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Abstract: Skin malignancies form in tissues of the skin and are the most frequent cancers in the world, with an 
increasing incidence and a steady fatality rate. They are classified as melanoma or nonmelanoma cancers, which 
include basal cell carcinoma and squamous cell carcinoma. Noncoding RNA transcripts have received increased 
attention after the thorough analysis of the human genome revealed that most of the genomic components are 
not encoded to protein. MicroRNAs, long noncoding RNAs, and circular RNAs are some of the well-studied types of 
these noncoding regions. The alteration in any of these members’ expression is associated intrinsically with human 
cancers, including skin malignancies, due to their critical functions in cell processes for normal development. As 
a result, investigating the noncoding component of the transcriptome opens up the possibility of discovering new 
therapeutic and diagnostic targets. This review discusses current studies on the involvement of microRNAs, long 
noncoding RNAs, and circular RNAs in the pathogenesis of human skin cancers.
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Introduction

Skin cancers are malignancies that arise from 
the skin and they are mainly divided into two 
types according to their source of tumor cells. 
They are non-melanoma skin cancer (NMSC) 
and melanoma skin cancer [1]. NMSCs origi-
nate from epidermal cells, develop in the upper 
layers of the skin, and are classified into two 
types, including basal cell carcinoma (BCC) and 
cutaneous squamous cell carcinoma (cSCC) 
[2]. BCC is the most common form of skin can-
cer which is accounts for 75% of cases of NM- 
SC and up to 30% of Caucasians develop BCC 
at some point in their lives. Indeed, this type of 
skin cancer grows slowly and only harms the 
surrounding tissue. BCC scarcely spreads to 
distant areas or causes death and its me- 
tastatic rate is <0.1% [3, 4]. Ultraviolet light, 
immunodeficiency, having lighter skin which 
resulted in a higher risk of DNA damage, and 
chronic arsenic exposure are some of the main 
risk factors for BCC [5]. It has been revealed 
that genetic alterations may contribute to the 

carcinogenesis of BCC. PTCH1 is a key part of 
the hedgehog signaling pathway, and functions 
as a tumor suppressor [6]. Studies revealed 
that the inactivation of PTCH1 is an essential 
event for BCC pathogenesis. Point mutations 
and loss of heterozygosity of the PTCH1 are  
frequently identified in BCC [7]. Other mole- 
cular elements and genetic pathways have 
been identified in BCC tumorgenicity, such as 
Hippo-YAP signaling, MYCN/FBXW7 signaling, 
TERT-promoter, TP53, etc. cSCC is the second 
most common skin cancer after BCC and 
responsible for about 20% of all skin cancer 
cases [8].

In contradistinction to BCC, cSCC has a higher 
risk of distant metastasis and causes 51,900 
deaths in 2015 [9]. Sunlight exposure and a 
reduction of the activation or efficacy of the 
immune system are the most important risk 
factors for cSCC [10]. It has been proven that 
cSCC is one of the malignancies with the high-
est mutation rate [11]. Around 90% of cSCC 
cases have inactivation of TP53 in epidermal 
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keratinocytes which increases UV-induced sim-
ple mutations [11]. Mutations in several other 
genes, such as NOTCH, EGFR, RAS, and CD- 
KN2A are reported in cSCC patients [12].

Melanoma, also known as malignant melano-
ma, is considered one of the most aggressive 
and treatment-resistant cancers, caused by 
the neoplastic transformation of melanocytes 
[13]. It is estimated that melanoma accounts 
for 324,635 new cancer cases and more than 
57,000 deaths in 2020 [14]. Although surgical 
removal of the tumor leads to a desirable out-
come in the early stages, surgery rarely cau- 
ses enduring patient survival outcomes in 
advanced stages of the diseases because of 
the aggressive behavior and metastatic ability 
[15]. Exposure to ultraviolet light (UV) is the 
major cause of melanoma. Furthermore, some 
genomic mutations are common in melanoma 
patients, such as mutant BRAF, mutant RAS, 
mutant NF1, and Triple-wild-type [16]. BRAF  
is a member of the RAF kinase family which 
affects cell division through regulating the MAP 
kinase/ERKs signaling pathway [17]. Several 
studies show that approximately 70% of mela-
nomas have mutations in the MAPK signaling 
pathway; moreover, BRAF is mutated in around 
50% of the cases, resulted in promoting early 
oncogenic events of the disease [18]. CDKN2A 
is one of the most important known genetic  
factors associated with melanomas and regu-
lates some crucial cell cycle pathways, such  
as the p53 pathway and the RB1 pathway. The 
TCGA data reveals that genetic changes in 
CDKN2A happen in 69% of melanoma cases 
[16].

According to the statistics, skin cancers are 
prevalent worldwide. Although many advances 
have been made in understanding the biology 
and treatment of skin cancers, there are still 
many underlying molecular mechanisms that 
remain to be investigated. Through the past 
decades, numerous studies indicated the cru-
cial regulatory roles of noncoding RNAs in both 
developmental processes and various diseas-
es. Undoubtedly, the deregulation of noncoding 
RNAs is an important feature of cancer [19]. 
Noncoding RNAs can serve as strong biomark-
ers for the diagnosis and prognosis of cancers. 
Moreover, noncoding RNAs can be a potential 
target for cancer therapy and nucleic acid-
based therapeutics have shown success in  
several preclinical studies targeting noncoding 
RNAs in cancers. This review aims at discuss-

ing the biogenesis and functions of different 
types of noncoding RNAs. Moreover, we sum-
marize the potential role of noncoding RNAs  
in skin cancers initiation, promotion, and pro- 
gression.

Noncoding RNA in cancers

RNAs that do not encode proteins are referred 
to as noncoding RNAs. Despite noncoding 
RNAs do not have the ability to encode pro-
teins, they can control the expression of nu- 
merous genes via a number of mechanisms.  
In the last 30 years, noncoding RNAs are 
becoming more widely considered as critical 
regulators in both normal cellular function and 
disease, such as cancer [20, 21].

Traditionally, noncoding RNAs have been divid-
ed into two categories: short and long, bas- 
ed on a 200-nucleotide threshold in mature 
transcript length [22]. MicroRNAs (miRNAs or 
miRs), small interfering RNAs (siRNAs), small 
nuclear RNAs (snRNAs), small nucleolar RNAs 
(snoRNAs), piwi-interacting RNAs (piRNAs), and 
tRNA derived small RNAs (tsRNAs) are some of 
the well-known forms of the short noncoding 
RNAs [23]. Long noncoding RNAs (lncRNAs)  
are the other group of noncoding RNAs which 
are divided into subgroups based on where 
they are located in the genome and their evolu-
tionary background, such as enhancer RNAs 
(eRNAs), long intergenic noncoding RNAs (lin-
cRNAs), pseudogenes, etc. Recent studies de- 
monstrated that the vast majority of lncRNAs 
are likely to be functional [22]. They are partici-
pating in several cellular and molecular func-
tions, which include gene transcription, post-
transcriptional regulation, translation regula- 
tion, RNA interference, imprinting, X-chromo- 
some inactivation, chromosome stability, etc. 
[24]. Circular RNAs (circRNAs) are the emer- 
ging type of single-stranded closed circular 
RNA molecules whose biological function and 
regulatory role are still not well understood. 
Recent studies revealed that these circular 
RNA molecules may serve as promising bio-
markers in various human cancers [25].

By playing crucial roles in the regulation of 
many pathophysiology properties of cancer 
cells, such as evading apoptosis, angiogene- 
sis, sustained cell proliferation, and drug re- 
sistance, noncoding RNAs act as tumor sup-
pressors or oncogenes, and their expression  
is frequently dysregulated during cancer initia-
tion and development (Figure 1). In the next 
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sections, we focus on the functions of the  
some important ncRNAs, including miRNAs, ln- 
cRNAs, and circRNAs, which may explain their 
involvement in skin cancers pathogenicity.

MicroRNAs

MicroRNAs or miRNAs are a group of small non-
coding RNAs with a length of about 19-25 nt, 
which have the ability to target dozens or even 

hundreds of genes at the same time [26]. They 
have vital roles in fundamental biological pro-
cesses [27]. The majority of miRNAs genes are 
transcribed in the nucleus by RNA polymerase 
II and III [28]. It has been discovered that miR-
NAs bind to a particular sequence at the 3’UTR 
of their target mRNAs to induce translational 
repression as well as mRNA deadenylation and 
decapping [29, 30]. The miRNAs profiling has 
previously been shown to be essential for the 

Figure 1. Noncoding RNAs act as major regulators in human skin cancers through regulating some hallmarks of 
cancer, such as cell migration, invasion, and proliferation. A. MiRNAs can target and suppress many molecules. 
Considering the functions of their targets, miRNAs are considered either oncogene or tumor suppressor. Ectopic 
overexpression of miRNA-451a inhibits cell growth by targeting TBX1, causing G1 cell cycle arrest in BCC tumor 
cells. B. Sponging miRNAs is one of the main forms of regulating gene expression which is done by lncRNAs. LncRNA 
PICSAR has a high expression level in cSCC cells and tissues. PICSAR promotes the progression of cSCC by spong-
ing miRNA-125b and activating YAP1. C. Unlike to miRNAs and lncRNAs, circRNAs are stable because of their loop 
structure, which make them a potential biomarker for human cancers. They also have regulatory functions in skin 
cancers. Circ_0020710 upregulates the expression level of CXCL12 through targeting miRNA-370-3p, which leads 
to melanoma cell proliferation, migration, and invasion.



Insights into the role of ncRNAs in skin cancers

5594 Am J Cancer Res 2021;11(11):5591-5608

5q32 and have been generally reported as 
tumor suppressors [42]. It has been shown that 
miRNA-145-5p is significantly downregulated  
in BCC [43].

MiRNA-21 is considered one of the most 
famous oncogenic miRNAs which are upregu-
lated in various types of cancer [44, 45]. Up- 
regulated miRNA-21 mediated PI3K/AKT path-
way by regulating TIMP3 in cSCC, resulted in 
contributing to the disease progression [46]. In 
the mouse model of cSCC, miRNA-21 inhibition 
decreased cell growth and slowed tumor grow- 
th and metastasis. TIMP3 silencing restored 
the impact of miRNA-21 downregulation on the 
progression of cSCC. Furthermore, miRNA-21 
depletion decreased activation of PI3K/AKT 
pathway through modulating TIMP3 in cSCC 
cells [46]. By regulating ACVR1, miRNA-130a 
functions as a tumor suppressor and modu-
lates the activity of the BMP/SMAD1 pathway  
in cSCC [47]. It is reported that overexpression 
of miRNA-130a decreases long-term growth, 
cell motility, and invasion ability [47]. Cancer 
stem cells (CSCs) are a type of tumor cell that 
can initiate new tumors and induce relapses 
[48]. These types of stem cells are typical- 
ly identified and enriched using cell surface 
markers such as CD44, CD24, CD166, and 
CD133 [49]. It has been discovered that miR-
NA-199a-5p is linked to CD44 proteolysis  
modulation. Overexpression of miRNA-199a- 
5p decreased cell proliferation and reduced  
the cSCC CSCs stemness [50]. Mechanistical- 
ly, miRNA-199a-5p prevented CD44 cell prote-
olysis, decreased the CD44 domain release 
and nuclear trans localization through the tar-
geting of Sirt-1. Moreover, the impacts of miR-
NA-199a-5p overexpression or Sirt1 suppress-
ing turnover by CD44 intracellular domain 
overexpression, resulted in enhancing the  
transcriptional expression of Oct4, Sox2, and 

diagnosis and prognosis of various types of 
cancers, including skin cancers and some miRs 
have the potential to be utilized as therapeutic 
targets in human malignancies [31-37].

Emerging roles of microRNAs in human skin 
cancers

In the last decade, increasing number of stud-
ies have been done on the possible role of miR-
NAs in human skin malignancies, reflecting the 
significant interest in the involvement of miR-
NAs in skin cancer initiation, development, and 
metastasis (Table 1). The capability of miRNAs 
in the regulation of gene expression is one of 
the main primary drivers of this interest. Ch- 
anging levels of only one miRNA expression 
may alter hundreds of target mRNAs [33]. 
Several studies reported the aberrant expres-
sions of miRNAs in BCC [38]. The expression 
level of miRNA-451a is significantly decreased 
in both human and mouse BCC tissues. Ectopic 
overexpression of miRNA-451a in BCC tumor 
cells inhibited cell growth by causing G1 cell 
cycle arrest. Moreover, inhibiting miRNA451a 
promoted BCC cell growth and colony forma-
tion, validating the tumor suppressor role of 
this miRNA in BCC [39]. Another recent study 
found that BCC patients’ serum expression of 
miRNA-34a is considerably lower than that of 
healthy individuals. The level of miRNA-34a 
expression in the BCC group was also associ-
ated with a worse prognosis [40]. MiRNA-203, 
which is predominantly expressed in the skin 
tissue, was found to be downregulated in BCCs. 
Mechanistically, activation of the Hedgehog 
pathway suppresses miRNA-203 in BCC. More- 
over, it has been proven that the activation  
of the EGFR/MEK/ERK/JUN signaling pathway 
may be a potential cause of decreased miRNA-
203 expression in BCC [41]. MiRNA-143 and 
miRNA-145, a cluster located on chromosome 

Table 1. The regulatory functions of noncoding RNAs in basal cell carcinoma
Name ncRNA class Expression Function of ncRNA Ref.
miRNA-451a miRNA ↧ miRNA-451a/TBX1 axis play a crucial role in BCC tumorigenesis [39]

miRNA-34a miRNA ↧ miRNA-34a is a tumor suppressor that could be used as a biomarker [40]

miRNA-203 miRNA ↧ miRNA-203 and c-JUN regulate basal cell proliferation and differentiation [41]

miRNA-143-145 clusters miRNA ↧ tumor-suppressive cluster miRNA-143-145 are downregulated in BCC [43]

H19 lncRNA ↥ the role of H19 in BCC tumorigenicity is not well understood yet [73]

CASC15 lncRNA ↥ the role of CASC15 in BCC tumorigenicity is not well understood yet [73]

SPRY4-IT lncRNA ↥ the role of SPRY4-IT in BCC tumorigenicity is not well understood yet [73]

Circ_0005795 circRNA ↥ Circ_0005795 promotes BCC cell proliferation via sponging miRNA-1231 [99]
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Nanog [50]. MiRNA-766 is another oncomiR in 
cSCC which its upregulation promotes cell pro-
liferation, migration, and invasion [51]. PTEN is 
a suppressor gene that is commonly inactivat-
ed in various types of human cancers [52]. 
Recent findings indicated that miRNA-221 is a 
crucial element in the development and pro-
gression of tumors [52]. In cSCC cell lines, 
miRNA-221 increases the cell proliferation and 
cell cycle through suppressing PTEN [52].

Numerous findings demonstrated the aberrant 
expression of miRNAs in melanoma. The miR- 
NA-29 family includes three members miRNA-
29a, miRNA-29b, and miRNA-29c which are 
highly conserved across the species [53]. The 
oncogenes MYBL2 and MAFG are two putative 
miRNA-29 targets that increase cell prolifera-
tion in melanoma. It has been shown that 
decreasing miRNA-29b2c expression induces 
melanoma formation, at least partially, by acti-
vating MYBL2 and MAFG [53]. KAI1 or CD82 
gene is an essential tumor suppression and 
transcriptional regulator in several kinds of 
malignancies [54]. By targeting KAI1, miRNA-
633 increases melanoma cell proliferation and 
migration [54]. MiRNA-18a is a member of 
miRNA-17-92 cluster which is commonly de- 
regulated in human cancers [55]. Recent re- 
search found that miRNA-18a is abundantly 
expressed in melanoma tissues, increasing 
proliferation while decreasing apoptosis and 
autophagy in melanoma cells via targeting and 
suppressing EPHA7 expression [56].

Myc is a family of proto-oncogenes that com-
monly contributes to tumorigenicity [57]. This 
group of proteins regulates more than 15% of 
the entire genome and participates in a variety 
of biological processes including cell prolifera-
tion, differentiation, and immune surveillance 
[57]. There are a great number of findings indi-
cating the interaction between different miR-
NAs and MYC in cancer. MiRNA-27b can pro-
hibit the progression of melanoma through 
targeting MYC [58]. It is proposed that the 
expression levels of miRNA-27b in melanoma 
tissue samples are lower than adjacent normal 
tissues. Ectopic overexpression of miRNA-27b 
drastically decreased melanoma cell DNA syn-
thesis, vitality, and invasive ability through sup-
pressing MYC [58]. Tumor cells exhibit some 
molecular and phenotypic changes as cancer 
progresses, which is referred to as cellular 

plasticity [59]. Melanoma cell plasticity is one 
of the primary causes of its ability to spread 
[60]. Recent research combining mathematical 
models and experiments demonstrated that 
miRNA-222 is one of the important factors that 
controlling melanoma plasticity [61].

FOX proteins are a family of transcription fac-
tors that are mutated in various human can- 
cers [62]. There is some evidence that sug-
gests miRNAs can regulate the members of  
this family in melanoma. For instance, miRNA-
1246 promotes melanoma cell viability and 
metastasis by suppressing FOXA2 [63]. FOXP1 
is another member of the FOX family which is 
regulated by miRNA-92a in melanoma cells 
[64]. MiRNA-92a is upregulated in melanoma 
and has been found to be substantially linked 
with tumor stage and poor prognosis in mela-
noma patients. By controlling FOXP1, miRNA-
92a promotes the malignant development of 
melanoma [64]. Another study on melanoma 
demonstrated that miRNA-182 promotes me- 
tastasis by targeting FOXO3 [65].

Numerous studies revealed the interactions 
between miRNAs and RNA-binding proteins 
(RBPs) in cancers [66]. CSDE1 is an oncogenic 
RBP that promotes tumorigenicity in various 
cancers [67]. In melanoma, CSDE1 and AGO2 
compete to bind PMEPA1 mRNA, resulting in 
upregulation of PMEPA1 [68]. Besides, CSDE1 
exerts its oncogenic functions by inhibiting  
miRNA-129-5p-mediated silencing of PMEPA1 
in melanoma [68].

According to the mentioned findings, miRNAs 
can play a dual role in skin cancers pathoge- 
nicity. A comprehensive understanding of the 
roles of miRNAs in the initiation and develop-
ment of skin malignancies will help us to pave 
the way for better translation of miRNAs into 
clinics, establishing them as a potential meth-
od in skin cancers treatment.

Long noncoding RNAs

RNA transcripts that are not translated into  
protein and length more than 200 nucleotides 
are defined as long noncoding RNAs or lnc- 
RNAs [69]. When compared to miRNAs, lnc- 
RNAs are more abundant but less conserved 
during evolution. Although there is still a dis- 
cussion about the number of functional lnc- 
RNAs, it is well documented that an increasing 
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research is needed to properly comprehend  
the functional importance of lncRNAs in BCC 
initiation and progression. H19, CASC15, and 
SPRY4-IT are some of the lncRNAs that are 
upregulated in BCC [73]. However, the func- 
tional analysis of the mentioned lncRNAs in 
BCC should be subject to further analysis.

Several studies indicated the potential role of 
the lncRNA PICSAR in cSCC tumorigenicity [74-
76]. In cSCC cells and tissues, PICSAR has a 
high expression level and can serve as a poten-
tial biomarker [75]. Moreover, knockdown of 
PICSAR inhibited cell proliferation and invasion 
while promoting apoptosis in cSCC cells via the 
miRNA-125b/YAP1 axis, opening up new possi-
bilities for cSCC therapy [75]. Another study 
found mechanistic evidence for PICSAR’s func-
tion in promoting cSCC development by activat-
ing the ERK1/2 pathway and downregulating 
DUSP6 expression [76]. H19 is another well-
known lncRNA that is deregulated in different 
human cancers [77]. H19/miRNA-675 axis pro-
motes development, metastasis, and progres-
sion of cSCC [78]. LINC00346, also known as 

number of lncRNAs have crucial cell functions 
[69]. Furthermore, the aberrant expression of 
lncRNAs has been linked to a variety of human 
diseases, including cancer [70]. LncRNAs play 
a variety of regulatory roles in humans and  
animals. A great number of lncRNAs appear to 
act as gene regulators, affecting gene expres-
sion both peri- and post-transcriptionally [69]. 
Considering the crucial roles of lncRNAs in  
various biological processes, it is foreseeable 
that their deregulation can lead to human dis-
eases, including human skin cancers. 

The regulatory functions of long non-coding 
RNAs in skin cancers tumorigenicity

LncRNAs have been shown to control cell  
proliferation, apoptosis, angiogenesis, inva-
sion, and stemness in skin cancers (Table 2). 
Recent research suggests that lncRNAs may 
potentially play a role in skin tumor microenvi-
ronment modification and metastasis [71, 72].

There are not many findings on the role of 
lncRNAs in the pathogenesis of BCC. More 

Table 2. Noncoding RNAs play major role in cutaneous squamous cell carcinoma

Name ncRNA 
class Expression Function of ncRNA Ref.

miRNA-21 miRNA ↥ MiRNA-21 promotes cSCC progression by mediating TIMP3/PI3K/AKT signaling axis [46]

miRNA-130a miRNA ↧ tumor suppressor miRNA-130a regulates the BMP/SMAD1 pathway by targeting ACVR1 [47]

miRNA-199a-5p miRNA ↧ MiRNA-199a-5p inhibits cSCC stem cell stemness by targeting Sirt1 and CD44ICD  
cleavage signals

[50]

miRNA-766 miRNA ↥ miRNA-766 contributes to cSCC tumorigenicity by targeting PDCD5 [51]

miRNA-221 miRNA ↥ The oncogenic miRNA-221 promotes cSCC progression via suppressing PTEN [52]

miRNA-675 miRNA ↥ H19/miRNA-675 axis can affect EMT-related markers, including E-cadherin, vimentin and 
N-cadherin, leads to inducing EMT

[78]

miRNA-451a miRNA ↧ The tumor suppressor miRNA-451a inhibits cell proliferation, migration, invasion, and EMT 
in cSCC cells

[113]

miRNA-3619-5p miRNA ↧ MiRNA-3619-5p suppresses cSCC cell proliferation and cisplatin resistance by targeting 
KPNA4

[124]

PICSAR lncRNA ↥ PICSAR exerts its oncogenic functions through regulating various pathways, such as 
miRNA-125b/YAP1 axis and ERK1/2 pathway. Exosomal PICSAR also contributes to  
cisplatin resistance in cSCC cells through targeting miRNA-485-5p and upregulating REV3L

[75, 76, 125]

H19 lncRNA ↥ The H19/miRNA-675 axis is important in the proliferation and EMT transition of cSCC cells [78]

PRECSIT lncRNA ↥ PRECSIT promotes cSCC progression by modulating STAT3 signaling [79]

EZR-AS1 lncRNA ↥ EZR-AS1 increases cSCC cell proliferation, migration and invasion through the PI3K/AKT 
signaling pathway

[82]

MALAT1 lncRNA ↥ The c-MYC-assisted MALAT1-KTN1-EGFR axis promotes the cSCC progression [84]

HOTAIR lncRNA ↥ HOTAIR induces EMT process by regulating EMT-related markers Twist, Snail1 and ZEB1 in 
cSCC

[114]

CircPVT1 circRNA ↥ The oncogenic circPVT1 promotes cSCC cell migration and invasion [100]

Circ_0070934 circRNA ↥ Several miRNAs, such as miRNA-1236-3p, miRNA-1238 and miRNA-1247-5p are sponged 
by circ_0070934, resulting in cSCC cell growth and invasion

[101, 102]

Circ-CYP24A1 circRNA ↥ Exosomal circ-CYP24A1 increases cSCC cell proliferation, migration and invasion, while 
inducing apoptosis

[132]
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PRECSIT, is another lncRNA that is highly ex- 
pressed in cSCC cells [79]. PRECSIT increases 
invasion of cSCC cells through activating STAT3 
and downregulating the expression levels of 
MMP1, MMP3, MMP10, and MMP13 [79]. EZR-
AS1 is a 362 kb lncRNA found on chromosome 
6q25.3 [80]. EZR-AS1 expression has been 
shown to enhance cell motility and mediate 
cancer cell differentiation [81]. EZR-AS1 knock-
down reduced cSCC cell proliferation, migra-
tion, and invasion while promoting apoptosis, 
possibly by modulating the PI3K/AKT signaling 
pathway [82]. MALAT1 is a famous lncRNA that 
is considered a critical regulator of tumor devel-
opment by numerous studies [83]. MALAT1 is 
activated by UVB irradiation and is significantly 
expressed in cSCC cells and tumors, according 
to a new finding [84]. The upregulation of MA- 
LAT1 increases cSCC cell proliferation, migra-
tion, and invasiveness while suppressing ap- 
optosis [84]. Mechanistically, MALAT1 exerts 
its oncogenic roles via interacting with c-MYC to 
form a complex and binding to the promoter 
region of the KTN1 gene. Indeed, KTN1 acts as 
the mediator of MALAT1 function in positively 
regulating EGFR protein expression [84].

The potential roles of lncRNAs in melanoma are 
well studied [71]. XIST is a lncRNA located on 
the X chromosome and acts as a major player 
in the X-inactivation process [85]. In melanoma 
cells, XIST is highly expressed and contributes 
to the pathogenicity of disease by sponging 
miRNA-23a-3p and indirectly targeting GINS2 
[86]. Another recent study demonstrated that 
XIST promotes melanoma metastasis via sp- 
onging miRNA-217 [87]. The Cancer Genome 
Atlas data analysis indicated that FUT8-AS1 
expression may associates with the prognosis 
of melanoma [88]. Further investigations re- 
vealed that FUT8-AS1 is downregulated in mel-
anomas in comparison with benign nevi, result-
ing in poorer overall survival [88]. FUT8-AS1 
functions as a tumor suppressor and decreas-
es proliferation, migration, and invasion in mel-
anoma cells [88]. FUT8-AS1 induces miRNA-
145-5p biogenesis via binding to NF90, re- 
sulting in downregulation of NRAS. As a result, 
MAPK signaling is suppressed due to NRAS 
downregulation [88]. The upregulation of lnc- 
RNA ZFPM2-AS1 has been identified in mela-
noma cells [89]. ZFPM2-AS1 promotes mela-
noma cell proliferation and migration via spon- 
ging miRNA-650 and activating NOTCH1 [89]. 

Another study shows the competing endoge-
nous function of lncRNAs for miRNAs in mela-
noma [90]. This evidence demonstrated that 
lncRNA LINC01291 enhances aggressive me- 
lanoma features by sponging miRNA-625-5p 
and thus enhancing the expression of IGF-1R 
[90]. ATF4 is an integrated stress response 
controller triggered through nutrient starvation 
and eIF2 inhibition in melanoma cells [91]. In 
nutrient-rich conditions, lncRNA TINCR inhibits 
melanoma invasive phenotypes via suppress-
ing ATF4 translation [92].

The use of immunotherapy in melanoma treat-
ment is continually evolving; ideally, current 
efforts will result in significant improvements  
in patient survival. A recent study reported a 
signature of 15 lncRNAs for predicting survival 
benefit in melanoma patients treated with anti-
PD-1 monotherapy [93]. LncRNAs NARF-AS1, 
LINC01126, AL442128.2, AC010904.2, AC01- 
2360.1, AC024933.1, AC022211.4, AC02- 
2211.2, AC127496.5, AP005329.2, AP0009- 
19.3, AC023983.1, AC023983.2, AC012615.4 
and AC139100.1 are differentially expressed 
lncRNAs in the training and validation cohorts 
were associated with the immunological pro-
cess and therapy [93].

Accumulating evidence suggests the vital role 
of lncRNAs in skin cancers tumorigenicity. Con- 
sidering the capacity of lncRNAs in regulating 
gene expression at various levels, it can be 
beneficial to evaluate their potential clinical 
application for skin cancers diagnosis, prog-
nostication, and treatment.

Circular RNAs

Circular RNAs (circRNAs) have received much 
interest due to their involvement in a wide 
range of cellular functions that may have a sig-
nificant impact on phenotype and disease [94]. 
CircRNAs can influence cellular physiology in a 
variety of ways, including acting as a decoy for 
miRNAs or RBPs to alter gene expression or 
regulatory protein translation. Furthermore, re- 
cent findings revealed their biomarker potential 
in human cancers [94].

CircRNAs are produced through back-splicing, 
a type of alternative splicing in which the 3’ end 
of an exon binds to the 5’ end of its own or an 
upstream exon via a 3’,5’-phosphodiester link, 
generating a closed structure with a back-splic-
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ing junction site [95]. CircRNAs are more sta- 
ble than linear RNAs because of their covalent 
closed-loop structure, which protects them 
from RNase degradation [94]. CircRNAs were 
formerly defined as noncoding RNAs with regu-
latory potential [96]. However, it has been  
proven that they can be translatable RNA mol-
ecules [97]. There is a broad definition of mul-
tiple mechanisms which illustrate how circ- 
RNAs function. They are acting as miRNAs 
sponges, binding to proteins, translating pro-
teins, and regulating gene expression at vari-
ous levels [94].

Circular RNAs act as epigenetic regulators in 
skin cancers

It has been shown that circRNAs play important 
roles in skin cancers carcinogenesis (Table 3). 
A microarray circRNA expression profiles study 
introduced 48 downregulated and 23 upregu-
lated circRNAs in BCC [98]. Another study sh- 
owed that Circ_0005795 expression is consid-
erably higher in BCC tissues and cells and could 
be served as a promising biomarker for BCC 
diagnosis [99]. Besides, Circ_0005795 acts as 
a competing endogenous for miRNA-1231 and 
promotes BCC cell proliferation [99].

A recent high-throughput sequencing study 
showed that 449 circRNAs are differently ex- 
pressed between cSCC and normal adjacent 
tissue samples [100]. CircPVT1 is one of the 
upregulated circRNAs in cSCC and knockdown 
of it prohibits cell migration and invasion [100]. 
Circ_0070934 is an upregulated circRNA in 
cSCC that exerts its oncogenic functions via 
sponging miRNA-1238 and miRNA-1247-5p 
[101]. HOXB7 is part of a cluster of homeobox  
B genes located on 17q21.32 [102]. HOXB7 is 
upregulated in several cancers and contributes 
to cell proliferation and differentiation [102]. In 
cSCC cell lines, through competitive binding 
with miRNA-1236-3p, circ-0070934 regulates 
HOXB7 expression [102]. Moreover, circ-0070- 
934 knockdown decreased cSCC cell invasive 
and proliferative potential and induced apopto-
sis both in vivo and in vitro [102].

Several studies indicated the role of the CXCL 
chemokine family in human skin cancers, in- 
cluding melanoma [103, 104]. Circ_0020710 
upregulates the expression level of CXCL12 
through targeting miRNA-370-3p, which leads 
to melanoma cell proliferation, migration, and 

invasion [105]. Ccnb1 and Cdk1 are two pro-
teins that form a complex that is involved  
in the pathogenicity of various cancer types 
[106]. The circular RNA circ-Ccnb1 interacts 
with Ccnb1 and Cdk1 proteins and dissociates 
Ccnb1/Cdk1 complex [106]. By creating a com-
plex with circ-Ccnb1, Ccnb1, and Cdk1, Ccnb1 
loses its functions in increasing melanoma  
cell migration, proliferation, and survival [106]. 
The circular RNA circ_0001591 is upregulat- 
ed in the serum of melanoma patients [107]. 
Circ_0001591 upregulation increased melano-
ma cell proliferation and invasion while decre- 
asing apoptosis [107]. Mechanistically, high 
expression of circ_0001591 enhanced PI3K 
and p-Akt protein production in melanoma 
through ROCK1 activation via miRNA-431-5p 
repression [107]. Melanoma cells get the ma- 
jority of their energy through glycolysis, which is 
the process by which glucose is converted to 
lactate for energy, followed by lactate fermen-
tation [108]. Circ_0025039, a circRNA made 
up of FOXM1 exons, increases glucose metabo-
lism in melanoma via sponging miRNA-198  
and upregulating CDK4 [109]. Circ_0002770 is 
a novel circRNA generated by the well-known 
oncogene MDM2 [110]. In melanoma cells, 
circ_0002770 promotes cell proliferation and 
invasion by sponging miRNA-331-3p [110].

Increasing evidence has revealed that circRNAs 
play a crucial role in skin cancers progression. 
These RNA molecules with their closed-loop 
structure are more stable than other types of 
noncoding RNAs that influence multiple biologi-
cal and carcinogenic cascades. CircRNAs are 
thought to be good biomarkers for liquid biop-
sies because of their characteristics like stabil-
ity, specificity, and abundance.

Noncoding RNAs regulation of epithelial-mes-
enchymal transition in skin cancers

The epithelial-mesenchymal transition (EMT), a 
vital stage in cancer metastasis, is a dynamic 
process in which epithelial cells take on mesen-
chymal characteristics [111]. Although EMT is 
important during embryonic development and 
tissue regeneration, it is also implicated in a 
number of pathologic processes such as tumor 
initiation and progression, as well as resistance 
to cancer therapy [112]. EMT is regulated by a 
variety of EMT-activating transcription factors, 
and noncoding RNAs have arisen as potential 
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Table 3. Noncoding RNAs as epigenetic regulators in melanoma

Name ncRNA 
class Expression Function of ncRNA Ref.

miRNA-29 miRNA ↧ MAPK/miRNA-29 Axis inhibits melanoma progression by targeting MAFG and 
MYBL2

[53]

miRNA-633 miRNA ↥ The oncogenic miRNA-633 increases melanoma cell proliferation and migration 
via targeting KAI1

[54]

miRNA-18a miRNA ↥ MiRNA-18a-5p suppresses EPHA7 signaling, leads to melanoma cell proliferation 
and inhibiting apoptosis

[56]

miRNA-27b miRNA ↧ The miRNA-27b/MYC axis may influence malignant melanoma cell growth [58]

miRNA-222 miRNA ↥ MiRNA-222 modulates melanoma cell plasticity [61]

miRNA-1246 miRNA ↥ By suppressing FOXA2, miRNA-1246 promotes melanoma tumorigenicity [63]

miRNA-92a miRNA ↥ Expression of miRNA-92a associates with tumor stage and poor prognosis [64]

miRNA-129-5p miRNA ↧ CSDE1 exerts it oncogenic functions by inhibiting miRNA-129-5p- in melanoma [68]

miRNA-214 miRNA ↥ The oncogenic miRNA-214 induces EMT in melanoma by targeting CADM1 [116]

miRNA-200a miRNA ↧ Tumor suppressor miRNA-200a inhibits melanoma cell proliferation,  
and migration through modulating the PI3K/Akt signaling pathway and EMT

[117]

miRNA-3662 miRNA ↧ Ectopic expression of miRNA-3662 inhibits EMT process and melanoma cell 
proliferation by targeting ZEB1

[118]

miRNA-495-3p miRNA ↧ HDAC3 promotes TRAF5 expression and EMT process through binding to the 
promoter of miRNA-495-3p

[119]

miRNA-126-3p miRNA ↧ Downregulation of miRNA-126-3p contributes to dabrafenib resistance  
via modulating ADAM9 and VEGF-A

[126]

MiRNA-204 and miRNA-211 miRNA ↥ MiRNA-204 and miRNA-211 promote vemurafenib resistance in melanoma by 
reducing NUAK1/ARK5 protein expression levels

[127]

miRNA-494 miRNA ↥ Melanoma growth and metastasis are prohibited by blocking transported 
exosome-shuttled miRNA-494

[134]

XIST lncRNA ↥ XIST contributes to the pathogenicity of melanoma by sponging miRNA-23a-3p 
and miRNA-217

[86, 87]

FUT8-AS1 lncRNA ↧ FUT8-AS1 downregulation is correlated with poorer overall survival in melanoma 
patients

[88]

ZFPM2-AS1 lncRNA ↥ ZFPM2-AS1 promotes proliferation and migration in melanoma via sponging 
miRNA-650 and activating NOTCH1

[89]

LINC01291 lncRNA ↥ LINC01291 promotes aggressive melanoma features by sponging miRNA-625-5p 
and thus enhancing the expression of IGF-1R

[90]

TINCR lncRNA ↧ TINCR inhibits melanoma invasive phenotypes in nutrient-rich conditions [92]

SRA lncRNA ↥ SRA facilitates EMT process, as well as increasing cell invasion, and proliferation 
by activating p38 in melanoma cells

[120]

MIAT lncRNA ↥ MIAT is a regulator of EMT in melanoma by suppressing miRNA-150 [121]

CCAT1 lncRNA ↥ CCAT1 promotes EMT by sponging miRNA-296-3p and upregulating ITGA9 in 
melanoma

[122]

H19 lncRNA ↥ High expression of H19 causes cisplatin resistance in melanoma cells via  
suppressing miRNA-18b and increasing IGF1 expression

[128]

TSLNC8 lncRNA ↧ TSLNC8 downregulation lowers the cytotoxic response to BRAF inhibitor PLX4720 [129]

Gm26809 lncRNA ↥ Exosomal lncRNA Gm26809 reprograms normal fibroblasts into CAFs [137]

Circ_0020710 circRNA ↥ Circ_0020710 regulates CXCL12 by targeting miRNA-370-3p, leads to melanoma 
cell proliferation, migration and invasion

[105]

Circ-Ccnb1 circRNA ↧ Circ-Ccnb1 decreases melanoma cell migration, proliferation, and survival via 
dissociating Ccnb1/Cdk1 complex

[106]

Circ_0001591 circRNA ↥ Circ_0001591 upregulation increases melanoma cell proliferation and invasion 
while decreasing apoptosis

[107]

Circ_0025039 circRNA ↥ Circ_0025039 increases glucose metabolism in melanoma through suppressing 
miRNA-198 and upregulating CDK4

[109]

Circ_0002770 circRNA ↥ Circ_0002770 promotes melanoma cell proliferation and invasion by sponging 
miRNA-331-3p

[110]

regulators of these transcription factors’ ex- 
pression and function in various pathologic sit-
uations (Figure 2) [112].

In cSCC cells, the H19/miRNA-675 axis can af- 
fect EMT-related markers, including E-cadherin, 
vimentin, and N-cadherin, which leads to induc-
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ing EMT [78]. It has been reported that miRNA-
451a is a tumor suppressor and downregulat- 
ed in cSCC cells [113]. By interacting with 
PDPK1, ectopic expression of miRNA-451a in 
cSCC cells inhibited cell proliferation, migra-
tion, invasion, and EMT and while inducing cell 
apoptosis [113]. HOTAIR induces the EMT pro-
cess by regulating EMT-related markers Twist, 
Snail1, and ZEB1 in cSCC [114].

CADM1 is a gene that may inhibit the EMT pro-
cess [115]. A recent study revealed that miRNA-
214 induces EMT in melanoma by targeting 
CADM1 [116]. MiRNA-200a inhibits melanoma 
cell proliferation, invasion, and migration th- 
rough modulating the PI3K/Akt signaling path-
way and EMT [117]. As mentioned above, ZEB1 
is a key regulator of EMT. Ectopic expression  
of miRNA-3662 inhibits the EMT process and 
melanoma cell proliferation by targeting ZEB1 
[118]. Another study on melanoma showed that 
miRNA-495-3p expression is decreased, while 

HDAC3 is upregulated [119]. HDAC3 regulates 
TRAF5 expression through binding to the pro-
moter of miRNA-495-3p. Furthermore, HDAC3 
knockdown upregulates miRNA-495-3p to blo- 
ck the EMT process and oncogenicity of mela-
noma cells by decreasing TRAF5 [119].

The oncogenic functions of lncRNA SRA are 
reported in breast and prostate cancers [120]. 
In melanoma, SRA facilitates the EMT process, 
as well as increasing cell invasion, and prolifer-
ation by activating p38 [120]. The lncRNA MIAT 
is another regulator of EMT in melanoma that 
functions as a competing endogenous for mi- 
RNA-150-resulted in enhancing the prolifera-
tion and invasion [121]. The lncRNA CCAT1  
is another example of interaction between 
lncRNA and miRNA in EMT regulation in mela-
noma [122]. CCAT1 promotes EMT by spong- 
ing miRNA-296-3p and upregulating ITGA9 in 
melanoma [122].

Figure 2. Noncoding RNAs contribute to skin tumor plasticity. Noncoding RNAs that are abnormally expressed may 
play a key role in EMT processes in skin malignancies by interacting with several signaling cascades.
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This evidence proves the significant role of  
noncoding RNAs in the regulation of the EMT 
process and may provide novel targets for skin 
cancer treatment.

Noncoding RNAs in drug-resistant skin can-
cers

Drug resistance remains the most significant 
barrier to treating people with skin cancers 
[123]. Noncoding RNAs participate in inhibiting 
and promoting cancer drug resistance through 
various molecular mechanisms. In cSCC, miR-
NA-3619-5p blocks cisplatin resistance [124]. 
KPNA4 has been identified as an oncogene 
that is upregulated in cisplatin-resistant cSCC 
cells. MiRNA-3619-5p suppresses cSCC cell 
proliferation and cisplatin resistance by target-
ing KPNA4 [124]. Several observations indicat-
ed the possible role of lncRNAs in cSCC drug 
resistance. LncRNA PICSAR is highly expressed 
in cisplatin-resistant cSCC cells [125]. Mecha- 
nistically, PICSAR contributes to cisplatin resis-
tance in cSCC cells through targeting miRNA-
485-5p and upregulating REV3L [125].

In melanoma cells, miRNA-126-3p is down- 
regulated and contributes to dabrafenib re- 
sistance via modulating ADAM9 and VEGF-A 
[126]. MiRNA-204 and miRNA-211 are two  
miRNAs that have very similar nucleotide 
sequences [127]. These miRNAs promote 
vemurafenib resistance in melanoma by re- 
ducing NUAK1/ARK5 protein expression levels 
[127]. LncRNAs also play a significant role in 
drug-resistant melanoma. The upregulation of 
famous lncRNA H19 contributes to cisplatin 
resistance in melanoma cells via sponging  
miRNA-18b and increasing IGF1 expression 
[128]. The lncRNA TSLNC8 is considerably 
downregulated in BRAF inhibitor-resistant mel-
anoma cells [129]. TSLNC8 downregulation 
decreases the cytotoxic response to BRAF 
inhibitor PLX4720 and inhibits apoptosis in 
PLX4720-treated melanoma cells [129].

Role of exosomal noncoding RNAs in skin 
cancers

Exosomes are a class of cell-derived extracel-
lular vesicles that are released to the body flu-
ids via multivesicular bodies fusion with the 
plasma membrane [130]. They have been dem-
onstrated to be carrying cell-specific protein, 
lipid, and genetic cargoes, such as noncoding 

RNAs. They can be collected selectively and 
reprogrammed by surrounding or distant cells 
far from release [130]. The regulation of exo-
some formation, particular cargo formations, 
and cell-targeting specificities are therefore of 
enormous biological interest, considering the 
potential of exosomes as noninvasive biomark-
ers and therapeutic approaches [130]. Recent 
research has revealed that tumor cells use  
exosomes to exchange oncogenic noncoding 
RNAs with one another or with normal sur-
rounding cells [131].

In cSCC cells, exosomal lncRNA PICSAR pro-
motes cisplatin resistance by miRNA-485-5p/
REV3L axis [125]. A recent study discovered 25 
up-regulated and 76 down-regulated exosomal 
circRNAs in cSCC patients compared to heal- 
thy controls [132]. Exosomal circ-CYP24A1 is 
upregulated in the serum of cSCC patients 
[132]. Knockdown of exosomal circ-CYP24A1 
restrains cSCC cell proliferation, migration, and 
invasion while inducing apoptosis [132].

Rab27a and rab27b are two crucial proteins in 
exosome secretion [133]. In the serum of me- 
lanoma patients, exosomal miRNA-494 is in- 
creased [134]. However, depletion of Rab27a 
decreases exosome secretion while increasing 
the amount of cellular miRNA-494. Following 
the accumulation of cellular miRNA-494, mela-
noma cells’ malignant behaviors were greatly 
inhibited by promoting cell apoptosis [134]. 
These interesting findings suggest that inhibit-
ing transferred exosome-shuttled miRNA-494 
could be a promising treatment strategy for 
melanoma.

Cancer-associated fibroblasts (CAFs) are cells 
in the tumor microenvironment that enhance 
tumorigenic characteristics by beginning extra-
cellular matrix remodeling or secreting cyto-
kines [135]. LncRNAs play roles in reprogram-
ming normal fibroblasts into CAFs [136]. Inter- 
estingly, melanoma-derived exosomes repro-
gram normal fibroblasts into CAFs by lncRNA 
Gm26809 delivery [137].

Concluding remarks and future perspectives

These findings suggest the relevance of non-
coding RNAs in skin cancers. MicroRNAs and 
lncRNAs play an essential role in the pathogen-
esis of melanoma and non-melanoma carcino-
mas by regulating cell proliferation, migration, 
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and invasion at the transcriptional, translation-
al, and post-translational levels. CircRNAs may 
also be useful as new biomarkers for the early 
detection of human skin malignancies. Non- 
coding RNAs play a significant role in the hall-
marks of cancer. Their aberrant regulation is 
correlated with cancer pathophysiological fea-
tures. They are involved in the first steps of can-
cer metastasis, including the EMT process. A 
deeper knowledge of how noncoding RNAs 
affect EMT progression at various molecular 
levels can lead to novel anti-metastasis thera-
py techniques as well as the identification of 
prognostic or diagnostic markers for skin can-
cers. Besides, further research into the func-
tions and mechanisms of the identified non- 
coding RNAs in noncoding RNA-induced cancer 
cell resistance to chemotherapeutic drugs can 
provide insight into the treatment of different 
skin malignancies.
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