone is the 
most crucified female hormone related to can-
cer. A role for progesterone in the development 
and progression of breast and gynecological 
cancers is gaining more attention, as various 
research groups reported contradictory results. 
Studies in cell lines showed biphasic effects of 
progestins. In 1985 Horwitz and Freidenberg 
demonstrated the inhibitory action of progestin 
in T47D cell line independent of estrogen induc-
tion [101]. In T47D cell line, cyclin-dependent 
kinase inhibitor p27Kip1 (p27) gene mediates 
the inhibitory effects of progesterone by tran-
scriptional upregulation [102]. Alkhalaf M et al. 
(2002) investigated the molecular mechanisms 
underlying progesterone’s growth inhibition of 
breast cancer cell lines [103]. They showed that 
MCF-7 cell lines undergo differentiation, not 
apoptosis, upon treatment with progesterone, 
and phosphorylation of Akt is the crucial media-
tor of this process. Groshong SD et al. (1997), 
using T47DYB cells, demonstrated progester-

Figure 3. Anti-inflammatory and immunomodulatory actions of proges-
terone. Progesterone inhibits synthesis of pro-inflammatory cytokines by 
macrophages and dendritic cells. Progesterone also helps to produce anti-
inflammatory cytokines by CD4+ T-helper cells and switch to Th2 type anti-in-
flammatory response. Moreover, both estradiol and progesterone stimulate 
the expansion of T-regulatory cells, thus supporting immune tolerance.

pulmonary functions, and 
repairing and promoting cell 
proliferation. Although the 
immune reactions produced 
by influenza A virus infection 
and SARS-CoV-2 are different, 
Hall OJ et al. 2016 provides 
essential insight into proges-
terone’s immunomodulatory 
and healing effects. Butter- 
worth et al., in 1967 itself, 
and other multiple studies, 
subsequently confirmed that 
women produce higher levels 
of circulating immunoglobu-
lins IgG and IgM than men 
[99].

E2 and P4 also boost immune 
tolerance by expanding regu-
latory T cells (Treg) [96, 97] 
(Figure 3). Considering these 
immunomodulatory actions of 
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one’s capability to stimulate or inhibit cell 
growth depending on whether treatment is 
transient or continuous [104]. G1 phase cell 
cycle arrest after progesterone treatment is 
accompanied by cellular changes that permit 
other, possibly tissue-specific, factors to influ-
ence the final proliferative or differentiative 
state.

Later Lange CA et al. (1999) hypothesized 
about the contradictory actions of progester-
one, which acts as a priming factor for second-
ary agents like cytokines and growth factors 
[105]. Other transient or intermittent doses of 
progesterone are growth stimulatory, while con-
tinuous or sustained high-dose progesterone is 
growth inhibitory. This model of progesterone 
action implied the importance of timing of pro-
gesterone treatment in clinical practice, i.e., 
continuous or periodic administration. It also 
suggested the difference in physiological con-
sequence of endogenous cyclical progesterone 
of the menstrual cycle and continuous pro- 
gesterone during pregnancy. Anti-apoptotic 
effects of progesterone add controversy to the 
topic. Hissom JR and Moore MR first reported 
proliferative effects of progesterone in T47D 
cells [106]. They identified that promegestone 
alone, at physiological progestin concentration, 
significantly stimulates growth. Progesterone 
also protects breast cancer cells against serum 
depletion and radiation-induced apoptosis in 
PR-positive breast cancer cell lines [107].

In normal human mammary cells, PRA and PRB 
express in equimolar ratios [108]. But this ratio 
changes in breast cancer cells and PR isoform 
expression and ratio significantly affect breast 
cancer progression. In breast cancer cell lines, 
PRA regulates more genes than PRB, with a 
modest overlap in genes controlled by both iso-
forms. Studies identified PRB as more prolifera-
tive while increased expression of PRA respon-
sible for metastasis. In the presence of its 
ligand, PRB is transcriptionally more active, and 
in its absence, PRA has more dominant roles 
[109]. The main downstream effectors of PR 
signaling are cyclin D1, WNT4, and RANKL, 
which promote breast carcinogenesis [110]. 
And overexpression of PRA leads to transcrip-
tion of specific genes involved in cell prolifera-
tion and metastasis. TNFRSF11A, one among 
those genes, encodes RANK (receptor activa- 
tor of NF-Κb), the receptor for RANKL. Pro- 
gesterone has a direct effect on PR-positive 

cells in normal breast, but in PR negative cells, 
it acts through RANKL induced paracrine 
actions, which in turn leads to the proliferation 
of PR negative mammary epithelial cells [111]. 
Changes in RANKL signaling has a positive cor-
relation with primary breast cancer develop-
ment. Studies reported that hypoxia up-regu-
lates RANK/RANKL signaling and increases 
breast cancer cell migration through PI3K/Akt-
HIF-1α pathway [112]. RANK/RANKL also 
increases the expression of cyclinD1 and its 
overexpression correlated with poor prognosis 
in ER+PR+ patients. Surprisingly RANKL is nei-
ther expressed nor stimulated by progesterone 
in most breast cancer cell lines, including 
MCF-7 and T47D. But in vivo studies confirmed 
RANKL protein expression and a positive cor-
relation with serum progesterone levels [113].

Moreover, tumors expressing PRA respond 
more effectively to antiprogestins [113]. Brca1/
p53-deficient mice overexpress PRA, and a pro-
gesterone antagonist mifepristone (RU 486) 
prevented mammary tumor formation in those 
animals [114]. In a postmenopausal model of 
an obese ovariectomized rat with a chemically 
induced tumor, the PRA expression increased, 
enhancing tumor growth compared to its con-
trol rat [113]. PRA and PRB ratio in breast can-
cer is an essential indicator of treatment out-
come and prognosis. Increased expression of 
PRA results in resistance or less response to 
tamoxifen treatment, and also, mifepristone, 
an antiprogestin, inhibits cell proliferation in 
PRA overexpressing tumors [113, 115].

Non-genomic signaling of progesterone can 
also affect the pathophysiology of breast can-
cer. Studies identified overexpression of mPR 
and PGRMC1 in breast cancer cell lines [109]. 
In TNBC cell line progesterone exerts its effects 
through mPRα and mPRβ and suppresses the 
growth and metastasis of TNBC cells to the 
brain through mPRα [116]. Progesterone also 
reverses the mesenchymal phenotype to epi-
thelial-like phenotype in MDAMB231 cells 
through mPRα [109]. Moreover, primary breast 
tumors express PGRMC1, and its expression is 
related to increased tumor size and lymph node 
metastasis [117]. In another study, PGRMC1 
was shown to increase the chemotherapeutic 
resistance in breast cancer and attenuate the 
apoptotic effect of chemotherapeutic drug 
doxorubicin [118]. PGRMC1 is expressed in 
both ER+PR+ and TNBC cell lines, and controls 
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Figure 4. Venn-Euler diagram of commonly expressed proteins in different breast cancer cell lines. Breast cancer 
cell lines MCF-7, MDAMB-231, and SKBR3 were treated with progesterone for 48 hr. Protein samples were collected 
by cell lysis and further analyzed by LC-MS-MS analysis and total proteins are represented as Venn-Euler diagram.

Table 2. List of major pathways stimulated by progesterone in different breast cancer cell lines
MCF-7 MDAMB231 SKBR3

Molecular Function ● Binding
● Catalytic activity
● Structural molecule activity

● Binding
● Catalytic activity
● Structural molecule activity

● Binding
● Catalytic activity
● Structural molecule activity

Biological process ● Cellular process
● Biological regulation
● Metabolic process
● Response to stimulus

● Cellular process
● Metabolic process
● Response to stimulus
● Biological regulation

● cellular process
● Metabolic process
● Response to stimulus
● Biological regulation
● Signaling
● Localization

Pathways ● Apoptosis signaling
● Cytoskeletal regulation by Rho GTPase
● FGF signaling pathway
● EGF receptor signaling pathway
● Inflammation pathway
● Glycolysis
● TCA cycle

● Apoptosis signaling
● Cytoskeletal regulation by Rho GTPase
● FGF signaling pathway
● EGF receptor signaling pathway
● Inflammation pathway
● Glycolysis
● TCA cycle

● Apoptosis signaling
● Cytoskeletal regulation by Rho GTPase
● FGF signaling pathway
● EGF receptor signaling pathway
● Inflammation pathway
● Glycolysis
● TCA cycle

Protein class ● translational protein
● metabolite interconversion enzyme
● Cytoskeletal proteins
● Chaperone
● Calcium-binding protein
● Protein modifying enzymes

● Chaperons
● translational protein
● metabolite interconversion enzyme
● Cytoskeletal proteins
● Calcium-binding protein
● Protein modifying enzymes
●Protein binding activity modulator

● Chaperons
● translational protein
● metabolite interconversion enzyme
● Cytoskeletal proteins
● Calcium-binding protein
● Protein modifying enzymes
● Protein binding activity modulator

the breast tumorigenesis through PI3K/AKT/
mTOR and EGFR signaling pathway [119].

In our laboratory, we have used different breast 
cancer cell lines having different receptor sta-
tus. We have used the progesterone which is 
identical to the natural hormone and not the 
progestins, to study its effect on breast cancer 
growth regulation. Progesterone and progestin 
differ in chemical structure and progestins may 
mimic some of the action of progesterone but 
have different effect on progesterone receptor 
[120]. Using proteomics approach, identified 
the proteins which is responsive to progester-
one in MCF-7, MDAMB231 and SKBR3 cell 

lines. Figure 4 represents the total proteins 
expressed at different cell lines in response to 
progesterone [Figure 4].

The proteins were classified using the Panther 
classification system (Table 2), and important 
up-regulated and down-regulated proteins are 
listed in Table 3. Functional studies in MCF7 
(ER+PR+HER2+) (69) and MDAMB231 (ER-PR-

HER2-) [unpublished data] indicate that proges-
terone has growth inhibitory functions in breast 
cancer cells, irrespective of their receptor sta-
tus, suggesting a cross-talk or the involvement 
of other receptors in mediating progesterone 
signaling.
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So far, another research group has also report-
ed the receptor independence of progesterone 
in breast cancer [121, 122]. They have 
described the ability of progesterone to sup-
press the invasion and migration of breast can-
cer cells irrespective of their receptor status. 
Serum- and glucocorticoid-regulated kinase 
gene (SGK1) and N-Myc downstream-regulated 
gene 1 (NDRG1) were up-regulated in response 
to progesterone treatment, thus leading to the 
inactivation of a set of genes related to inva-
sion and migration. MicroRNAs miR-29a and 
miR-101-1 targeting the 3’-UTR of SGK1 is also 
down-regulated upon progesterone treatment 
which confers the upregulation of SGK1 and 
NDRG1. However, further studies are required 
in this arena to use progesterone as a treat-
ment option i.e., pre-operative progesterone 
treatment for better survival of breast cancer 
patients.

Progesterone signaling in ovarian, endometrial 
and colorectal cancer

Estradiol induces proliferation in ovarian can-
cer cell lines, while progesterone exhibits both 
stimulatory and inhibitory effects depending on 
its concentration [123]. ER and PR expression 
in ovarian cancer cells are also related to better 

survival and longevity [124]. In ovarian high-
grade serous carcinoma (HGSOC), progester-
one, through its receptor, produces necroptosis 
of p53-deficient fallopian tube epithelium cells 
[125] and suggested progesterone as a chemo-
preventive drug for HGSOC. Progesterone treat-
ment also reduced the cell proliferation in 
endometrioid ovarian carcinoma [126]. Type1 
endometrial cancer cells, which are well-differ-
entiated, express ER and PR. The expression  
of these receptors determines the clinical 
response rate and overall survival of patients. 
Progesterone treatment induces apoptosis and 
inhibits metastasis in endometrial cancer cells 
by acting through cyclin D1, FOXO1; p21; and 
p27, and MMP1 (matrix metalloproteinase-1), 
MMP-2, MMP-7, and MMP-9 [119]. Elsewhere, 
when estradiol plus progestin was used for a 
short period, the occurrence rate of colorectal 
cancer drastically reduced [127]. Furthermore, 
postmenopausal hormone replacement thera-
py (HRT) has been shown to reduce the risk of 
colorectal carcinoma. Sasso CV et al. report- 
ed that progesterone plus estradiol treatment 
in colorectal tumor cells induces apoptosis 
through activation of estrogen receptor β [128]. 
Folic acid inhibits colorectal cancer cell growth 
and migration through progesterone receptor 
activation [129]. 

Table 3. List of major proteins up-regulated and downregulated by progesterone from proteomics 
analysis, in different breast cancer cell lines

Down-regulated Proteins Up-regulated Proteins
MCF7 Protein S100 A11 peroxiredoxin 6

apoptosis-inducing factor 1 protein disulfide isomerase A4
14 3 3 protein zeta delta superoxide dismutase
ras-related protein Rab exportin 2 isoform 2
calumenin metallothionein 2
protein SET isoform 4
nucleophosmin isoform 1

SKBR3 Ezrin Calreticulin
chloride intracellular channel protein 1 Peroxiredoxin
Calnexin Protein SET isoform 4
Pyruvate kinase phosphoglycerate kinase 1
14 3 3 protein epsilon citrate synthase mitochondrial precursor
14 3 3 protein sigma endoplasmic reticulum resident protein 29 isoform 1
heat shock 70 kDa protein protein disulfide isomerase
Profilin1 malate dehydrogenase mitochondrial

MDAMB231 Histone H1 14 3 3 protein sigma Homo sapiens
calumenin isoform e 14 3 3 protein eta Homo sapiens
protein disulfide isomerase A4 protein S100 A6 Homo sapiens
ERO1 like protein alpha annexin A2
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ER and PR cross-talk

The importance of PR in selecting endocrine 
therapy in both the adjuvant and metastatic 
settings has not been proven yet. The only fac-
tor predictive of tamoxifen benefit in a meta-
analysis of adjuvant tamoxifen therapy was ER 
status [13, 130]. Likewise, in a meta-analysis 
comparing adjuvant aromatase inhibitors (AIs) 
to tamoxifen, the expression of PR did not con-
firm any selective advantage of AI therapy [13, 
131]. PR loss occurs more commonly in meta-
static primary breast tumors than HER2 and 
ESR1 loss [132]. Studies reported that consid-
erable cross-talk happens between PR and ER 
signaling pathways, whereby the activation of 
one has a substantial influence on the other. 
Notably, when its ligand activates PR in the 
presence of estrogen, it cross-talks with ER in 
breast cancer cells. It redirects ER chromatin 
binding, suggesting PR’s direct role in regulat-
ing ER action [133]. The treatment of breast 
cancer cells in vivo and in vitro with progester-
one can reprogram ER binding to thousands of 
new cis-regulatory elements and change the 
gene expression profiles causing cell cycle 
arrest. In short, progesterone redirects 
ER-mediated transcription by the appropriation 
of the ER complex to prevent breast tumor 
growth; the positive patient outcome is the 
translational phase of this newly identified tran-
scriptional machinery [133]. R5020, a synthet-
ic progestogen, inhibited estradiol-induced pro-
liferation in ex vivo cultured primary breast can-
cer samples from patient tumors [134].

Moreover, progesterone suppressed estradiol-
mediated breast tumor growth in mouse xeno-
graft, and, when in combination with tamoxifen, 
tumor growth was reduced more effectively 
than tamoxifen alone [134]. By identifying the 
tumors responsive to progesterone-induced PR 
reprogramming of ER, we could exploit PR’s 
therapeutic importance. A trial of a single injec-
tion depot progesterone before surgery for 
breast cancers in 976 patients confirmed a sig-
nificant improvement in survival upshots in 
patients with the higher-risk node-positive dis-
ease [135].

Progesterone and timing of breast cancer 
surgery

The effect of the menstrual cycle phase on pri-
mary breast cancer surgery has been a subject 

of controversy over the last 30 years. Ratajczak 
HV et al. (1988) first proposed an effect of the 
estrous stage at the time of surgical resec- 
tion of an estrogen receptor-bearing mammary 
adenocarcinoma in a mouse model [136]. In 
the following year, Hrushesky WJM et al. (1989) 
addressed the same hypothesis in humans 
with a retrospective study of 44 premenopaus-
al women. They underwent resection of primary 
breast cancer, and in women operated during 
the perimenstrual period, disease recurrence 
and metastasis were more frequent and more 
rapid [137]. Later several studies found contra-
dictory results. Studies by Badwe RA et al. and 
Veronesi U et al., supported the hypothesis, 
whereas Goldhirsch A et al., and Nathan B et 
al., found no effect on the survival of patients. 
Sainsbury R et al. observed that surgery on the 
follicular phase survives longer than the luteal 
stage [138-142]. A multicentre prospective 
study done in 2008 reported 3-year overall and 
disease-free survival results. It concluded that 
surgery timing with the menstrual cycle phase 
had no significant impact on 3-year survival 
[143]. Love RR et al. (2015) conducted a phase 
III randomized clinical trial to test the hypothe-
sis, and in their study, any advantage of adju-
vant luteal phase oophorectomy was not shown 
[144]. In a randomized trial conducted by 
Badwe RA et al., participated 1000 women with 
operable breast cancer were either treated 
with surgery alone or along with a single intra-
muscular hydroxyprogesterone 500 mg injec-
tion between 5 and 14 days before surgery 
[135]. After sixty-five months of follow-up stud-
ies, the overall survival rate in nod positive 
patients who received progesterone treatment 
was significant compared to surgery alone. 
Transcriptome sequence analysis of primary 
breast tumor samples collected from patients 
before and after hydroxyprogesterone treat-
ment suggested that cellular stress is altered 
by progesterone exposure, thus conferring the 
beneficial effect of progesterone on cancer 
cells by alleviating the impact of surgical stress 
[145]. So far, this disputed hypothesis remains 
a puzzle, and many scientific groups are trying 
to shed light on the molecular mechanisms 
behind this hypothesis.

Summary

In the past years, the field of progesterone 
research has achieved remarkable progress. 
For years PR has been considered as a marker 
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for functional activity of ER. But recent studies 
placed progesterone into the spotlight and 
redefined the PR’s role in cancers and other 
physiological functions. Herein, we have dis-
cussed the pivotal physiological functions of 
progesterone and its different isoforms. Initially, 
there were only two receptors known for pro-
gesterone-PRA, and PRB. But at present, four 
more isoforms, non-genomic receptors and 
many other splice variants, apart from these 
classical receptors (PRA and PRB), were discov-
ered, but their specific functions are unclear. 
Based on recent studies, we should focus on 
progesterone as essential in reproductive fields 
and a vital tool for managing many clinical ill-
nesses, including cerebral edema, Alzheimer’s 
disease, diabetic neuropathy, osteoporosis, 
and cancer. Progesterone is considered a 
neurosteroid, and its therapeutic potential for 
brain damages could represent a potential 
treatment option. Moreover, we should exten-
sively discuss its ability to reduce oxidative 
stress through enhancing the free radicle scav-
enging system, anti-inflammatory potential, 
beneficial effect on the cardiovascular system, 
bone balance, and the metabolic process.

Furthermore, different research groups have 
studied the involvement of progesterone signal-
ing in emerging diseases like COVID-19. A latest 
study points out that progesterone therapy 
improves COVID-19 outcomes in men [100]. 
Clinical trials regarding the therapeutic poten-
tial of progesterone in COVID-19 patients also 
suggest a weapon against the pandemic.

Beyond its physiological functions, progester-
one was always considered a culprit for breast 
cancer tumorigenesis and progression. But 
contradictory research work claiming proges-
terone as a warrior fighting against breast can-
cer progression, migration, and invasion partly 
proved it as innocuous. This field achieved a 
different aspect with the hypothesis of Hu- 
rshesky et al. regarding the timing of breast 
cancer surgery and menstrual cycle. According 
to his study, surgery at the luteal phase 
increased the survival rate of patients, and 
concurrent molecular evidence was obtained in 
our studies using progesterone and breast can-
cer cell lines. Moreover, another mechanism of 
action for progesterone in breast cancer is 
emerging from our studies and other research 
groups, i.e., progesterone executes its func-
tions in breast cancer cells regardless of its 

receptor status. More studies on these results 
will lead to the possible treatment intervention 
of progesterone in breast cancer. Finally, fur-
ther studies are necessary to recognize the 
molecular mechanisms of progesterone and  
its receptors in the pathophysiology of diseas-
es and physiological processes to take thera-
peutic advantage of this underrated steroid 
hormone. 
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