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emerging tool for cancer surveillance and treatment
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Abstract: Esophageal carcinoma (EC) is one of the most pervasive cancers in the world, with upwards of 500,000 
new diagnoses, annually. Despite its prominence, advancements in the detection and treatment of EC have been 
marginal over the past 30 years and the survival rate continues to stay below 20%. This is due to the uncommonly 
heterogeneous presentation of EC which presents unprecedented challenges in improving patient survival and 
quality of care. However, distinct epigenetic alterations to the DNA methylome may provide an avenue to drastically 
improve the detection and treatment of EC. Specifically, the creation of novel biomarker panels that consist of EC-
specific methylation markers have shown promise as a potential alternative to the more invasive, contemporary 
diagnostic methods. Additionally, growing insight into the biological and clinical properties of EC-specific methyla-
tion patterns have opened a window of opportunity for enhanced treatment; of growing interest is the application 
of “DNMT inhibitors” - a class of drugs which inhibit excessive methylation and have been shown to re-sensitize 
chemoresistant tumors. Here we provide a comprehensive review of the current advancements in EC DNA methyla-
tion to underscore a potential approach to its detection and treatment. 
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Introduction

Every year, over 500,000 people worldwide are 
diagnosed with esophageal carcinoma (EC), 
with approximately the same number of EC- 
related deaths. The two major subtypes of EC 
are esophageal squamous cell carcinoma (ES- 
CC) and esophageal adenocarcinoma (EAC). 
While ESCC, commonly seen in Africa, Asia and 
South America, is the predominant form of EC, 
the number of EAC cases has increased 600-
800% in developed, western countries over the 
past 30 years. Due to this increase, EC has 
become the 6th most common cause of cancer-
related deaths in the United States [1, 2]. Both 
ESCC and EAC are markedly prevalent in men 
over women, with men accounting for 70% of  
all EC cases worldwide [3]. In contrast, obesity 
and gastroesophageal reflux disease (GERD) 
has been strongly linked to an increased risk 
for EAC, while smoking and alcohol consump-
tion pose an increased risk for ESCC [4]. 

Currently, given the high mortality rate of EC 
and the inefficacy of existing treatments, pre-
vention and early detection continue to yield 
the best chances of survival. The defining pre-
cursors for EAC and ESCC are Barrett’s Eso- 
phagus (BE) and squamous dysplasia, respec-
tively, with BE representing a 50 to 100-fold 
increased risk for carcinogenesis [5]. Moreover, 
these pre-malignant lesions provide an oppor-
tunity for the early detection and treatment of 
ECs, given their locations. Both BE and squa-
mous dysplasia occupy the same regions as 
their associated malignancies: BE is found to 
be at the gastroesophageal junction (GEJ) and 
in the distal third of the esophagus, while squa-
mous dysplasia is found in the proximal two-
thirds of the esophagus [3, 6]. At present, the 
gold standard for EC screening is endoscopy, 
with biopsy for iodine staining [1]; however, 
while screening for these pre-malignant lesions 
offer some forewarning of subsequent EC, BE 
alone is not an absolute indicator of malignan-
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teins, termed epigenetic writers [12], in the 
DNA methyltransferase (DNMT) family of en- 
zymes. In general, DNMT3a/b are responsible 
for de novo methylation, while DNMT1 main-
tains existing DNA methylation by copying 
methylation patterns onto newly synthesized 
strands during DNA replication [13]. While DNA 
methylation is paramount in modulating gene 
expression across a wide variety of cells, its 
dysregulation has been linked to carcinogene-
sis, and is classified into two categories: hyper-
methylation and hypomethylation. Hyperme- 
thylation is associated with gene repression, 
while hypomethylation is correlated to increa- 
sed gene expression [14]. DNA methylation 
changes alter the recruitment of epigenetic 
regulators and transcription factors to their 
binding sites [15]. In EC, the two predominant 
forms of dysregulated methylation patterns  
are global hypomethylation, and CpG-specific 
hypermethylation [16, 17] (Figure 1). 

Over the past several decades, multiple stu- 
dies have shown that global hypomethylation 
plays a significant role in carcinogenesis, th- 
rough several Mechanisms [18-21] (Figure 1). 
Namely, the hypomethylation of parasitic, re- 
petitive DNA sequences, such as retrotranspo-
sons, or of proto-oncogenes has pronounced 
deleterious effects on chromosomal stability 
and cellular function [22]. Further, excessive 
hypomethylation of centromeric and pericen-
tromeric satellite sequences is commonly seen 
in a variety of tumors, and its consequential 
effects on chromosomal stability has been  
suggested to lead to aneuploidy [23]. Following 
its established significance in carcinogenesis, 
meta-analyses of global DNA hypomethylation 

cy. Moreover, such invasive and financially bur-
densome procedures call into question the fea-
sibility of widespread endoscopic screening for 
EC. Specifically, given the large proportion of 
ESCC patients residing in impoverished parts 
of the world, labor-intensive and costly screen-
ing methods will only marginally help reduce 
the mortality rate of EC. For this reason, EC  
typically remains undiagnosed until advanced 
stage disease, when the overall survival is typi-
cally ≤1 year [1]. Despite significant advance-
ments in medicine and cancer biology over the 
past several decades, treatment outcomes for 
EC have only seen marginal improvements, 
keeping the 5-year survival rate at 15-20% [1]. 

Despite our understanding of pre-existing con-
ditions which pose increased risks for EC carci-
nogenesis, the absence of robust molecular 
markers have largely contributed to the mar-
ginal advancements in EC treatments. EC’s 
continuously low survival rate can also be 
attributed to its exceptionally heterogenous 
presentation. Thousands of genomic aberra-
tions have been linked to EC [7, 8]. In fact, the 
extent of EC’s heterogeneity is not only seen 
among different patients, but also, differing 
genomic alterations have been reported to be 
present in different sections of the same tu- 
mor [9-11]. This degree of heterogeneity has 
remained a foremost impediment for research-
ers who try to stratify risk levels associated 
with disease progression and identify reliable 
prognostic indicators. Therefore, the establish-
ment of non-interventional, economically feasi-
ble screening methods in conjunction with de- 
pendable biomarkers are of paramount impor-
tance in mitigating EC’s lethality.

Figure 1. Aberrant DNA methylation in carcinogenesis. DNA methylation, 
catalyzed by DNMT family enzymes, alter gene function or activity in esopha-
geal cancer. DNA methylation, mainly classified into hypermethylation and 
hypomethylation, in esophageal cancer alter different gene function or activ-
ity. After the interaction of DNMT and DNA binding sites, global hypomethyl-
ation causes the enhanced activity of the genes, such as LINE-1, and CpG-
specific hypermethylation is correlated to gene expression reduction, such 
as MGMT and CDKN2A. 

DNA methylation

Epigenetic markers on DNA 
are heritable modifications 
that alter gene function or 
activity, yet do not change  
the underlying DNA sequence. 
One prominent marker in EC  
is DNA methylation - the pro-
cess by which Cytosine resi-
dues are methylated at the  
C5 position, therein becoming 
5-methylcytosine. DNA meth-
ylation is essential for myriad 
functions, including mammali-
an development, and is cata-
lyzed by several different pro-
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in various cancers have suggested a link be- 
tween the extent of hypomethylation and can-
cer stage [22, 24].  

In contrast to its activating counterpart, exten-
sive DNA hypermethylation of promoter-region 
CpG islands has been reported to largely facili-
tate tumorigenesis by repressing tumor sup-
pressor genes [25]. Numerous studies have 
since shown the degree to which hypermethyl-
ation promotes tumorigenesis. One example of 
this was shown in the promoter region of the 
cyclin-dependent kinase (CDK) inhibitor gene, 
p16INK4A, whereby hypermethylation is obser- 
ved to occur in the pre-cancerous stages of 
tumorigenesis [26-29]. Another mechanism by 
which DNA hypermethylation results in aber-
rant gene expression is through C>T point 
mutations, via spontaneous deamination of 
5-methylcytosine which ultimately is repla- 
ced by thymine residues, if not repaired [30]. 
Such reactivating hypermethylation mutagene-
sis patterns are often seen in the promoter 
region of Telomerase Reverse Transcriptase 
(TERT) complex, which is found in approxi- 
mately 90% of human cancers, including gas-
tric, pancreatic, and cervical cancers [31-38]. 
Therefore, given the extent to which aberrant 
methylation patterns - both of hypo and hyper-
methylation - influence the onset of carcino- 
genesis, developing better methods for moni-
toring alterations to the methylome will play a 
pivotal role in preventing cancer progression.

Screening for esophageal carcinoma

Current techniques used for the screening of 
EC are similar and not sufficient for the diag- 
nosis of precancerous lesions. One example 
being traditional white-light endoscopy (WLE), 
which is routinely used for the detection of in- 
vasive esophageal carcinomas, and even low-
grade BE dysplasia. However, WLE is not capa-
ble of detecting esophageal squamous dyspla-
sia [39, 40]. A common and inexpensive alter-
native to WLE is chromoendoscopy, which is 
sensitive enough to detect precursor lesions, 
but has insufficient and inconsistent specifi- 
city (37%-82%) for squamous dysplasia [41-
44]. Other conventional endoscopic methods 
include transnasal endoscopy, microendosco-
py, and endocytoscopy - all of which consist of 
flexible probes surveying the esophagus (Table 
1). 

To detect aberrant methylation in patients with 
EC, typically one of the aforementioned endo-

scopic methods would be used for tissue biop-
sy, though newer, non-invasive methods such 
as the Cytosponge or Esophacap are being 
used to collect cells from the esophageal 
mucosa. Subsequently, a variety of assays, 
generally beginning with bisulfite conversion, 
could be performed to detect methylation [45]. 
Bisulfite conversion works by deaminating un- 
methylated cytosine residues to uracil while 
leaving methylate cytosine residues alone, 
therein highlighting the presence and location 
of DNA methylation [46, 47]. Following bisulfite 
conversion, a number of different assays can 
be performed, including sanger or pyrose-
quencing [48]. Other popular methods of DNA 
methylation detection include array-based plat-
forms and Methyl-cytosine based immunopre-
cipitation (IP) followed by sequencing [49, 50] 
(Figure 2).

Potential applications of DNA methylation 
markers in EC

The importance of DNA methylation in cancer 
was first highlighted in 1983 when significant 
hypomethylation was observed in cancer cells, 
in contrast to the surrounding healthy cells 
[51]. Since then, deleterious epigenetic modifi-
cations in ECs have been investigated for  
a variety of reasons. At present, limitations in 
our understanding of EC biology has been a  
significant roadblock in developing effective 
treatment regimens, although existing thera-
peutics have yielded some degree of success. 
As a result, epigenetic signatures in EC have 
been the focus of biomarker research, offering 
the opportunity to serve not only in a diagnos- 
tic capacity, but also for the monitoring and 
prognostication of disease progression (pro-
gression markers), survival prognosis (prog- 
nostic markers), and likelihood of response to 
therapy (predictive markers). From scrutinizing 
methylomic changes in EC, several genes that 
present aberrant expression levels have been 
identified as preliminary inducers of carcino-
genesis from BE to EAC, and can be seen  
before malignant histologic changes are ob- 
served [52]. Moreover, as the degree of DNA 
methylation becomes more prominent throu- 
ghout the course of disease progression, clini-
cians are then able to more effectively imple-
ment an appropriate treatment plan that is  
specifically tailored to each patient.

While the primary focus of methylation mark- 
ers in EC has been for surveillance purposes, 
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Table 1. Comparison of the commonly used screen methods for early esophageal carcinomas
METHOD PROCEDURE BENEFITS DRAWBACKS REF. 
WHITE-LIGHT ENDOSCOPY Endoscope with high-resolution imaging - may 

be done with endoluminal biopsy 
Is sensitive enough to detect BE-LGD Can’t detect ESCC precursor lesions; expensive; invasive [116]

LUGOL CHROMOENDOSCOPY Application of colored dyes to esophagus for 
targeted biopsy

Inexpensive; high sensitivity Inconsistent specificity for squamous dysplasia [117]

TRANSNASAL ENDOSCOPY Nasal esophageal intubation with optic scope Economical; less invasive; no need for general anesthesia Conscious sedation poses increased risk for complication [118] 

MICROENDOSCOPY Confocal laser endomicroscopy of targeted 
biopsy tissue 

Higher sensitivity and specificity, relative to conventional 
microscopy methods 

Not economically feasible - can cost thousands of dollars [119]

ENDOCYSTOCOPY Ultra-magnification of stained, or in-vivo,  
epithelial tissue 

High sensitivity/specificity Not readily available; expensive; lack of standardized 
criteria for diagnosis leads to ambiguous results 

[120]

CYTOSPONGE Ingested sponge capsule is retrieved from 
patient after 5 minutes wherein the apparatus 
scrapes cells from the epithelium 

Very high sensitivity/specificity; non-invasive; inexpensive; 
convenient; can collect 500,000 cells for epigenetic 
analysis therein increasing reproducibility and robustness 

Still requires traditional endoscopic methods, following a 
positive result; sensitivity is still not 100% 

[90]

ESOPHACAP Ingested sponge is retrieved after several  
minutes whereupon removal, cells are extracted 

Highest sensitivity/specificity; 1,000,000 cells are  
collected; inexpensive; convenient; non-invasive 

Still requires traditional endoscopic methods, following a 
positive result 

[91]

Figure 2. Methylation-based screening for esophageal carcinoma. Tissue biopsy can be obtained by endoscopic methods. After sample collection, it will be directly 
used for DNA extraction and bisulfite conversion, which could highlight the presence and location of DNA methylation. Several assays can be performed for methyla-
tion detection, such as sanger-sequencing or pyrosequencing. 
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the stratification of EC’s based upon distinct 
molecular signatures has shown promise in 
working towards delivering targeted therapeu-
tics. Specifically, this classification of ECs into 
categorical subtypes has allowed clinicians to 
treat ESCC and EAC by addressing the root 
cause of abnormal gene activity [53]. For exam-
ple, hypermethylated carcinomas appear to be 
sensitive to treatment with DNA methyltrans-
ferase and topoisomerase I inhibitors, while 
global hypomethylation may be sensitive to 
treatment with CDK2 inhibitors [54]. Although 
promising, further rigorous clinical validation is 
necessary to confirm the reliability of universal 
epigenetic alterations that are indicative of EC 
and its subsequent progression. 

Ongoing methylation marker discovery and 
validation for esophageal carcinoma and pre-
cursor lesions

From data compiled by The Cancer Genome 
Atlas (TCGA) team, over 8,300 genes were 
found to be mutated across 165 cases of EAC 
[7]. Moreover, Bandla et al. reported the signifi-
cance of mutational load in differentiating EAC 
from its precursor, BE [55]. Specifically, the 
buildup of epigenetic and genetic modifications 
in several genes - including TP53, CDKN2A, 
CTNNB1, and APC - that are commonly seen in 
EAC have also been reported to be present in 
BE, albeit less frequently [56-61]. The progres-
sive accumulation of these mutations has 
therefore allowed for the stratification of dis-
ease into stages; this multistep progression 

starts with BE, then transitioning to low-grade 
dysplasia (LGD), subsequent high-grade dyspla-
sia (HGD), and ultimately EAC [62, 63] (Figure 
3). However, given the level of heterogeneity 
and complexity in EC, a meticulous validation 
process is essential for confirming the robust-
ness of molecular signatures which are indica-
tive of the presence of ECs. 

In an effort to address this, Alvi et al. used an 
array-based approach and formed a four-mark-
er panel (PIGR, RIN2, GJA12, and SLC22A18) 
that was able to distinguish between the pres-
ence of HGD/EAC and BE, and enhanced clas-
sification of disease-related risk, based upon 
the degree of methylation in this panel [64]. In 
a retrospective study, using a cohort consisting 
of 60 BE patients, 36 patients with dysplastic 
BE, and 90 with HGD/early EAC, this panel was 
validated by pyrosequencing and was shown to 
have a specificity of 97% and a sensitivity of 
94%. In a broader approach, the Esophageal 
Cancer Clinical and Molecular Stratification 
(OCCAMS) consortium analyzed the results 
from whole-genome sequencing of 129 EAC 
cases and were able to categorize the muta-
tional profiles into 3 distinct EAC groups based 
upon differing genomic mutations. These find-
ings were substantiated in a subsequent study 
which analyzed the mutational profiles of 
another cohort, consisting of 87 patients [65]. 
This study served as the basis for Jammula et 
al.’s epigenetic analyses on over 300 BE and 
EAC cases; the results of which were consoli-
dated with corresponding genomic and tran-

Figure 3. Application of DNMT inhibitor therapeutics in halting progression of EAC. During the progression of esopha-
geal carcinoma, DNA methylation, catalyzed by DNMT, was modified on several genes, causing aberrant expression 
and activity. DNMT inhibitor treatment could reduce the degree/extent of DNA methylation and increase the expres-
sion of tumor suppressor genes, and thus improve clinical outcomes.
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scriptomic profiles to present a comprehensive 
analysis to confidently discern BE from EAC 
[54]. The data gathered allowed for the classifi-
cation of EAC and BE tissues to be stratified 
into 4 subtypes; among the 4 subtypes, 3 in- 
volve aberrant methylation patterns that have 
been suggested to be clinically relevant for 
treatment regimen planning. Subtype 1 tissue 
displayed hypermethylation in the CpG islands 
of noncoding regions for genes necessary for 
DNA repair. Subtype 2 tissue likewise exhibit- 
ed hypermethylation; however, also displayed 
hypomethylation in genes required for cell 
metabolism and ATP synthesis. The last sub-
type involving anomalous methylation signa-
tures, subtype 4, presented extensive hypo-
methylation which resulted in significant struc-
tural variation.  

Although having different etiologies, many of 
the aberrant methylation signatures found in 
EAC are also commonly seen in ESCC, further 
compounding the level of difficulty in biomark- 
er validation. Moreover, ESCC presents the 
same multistep progression as is seen in EAC 
(non-dysplastic, LGD, HGD, carcinoma), where-
in mutational load and accumulation of epigen-
etic alterations can assist with risk stratifica-
tion for survivability and probability of carcino-
genesis [66-71]. An example of this is the pro-
moter hypermethylation of several tumor sup-
pressor genes and DNA repair genes (MGMT, 
p14, p16) that have been found to be present 
in EAC as well as in dysplastic, ESCC precursor 
lesions [72-74]. Specifically, CDKN2A (official 
symbol for p16) hypermethylation is found to 
be present in up to 88% of ESCC tumors, and  
is indicative of an invasive phenotype [75-83]. 
Other well-known oncogenes such as KRAS, 

IGF1R, CDK6, and EGFR are also overexpress- 
ed in both EAC and ESCC, at similar frequen-
cies. Additionally, the proximity in which these 
two malignancies can present, within the eso- 
phageal tract, may hinder the ability to accu-
rately discern between histopathological dif- 
ferences.

To better discriminate between carcinomas in 
adjacent tissue, Pu et al. discovered and vali-
dated a 5-marker panel that showed significant 
CpG island hypermethylation in ESCC tissue, 
relative to EAC tissue. Three of these markers 
are in the promoter region of genes (STK3, 
ZNF418, and ZNF542) [84, 85]. Additionally, 
Agrawal et al. highlighted distinct spectra in 
C:G>T:A mutation profiles in EACs (46%) vs. 
ESCCs (35%), with A:T>C:G substitutions more 
commonly found in EAC as opposed to a higher 
incidence of C:G>G:C substitutions and indels 
found in ESCC [86]. A more recent molecular 
distinction was shown in the overexpression of 
several genes, namely SOX2, CCND1, and/or 
TP63 are more frequently seen in ESCC, while 
GATA6, GATA4, and ERBB2 are typically repre-
sentative of EAC [87]. In a different study, Lu  
et al. analyzed RNA-seq and methylation pro-
files in ESCC and found five candidate genes 
(ZNF608, SLC5A10, ZNF69, SPIN3, and AB- 
CD1) with aberrant methylomic signatures that 
may potentially serve as prognostic makers for 
ESCC (See Table 2) [88]. Furthermore, as more 
molecular markers for EC are being discovered 
and validated, aberrant DNA methylation is a 
promising method by which both EAC and ES- 
CC can be not only accurately diagnosed, but 
further categorized based upon a host of fac-
tors affecting clinical outcomes.

Table 2. Promising Epigenomic Biomarkers for EC

Marker Function Methylation 
Status Malignancy Reference

HER2 (ERBB2) Cell differentiation; proliferation; suppresses apoptosis Hypo EAC [110]
PD-L1 Immune checkpoint, signals for apoptosis Hypo ESCC [111]
CDKN2A Tumor suppressor gene Hyper EAC/ESCC [73]
ABCD1 ABC transporter protein for fatty acids Hypo ESCC [88]
SPIN3 Tumor suppressor gene Hyper ESCC [88]
TP63 Antagonist of pro-apoptotic genes Hypo ESCC [87]
GATA4/6 Transcription factor Hypo EAC [87]
SOX2 Transcription factor; cell renewal Hypo ESCC [87]
LINE-1 Transposable element Hypo ESCC [99]
KRAS Part of RAS/MAPK pathway; cell proliferation Hypo EAC/ESCC [84]
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Benefits and limitations of methylation mark-
ers in the detection and surveillance of EC

Although more progress still needs to be  
made, integrating methylation markers into 
routine EC screening has numerous potential 
benefits, including the potential for increased 
sensitivity and specificity over current methods 
[89]. Additionally, methylation marker panels 
that are currently being studied allow for the 
utilization of non-invasive methods of sample 
collection. In 2018, Chettouh et al. used a four-
marker panel comprised of TFPI2, TWIST1, 
ZNF569, and ZNF345 to screen for BE, and 
were able to use an inexpensive, non-endo-
scopic Cytosponge collection apparatus [90]. 
Moreover, Wang et al. used a non-invasive 
Esophacap to collect esophageal mucosal  
cells and were able to discern healthy controls 
from BE samples using a five-marker panel 
(AKAP12, NELL1, HPP1, p16, and TAC1) with a 
specificity of 92.8% and a sensitivity of 78.6% 
[91]. Given the potential of reduced costs, 
reduced need for invasive endoscopic proce-
dures, and increased sensitivity and specifi- 
city, the implementation of robust methylation-
marker panels for the detection and surveil-
lance of ECs shows promise as an alternative  
to conventional methods.

On the other hand, in spite of the progress 
made in identifying and validating methylation 
markers in EC, current methodologies also 
have some limitations. Of note, there is in- 
terobserver variability in diagnosing BE-LGD 
and its subsequent progression to carcinoma, 
which makes it difficult to standardize the 
results of biomarker studies and to identify a 
potential universal methylation marker panel. 
To help address this issue, investigation of  
the epigenomic alterations in esophageal cells 
during BE and EC carcinogenesis has shown 
increasing promise as a method through which 
objective analysis can be conducted. In doing 
so, many have used in-vitro cell, and 3D, cul- 
ture models and in vivo animal models; howev-
er, these studies have received criticism for 
large discrepancies between these models and 
human EC pathobiology [92-98]. In addition to 
interobserver variations among clinicians and 
scientists, the exceptional degree of heteroge-
neity seen in ECs further complicates the task 
of finding reliable indicators of malignancy, or 
precursor lesions. For example, hypomethyl-
ation of the repetitive long interspersed trans-

posable element (LINE), LINE-1, has been pro-
posed as a biomarker for ESCC that is strongly 
correlated with high risk for progression and 
poor prognosis. However, studies on LINE-1 in 
EC vary greatly in their analyses of the pro- 
portion of hypomethylation required (25-92% 
increase) to exercise deleterious affect [99-
102]. Therefore, it is paramount that improve-
ments in methylation biomarkers be made 
before being put into practice.

Current directions in biomarker-related treat-
ments for EC

Although many therapeutic interventions for EC 
are either still in development or have yielded 
modest success, new insight into EC methy-
lomes have provided potential therapeutic tar-
gets. Of growing interest, the employment of 
DNMT inhibitors has shown promise in combi-
nation therapies for the treatment of chemore-
sistant tumors. Specifically, the methylation-
induced repression of specific genes, that 
would otherwise sensitize tumor cells to che-
motherapy, nulls the cytotoxic effects of con-
ventional therapies, thereby rendering these 
treatments ineffective. Additionally, as previ-
ously discussed, many tumor suppressor gen- 
es (TSGs) are hypermethylated during EC carci-
nogenesis. This epigenetic repression has con-
sequently led to recent investigation into the 
application of DNMT inhibitors (Figure 3). 

Currently, the most well-known DNMT inhibitor, 
albeit still not fully understood, is 5-azacitidine 
which is an FDA approved nucleoside analog 
that is capable of inducing hypomethylation 
and has been shown to improve EC patient  
survivability [103, 104]. In a cohort of 12 
esophageal/gastric adenocarcinoma patients, 
Schneider et al. found that treatment with 
5-azacitidine (V, 75 mg/m2) for 3-5 days  
prior to chemotherapy resulted in reactivation 
of hypermethylated TSGs, which may result  
in hypomethylation-induced chemoresensitiza-
tion, ultimately improving clinical outcomes of 
subsequent chemotherapy and resection of 
residual tumors [105]. In a similar study, Fu et 
al. found 5-azacitidine (V, 75 mg/m2) for five 
days at least partially restored chemothera- 
peutic efficacy in chemoresistant ovarian can-
cers [106]. In addition to 5-azacitidine, the 
other FDA approved DNMT inhibitor is deci- 
tabine, the deoxy derivative of 5-azacitidine, 
which yields comparable results and works in 
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similar fashion: incorporating itself onto DNMT 
DNA strands during replication wherein it acts 
as a chain terminator to inhibit activity [107-
109]. Although there are currently not many 
therapeutics that directly act on the epige- 
nomic changes caused by EC carcinogenesis, 
advancements in EC biology and epigenomics 
have allowed clinicians to better formulate per-
sonalized treatment regimens using current 
therapeutics.

Aside from the direct therapeutic targeting of 
epigenetic writers, significant advancements in 
biomarker-based immunotherapy have been 
instrumental in directing future research ef- 
forts. In particular, excessive hypomethylation 
of well-known biomarkers, such as PD-L1 and 
HER2 have contributed to their overexpression 
within the tumor microenvironment, and thus, 
its immunosuppressive properties [110, 111]. 
Although further research needs to be done to 
improve efficacy, clinical trials on Trastuzumab, 
a humanized HER-2 monoclonal antibody, have 
improved progression-free survival in EAC 
patients, when combined with chemotherapy 
[112, 113]. Moreover, myriad studies and clini-
cal trials on the efficacy of a PD-L1 blockade 
therapy, such as Nivolumab and Keytruda,  
have yielded objective response rates of up to 
20%, adding as much as 6 months to overall 
survival in ESCC patients [114, 115]. It was 
also noted that overexpression of PD-L1 is cor-
related with microsatellite instability (MSI) and 
a DNA mismatch repair (MMR) deficiency. As a 
result, in conjunction with the PD-L1 and HER2 
biomarkers, the National Comprehensive Can- 
cer Network (NCCN) has also listed surveillan- 
ce of MSI/MMR status to its pathologic bio-
marker testing guidelines. As previously men-
tioned, extensive DNA hypomethylation of cen-
tromeric and pericentromeric satellite sequ- 
ences have significant deleterious effects on 
chromosomal stability and sequence integrity. 
Therefore, the combination of these suggested 
biomarkers, per NCCN guidelines, can serve in 
both diagnostic and therapeutic capacities, 
and are promising advancements in biomarker 
research for EC.

Conclusion

EC is one of the deadliest forms of cancer, with 
5-year survival rate of less than 20%. This is 
largely due to asymptomatic patients who re- 
main undiagnosed until late-stage carcinoma, 
when the survival rate is exceedingly low. This 

review addresses the significance of aberrant 
DNA methylation in ECs and the potential 
impact of advancing our understanding of 
methylation markers throughout the various 
stages of EC carcinogenesis, from non-dys- 
plastic precursor lesions to invasive carcino- 
ma. Moreover, studies over the past decade 
have revealed the applications of methylation 
markers in EC to be beneficial in diagnostic, 
prognostic, and therapeutic capacities. Of 
growing interest is the combination of distinct 
epigenomic markers to form “panels”, therein 
enhancing the accuracy of diagnostic and  
prognostic screening. Further, such panels 
have been helpful, thus far, in differentiating 
between different malignancies that would  
otherwise be difficult to discern due to proximi-
ty or histological presentation (See Table 2). 
Therefore, advancements in this field may not 
only improve overall survival, due to early de- 
tection, but may ultimately reveal novel thera-
peutic targets for improved treatment. How- 
ever, the fact remains that despite improve-
ments in methylome-based approaches for the 
detection, surveillance, and therapeutics for 
EC, challenges such as overcoming extensive 
heterogeneity and interobserver variability re- 
main and underscore the importance of con-
tinuing to better understand DNA methylation 
in EC and to work towards improving this 
platform.
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