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Abstract: Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is widely known as a tumor sup-
pressor gene. It is located on chromosome 10q23 with 200 kb, and has dual activity of both protein and lipid 
phosphatase. In addition, as a targeted gene in multiple pathways, PTEN has a variety of physiological activities, 
such as those regulating the cell cycle, inducing cell apoptosis, and inhibiting cell invasion, etc. The PTEN gene have 
been identified in many kinds of cancers due to its mutations, deletions and inactivation, such as lung cancer, liver 
cancer, and breast cancer, and they are closely connected with the genesis and progression of cancers. To a large 
extent, the tumor suppressive function of PTEN is realized through its inhibition of the PI3K/AKT signaling pathway 
which controls cells apoptosis and development. In addition, PTEN loss has been associated with the prognosis of 
many cancers, such as lung cancer, liver cancer, and breast cancer. PTEN gene is related to many cancers and their 
pathological development. On the basis of a large number of related studies, this study describes in detail the struc-
ture, regulation, function and classical signal pathways of PTEN, as well as the relationship between various tumors 
related to PTEN. In addition, some drug studies targeting PTEN/PI3K/AKT/mTOR are also introduced in order to 
provide some directions for experimental research and clinical treatment of tumors.
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Introduction

Phosphatase and tensin homolog deleted on 
chromosome ten (PTEN) are essential for nor-
mal cells and are widely concerned and studied 
tumor suppressor genes [1-3]. PTEN was first 
discovered in 1997, when the mutation at the 
10q23 site on chromosome 10 was studied [4, 
5]. In early reports, PTEN was considered as a 
protein located only in the cytoplasm. Never- 
theless, it is now clear that it can exist in the 
nucleus or cytoplasm [6-9]. In the cytoplasm, 
PTEN interacts with its cytoplasmic targets to 
regulate cell growth, proliferation, apoptosis, 
adhesion, migration and invasion. In the nucle-
us, PTEN can maintain chromosome stability 
and DNA double strand break repair, so pro- 
tecting the completeness of the genome [6, 7, 
10]. Because PTEN is very important to many 
cellular processes, the expression of PTEN is 

strictly regulated by many cellular mechanisms, 
which exert effect on the transcriptional, post-
transcriptional and post-translational levels 
[11-13]. Since then, many studies have con-
firmed that the decrease of PTEN level or activ-
ity induces the accumulation of PIP3, and is 
related to the activation of proto-oncogene  
AKT, so establishing an important link between 
PTEN and phosphatidylinositol 3-kinase (PI3K) 
pathway [14-16]. PI3K/AKT pathway is extreme-
ly significant for the growth, proliferation and 
survival of tumor cells. Many researches have 
shown that PTEN can regulate PI3K/AKT signal 
pathway through the dephosphorylation of  
D3 phosphatidylinositol 3, 4, 5-trisphosphate 
(PIP3) [17, 18].

It is reported that PTEN inhibits tumorigenesis 
through different mechanisms. In recent years, 
it has been found that the mutation, deletion 
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and expression of PTEN gene are closely asso-
ciated with the development of cancers [19-
22]. According to reports, PTEN absence leads 
to phosphorylation mediated by AKT and the 
activation of nuclear factor kappa-B (NF-κB) 
activity, promoting P53 degradation. P53 deg-
radation reduces the apoptotic ability of cells 
and induces cell cycle progression [23-25]. 
Inactivation of PTEN also results in MAPK stim-
ulation and activation of mammalian target of 
rapamycin (mTOR) kinase complex 1 (mTORC1). 
Apart from the inherent tumor inhibitory func-
tion of PTEN, PTEN can also affect the occur-
rence and development of tumor cells by regu-
lating some information molecules such as 
focal adhesion kinase (FAK) [26-28], mitogen 
activated protein kinase (MAPK) [29, 30], 
hypoxia inducible factor-1 (HIF-1) [31] and vas-
cular endothelial growth factor (VEGF) [32]. In 
addition, some studies have also emphasized 
the key function of PTEN in tumor microen- 
vironment, which plays important role in tumor 
cells, stroma and immune response at differ- 
ent levels, so as to control the occurrence, 
development and metastasis of the disease 
[33-35].

As PTEN gene is involved in many kinds of can-
cers and the pathological process of cancers. 
In this study, we describe the details of PTEN 
structure and function and the association 
between various cancers associated with PTEN 
on the basis of a myriad of pertinent studies. 
The aim is to provide a clearer understanding of 
future revelations.

Information related to PTEN

The structure of PTEN

PTEN is located on chromosome 10q23.3 with 
a 200 kb and consists of 9 exons and 8 introns, 

encoding a protein 403 amino acids long with a 
relative molecular mass of approximately 47 
kDa [36]. The amino acid (N) terminus of the 
protein structure can remove phosphorylate 
groups from phosphotyrosine, phosphoserine 
and phosphothreonine on highly acidic sub-
strates, but its catalytic activity is weak [36, 
37] (Figure 1). In addition, the PTEN structure 
contains a phosphatase domain, like to protein 
phosphatases. However, it has an expanded 
active site that is indispensable to regulating 
phosphoinositol substrates [38, 39]. PTEN also 
has a C2 domain that is connected to the phos-
pholipid membrane in vitro. Furthermore, the 
phosphatase and C2 domains participate in a 
broad interface, which shows that the C2 
domain may be has important impact on in 
positioning the catalytic domain on the mem-
brane [40].

On the other hand, PTEN contains a character-
istic motif of protein tyrosine phosphatases 
and bispecific protein phosphatases, which 
indicates that it is both a protein and lipid  
phosphatase [5]. The crystal structure of PTEN 
indicates a separation of the two significant 
domains, an N-terminal phosphatase domain 
(residues 7-185) and a C-terminal C2 domain 
(residues 186-351) [6, 36]. Each of these two 
domains contains five central β-sheets with 
one α-helix on one side and four α-helices on 
another side, similar to the domains conferring 
specificity to other phosphatases [3, 36]. A 
short N-terminal (PIP2)-binding domain carries 
the conserved phosphatase motif HCSSGSSR, 
which is similar to the catalytic domain of tyro-
sine phosphatases and serine/threonine phos-
phatases, with the function to dephosphorylate 
tyrosine and serine/threonine residues and 
facilitate PTEN to resist to cancer development 
[38]. An N-terminal phosphatase domain pro-

Figure 1. The structure of PTEN gene and occurrence of mutations in exons. Abbreviation: PBD: a p-hosphatidylino-
sitol-4,5-bisphosphate (Ptdlns (4,5) P2)-bind-ing domain).



The biochemical and clinical implications of PTEN

5835	 Am J Cancer Res 2021;11(12):5833-5855

motes phospholipid hydrolysis. A C2 domain 
constituted by two antiparallel β-sheets with 
two small α-helix strands exerts significant 
impact on mediating the binding of signal- 
related proteins to cell membranes [12, 19]. 
Furthermore, the phosphatase terminus plays 
indispensable roles in the interaction between 
a ligand and phosphate head. Nevertheless, 
three loops, a P loop (H123CKAGKGR130), a 
WPD loop (residues 88-98), and a TI loop (resi-
dues 160-171) include residues participating  
in catalysis which can control the PIP2 and C2 
domains and their interactions [4, 36, 41]. In 
addition, the C-terminal tail contains a domain 
with a PEST sequence comprising proline, glu-
tamic acid, serine, and threonine and various 
phosphorylation sites and a PDZ interaction 
motif that can bind to lipids [36, 42]. Two natu-
ral mutations in the phosphatase domain dis-
rupt the tumor-inhibiting ability of PTEN. The 
C124S mutation causes dysfunction of PTEN 
protein and lipid phosphatase activities, while 
the G129E mutation disrupts only the PTEN 
lipid phosphatase activity [43-45]. Although 
the N-terminal phosphatase domain mainly 
participates in PTEN the physiological activity, 
most tumor-related PTEN mutations are as- 
sociated with the C2 domain and C-terminus, 
indicating that the C-terminal sequence is very 
important to protect the function of PTEN [46] 
(Figure 2). Papa et al. proved that PTEN homo- 
dimerization enhances its lipid phosphatase 
function stably through the C-terminal tail [47].

The regulation of PTEN

The expression control of PTEN: The expres- 
sion and function of PTEN are strictly regulated 
at transcription, post-transcription and post-
translation levels [3, 11]. Apart from genetic 
deletions or somatic mutations in human can-
cers, these regulatory molecules, which control 
the expression and function of PTEN, can lead 
to changes in the level of PTEN, thereby pro-
moting the occurrence and development of 
tumors in different ways [19, 22, 47]. Epigene- 
tic and transcriptional silencing, as well as dis-
orders in microRNAs (miRNAs) and competitive 
endogenous RNA (Cerna) systems have been 
shown to inhibit PTEN expression [15, 16]. Re- 
cently, the processing pseudogenes (PTENP1) 
of PTEN plus pseudogenes are very interested 
in the regulation of PTEN, and the increased 
regulation is attracting great interest because 

it increases the complexity of regulating PTEN 
expression.

The transcriptional regulation of PTEN: Many 
molecules directly interact with PTEN promoter 
and promote or inhibit PTEN transcription. Th- 
ese molecules include early growth response 
transcription factor 1 (EGR1), peroxisome pro-
liferation activated receptor gamma (PPARγ), 
activating transcription factor 2 (ATF2) and 
tumor suppressor p53 [48, 49]. It is reported 
that P53 upregulates PTEN transcription 
through functional p53 binding element up- 
stream of PTEN promoter [50, 51]. The tran-
scription of PTEN is suppressed through zinc 
finger proteins Snail and Slug [52]. Other tran-
scription factors such as Cbf-1 (C-kinetin pro-
moter binding factor-1) and c-Jun, antisense 
transcripts of NF-ΚB and PTEN pseudogenes 
(PTENP1) also interact with PTEN promoter  
and reduce the transcription of PTEN [53-56]. 
In addition, it has been reported that several 
kinds of miRNA, including miR-205, miR-122, 
and miR-21, bind to the 3’ untranslated region 
of PTEN mRNA, leading to the decrease of  
PTEN mRNA [11, 15, 57-60].

Post-translational regulation of PTEN: Many 
post-translational mechanisms can exert eff- 
ect on the activity and stability of PTEN, includ-
ing phosphorylation, oxidation, acetylation, 
ubiquitin, and SUMOylation [1, 61, 62]. The 
catalytic activity of PTEN can be regulated by 
phosphorylation at specific points on the C2 
and C-Tail domains. Under the help of casein 
kinase 2 and glycogen synthase kinase 3 
(GSK3), the specific serine and threonine resi-
dues (Ser380, Thr382, Thr383 and Ser385) at 
the end of PTEN C are phosphorylated, result-
ing in a decrease in phosphatase activity [63].

The oxidation of PTEN by hydrogen peroxide 
promoted the formation of disulfide bonds 
between Cys124 and Cys71 residues, leading 
to conformational changes, and then changed 
the binding sites of PTEN substrates, which 
bring about the loss of PTEN phosphatase 
activity [64, 65].

Under the stimulation of growth factors, PCAF 
acetylates PTEN on lysine residues 125, 128 
located in the catalytic site of PTEN, leading to 
inactivating PTEN and activating PI3K signal 
pathway. It is reported that CREB can promote 
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Figure 2. Posttranslational regulation of PTEN at specific sites. Abbreviation: PBD: a phosphatidyli-nositol-4,5-bisphosphate (Ptdlns (4,5) P2)-bind-ing domain).
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the acetylation of PTEN through the Lys402 in 
the PTENPDZ binding region [66-68].

Ubiquitin affects the degradation of PTEN. 
Neural progenitor cells expressing NEDD4-1 
can promote the ubiquitination of PTEN [69, 
70]. The polyubiquitination of PTEN leads to  
the decrease of protein stability and the degra-
dation of PTEN through proteasome-mediated 
decay, while the ubiquitination of PTEN on 
Lys13 and Lys289 promotes PTEN transport in 
the nucleus [69, 71].

The connection of ubiquitin-associated modifi-
ers to the protein is also one of the post-trans-
lational regulatory mechanisms of PTEN [72]. 
The SUMOylation of PTEN on Lys266 contrib-
utes to PTEN aggregation on the plasma mem-
brane, while the SUMO of PTEN on Lys254 par-
ticipates in promoting the nuclear localization 
of PTEN [73, 74].

Typical signal pathways related to PTEN

Under physiological conditions, G protein-cou-
pled receptors (GPCRs) or receptor tyrosine 
kinase (RTK) (including IGFR, PDGFR, EGFR  
and c-Met) are stimulated through many mole-
cules, including growth factors, hormones and 
extracellular matrix (ECM) components to acti-
vate PI3K, and then activated PI3K catalyzes 
the phosphorylation of phosphatidylinositol (4, 
5)-diphosphate (PIP2) to PIP3 [75-77]. Sub- 
sequently, the production of PIP3 causes pro-
teins containing the PH domain to be attracted 
to the cell membrane, including AKT and PDK1 
[78, 79]. On the cell membrane, PDK1 phos-
phorylates and activates AKT on Thr308, which 
in turn activates multiple effect targets, includ-
ing GSK3, forkhead box O (FoxO) protein and 
mTORC1 target, thereby regulating various cell 
processes including apoptosis, proliferation, 
and metabolism [80-83]. Interestingly, the  
largest AKT activation needs the other one 
phosphorylation event on Ser473, which is cat-
alyzed by MTORC2, and mTORC2 also be regu-
lated through PIP3 [84-86]. However, among a 
variety of substrates, PTEN mainly targets and 
dephosphorylates PIP3, thus becoming the 
main passive regulator of PI3K/AKT signal 
through decreasing the level of PIP3 and re- 
straining the recruitment of subsequent infor-
mation molecules and AKT activation [14, 87].

The functions of PTEN

The mechanisms by which PTEN controls cellu-
lar proliferation, migration, apoptosis, adhe-
sion, and genetic stability impact various cell 
signal transmission pathways and molecules, 
forming a complex system.

Regulation of the cell cycle and induction of 
apoptosis: The PTEN gene exerts important 
impact on cell migration and cell apoptosis, 
which suppresses tumorigenicity and cell 
growth [88, 89]. PTEN expression inhibits 
SCC-4 cell apoptosis by inducing the PI3K/AKT 
signaling pathway and increasing the level of 
the Bcl-2-interacting mediator of cell death 
[90]. Through its lipid phosphatase activity, 
PTEN dephosphorylates the 3-phosphoinosit-
ide products of PI3K. Moreover, many vital  
survival kinases, such as PDK1 and AKT, and 
other proteins that are not kinases can be  
activated by 3-phosphoinositides. Therefore, 
PTEN negatively regulates the AKT pathway, 
and the role of AKT in apoptosis prevention  
has been well documented [91, 92]. Further- 
more, by hydrolyzing PIP3, PTEN antagonizes 
the activity of PI3K to generate PIP2, which 
inhibits the activation of downstream signaling 
molecules and ultimately inhibits cell prolifera-
tion, growth and survival [33, 93, 94]. In sum-
mary, PTEN can regulate the cell cycle and 
induce cell death through various signaling 
pathways.

Inhibition of cell invasion: It has been widely 
shown that the protein phosphatase activity of 
PTEN has important effect on its ability to in- 
hibit cell invasion [91, 92, 95, 96]. The epitheli-
al-mesenchymal transition (EMT) is considered 
to be one of the key factors of cell invasion and 
metastasis. Downregulation of PTEN can acti-
vate the PI3K/AKT pathway, thus promoting the 
invasion ability of cancer cells and facilitating 
the EMT [96]. Upregulation of PTEN can inhibit 
the EMT and tumor cell invasion. This effect 
may be realized by the downregulation of the 
Hedgehog (Hh) signaling pathway. Ecadherin 
and β-catenin can enhance cell-cell adhesion, 
and their decreased expression is connected  
to cancer cells invasion and metastasis [97]. 
The overexpression of PTEN is positively relat-
ed to the expression of B-catenin cells and neg-
atively correlated with the expression of cad-
herin and vimentin, indicating that B-catenin is 
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related to the EMT and may be involved in the 
assembly of adhesion connections during the 
EMT [98]. Therefore, PTEN can suppress the 
EMT by downregulating the Hh signaling path-
way, thus inhibiting cell invasion.

Regulation of tumor drug resistance: PTEN  
suppresses tumors by inhibiting tumor prolifer-
ation induced by P13K/AKT pathway activation 
[99]. Moreover, evidence has shown that PI3K 
inhibitors can enhance the sensitivity of NSCLC 
cells with high levels of phosphorylated AKT to 
medically induced cellular apoptosis [100]. 
Recent evidence suggests that activated AKT/
PKB causes cell resistance to drug-induced 
apoptosis by phosphorylating downstream tar-
gets [101]. Furthermore, PTEN also regulates 
both the antitumor effect of the anaphase-pro-
moting complex (APC) and its regulatory factor 
Ecadherin in the nucleus independent of its 
lipid phosphatase activity [91]. Through the 
aforementioned mechanisms, PTEN can regu-
late tumor drug resistance.

Others functions: Many other vital functions of 
PTEN have been verified. For example, lipid 
phosphatase activity of PTEN on cell mem-
branes has been established, but PTEN also 
exhibits nuclear functions. Centrosome stabili-
zation requires PTEN binding to centromeric 
protein C1 (CENP-C1), while DNA repair protein 
RAD51-mediated DNA double-strand break 
(DSB) repair requires PTEN nuclear localiza- 
tion [91, 102]. Additionally, PTEN can regulate 
cellular migration, adhesion, and stretching 
through regulating FAK activity by dephosphor-
ylation and can modulate membrane channels 
[93]. In addition, studies have demonstrated 
that PTEN deficiency can also increase cell 
activity. In summary, PTEN has a nuclear func-
tion, controls cell migration, adhesion and 
stretching, and regulates cell activity.

The roles of PTEN in some cancers

As mentioned above, PTEN is a vital gene in  
cell growth, development, mobility, apoptosis, 
signal transduction and other cellular process-
es, processes that contribute greatly to its 
tumor suppressor function. The detailed mech-
anism and effect of PTEN in cancers are pre-
sented in Table 1. PTEN is able to control cell 
apoptosis and survival by restraining the PI3K/
AKT pathway because of its lipid phosphatase 
activity [103, 104]. PTEN is a phosphatase for 

phosphoinositol lipids, which are regulated to 
be critically involved in cellular adhesion and 
tumor metastasis [105]. PTEN has been dem-
onstrated that dephosphorylize the FAK regu-
lating cell migration. The function of PTEN dis-
orders and its FAK substrate are significantly 
associated with multiple cancers [33, 106, 
107]. Furthermore, as a dual protein and lipid 
phosphatase, PTEN interrupts downstream 
AKT activation by dephosphorylating the sec-
ondary messenger produced by PI3K, thus 
affecting tumorigenesis [108, 109].

In addition, PTEN gene mutations have been 
widely demonstrated is related to cancers;  
specifically, loss of post-translational expres-
sion results in abnormal cells proliferation, 
apoptosis, movement, and adhesion. The 
details of these effects are listed in Table 2. 
Different parts of PTEN are associated with  
the development of cancers. For example, the 
P-loop (residues 123-130) contains four mu- 
tated residues, His123, Lys125, Gly127, and 
Lys128, which are important for identifying 
changes in the loop [110] and reducing protein 
activity by approximately 50-60%. The TI loop 
has four conserved residues: Val166, Thr167, 
Ile168 and Gln171. These amino acids are 
related to the C2 domain and the phosphatase 
domain. Thr167 and Gln171 are frequently 
mutated residues in the TI loop, and these 
mutations lead to 60-75% dysfunction. Muta- 
tion to the His93 residue in the WPD loop has 
the same effect on protein activity, reducing 
PTEN function by approximately 75%. In addi-
tion, frequent mutations at the D5 site may 
lead to the occurrence of cancer [36]. Chro- 
mosome 10q heterozygosity was reported in 
cases of endometrial cancer [111, 112]. It has 
also been indicated that PTEN is much more 
likely to be mutated than other genes, in- 
cluding Kras and p53 [113]. Different mutant 
amino acid residues are mutated in each loop, 
with each being critical for reducing protein 
activity.

PTEN mutations, or partial deletions, are com-
mon in all types of tumors. Abnormalities in  
cell proliferation, adhesion, migration, and 
apoptosis resulting from loss of PTEN post-
translational regulation are usually associated 
with cancer occurrence, development, and 
metastasis. Therefore, PTEN and its function-
ally related proteins are promising new anti- 
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Table 1. The mechanisms and effects of PTEN in different cancers
Disease Mechanism Effect References
Lung Cancer PI3K/AKT signaling pathway↓ regulating the proliferation and apoptosis of tumor cells, leading to cell malignant 

transformation, tumor cell migration and adhesion, angiogenesis and extracellular 
matrix degradation

[100, 114]

HDAC inhibitors ↓ regulating a variety of genes and pathways in tumor cells and enhancing the anti-tumor 
effects of other anti-tumor drugs and radiotherapy

[116-119]

SHCBP1↓ a key role in the apoptosis of lung cancer cells [115]
Ovarian Cancer miRNA-200a↓ Inhibiting proliferation and invasion of ovarian cancer cells [123]

miRNA-205↑ Promoting proliferation and invasion of OC cells and inhibiting angiogenesis [122]
miRNA-552↓ Inhibiting the proliferation and metastasis of OC [59]
PI3K pathway↓ enhanced apoptosis and radiation sensitivity [125]

Epithelial Ovarian Cancer miR-21↑ EOC tumor development and poor prognosis [124]
Liver cancer PRL-3↓→AKT pathway↓ Inhibiting the aggressive progression of HCC [134, 135]

miR-21↑ Triggering cell death in liver cancer cells [136, 137]
Colon Cancer PI3K/AKT/NF-κB pathway↓ inhibiting colon cancer progression [106]

AR↓ inhibiting the proliferation of colon cancer cells [108]
microRNA-26b↓ Inhibiting the invasiveness, migration and stem cell-like phenotype of colorectal cancer [139]

Breast Cancer AKT, NF-κB↑→P53 degradation↑ reducing the apoptotic ability of cells and induces cell cycle progression [141]
MiR-142-5p↑→PTEN↓ Inhibiting the invasion of breast cancer cells [148]

Gastric Cancer miR-718↓ Inhibiting the proliferation and invasion of gastric cancer cells [153]
PI3K signaling pathway↑ inducing drug resistance by inducing the expression of multi-drug resistance protein-1 [154-156]
phosphorylation and activation of SRC kinase↑ resistance to chemotherapy drugs such as trastuzumab [160]

Prostate Cancer PLce, miR-20b→PTEN↓ inhibiting tumor cell proliferation [164-168]
Pancreatic Cancer JARID1B↓ Inhibiting cancer cell proliferation and tumor growth [169]

PI3K/AKT signaling pathway Inhibiting tumor cell proliferation [172-174]
Esophageal Cancer the phosphorylation of AKT↓ Affecting the development of cancer cells [175]

JARID1B↓ Inhibiting the proliferation of esophageal carcinoma cells and tumor growth [169, 176]
miR-93-5p↓ Inhibiting the proliferation of receptor cancer cells [177]

Endometrial Carcinoma miR-205→PTEN/AKT↓ Inhibiting tumor cell apoptosis [178]
Abbreviations: HDAC: histone deacetylase inhibitors; SHCBP1: SH2-binding protein 1; OC: Ovarian cancer; EOC: epithelial ovarian cancer; HCC: hepatocellular carcinoma; PRL-3: regenerating liver-3; AR: 
aldose reductase; PLCe: Phospholipase Ce; JARID1B: Jumonji AT-rich interactive domain 1B; PI3K: phosphatidylinositol 3-kinase.
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cancer drugs, and the potential of PTEN use in 
gene therapy and other therapeutics should be 
fully explored.

PTEN and lung cancer

As a tumor suppressor, PTEN inhibitory effects 
are largely realized through its lipid phospha-
tase activity that inhibits PI3K/AKT activation, 
as the PI3K/AKT signaling pathway regulates 
proliferation and migration of tumor cells. How- 
ever, PTEN is often mutated in cancer, and this 
change to PTEN leads to malignant transfor- 
mation, tumor cells migration and adhesion, 
extracellular matrix degradation and angiogen-
esis [100, 114]. Furthermore, PTEN expression 
is regulated by SH2-binding protein 1 (SHCBP1) 
downregulation, as silencing SHCBP1 can lead 
to significant increase in PTEN expression. This 
suggests that SHCBP1 may be upregulated in 
lung cancer and may have an important role in 
the apoptosis of tumor cells; this role is related 
to the expression of PTEN [115]. In addition, 
histone deacetylase (HDAC) inhibitors can  
regulate a variety of genes and pathways in 
tumor cells and enhance the antitumor effects 
of other antitumor drugs and radiotherapy; 
therefore, HDAC inhibitors have shown strong 
anticancer effects [116]. More importantly, the 
target of HDACs is PTEN, and HDAC inhibition 
upregulates the expression of PTEN [117-119]. 
The expression of PTEN can affect the expres-
sion of HDACs and SHCBPI, and then affect 
lung cancer cells, suggesting that PTEN may  
be an effective therapeutic target for lung can-
cer. In lung cancer, PTEN deficiency is related  

to poor prognosis and resistance to EGFR and 
other tyrosine kinase inhibitors (TKIs), such as 
erlotinib. However, suberoylanilide hydroxamic 
acid (SAHA) can upregulate PTEN expression 
and increase tumor cell apoptosis [116], thus 
alleviating erlotinib resistance. However, the 
specific molecular mechanism remains to be 
determined.

PTEN and ovarian cancer (OC)

It is reported the absence of PTEN is linked to 
ovarian cancer. The loss of PTEN in tubal epi-
thelial cells is sufficient to induce tubal cancer 
and subsequently involves the ovaries. Fur- 
thermore, homozygous PTEN deletion produc-
es borderline serous tumors of the fallopian 
tube epithelium (FTE) and endometriosis-asso-
ciated carcinoma, which are similar to human 
precursor lesions [120].

PTEN is regulated by various microRNAs, which 
play vital roles in OC. Studies have suggested 
that PTEN serves as a target gene for miRNA-
200a, miR-205, and miR-552 [120-122]. MIR-
205 participates in the positive feedback of 
cell proliferation and invasion, and contributes 
to cell proliferation and invasion through inhib-
iting PTEN expression [121]. Furthermore, exo-
somal miR-205 can inhibit angiogenesis th- 
rough silencing PTEN, thereby activating the 
downstream AKT pathway, indicating a new 
mechanism by which exosomal miR-205 is 
related to OC metastasis [122]. miR-552 can 
also directly activate PTEN expression by inter-
acting with the 3’-UTR of its mRNA, promoting 

Table 2. The effect of genetic mutations on cancers
Disease Part Effect References
Cancer Entire loss Abnormal cell proliferation, apoptosis, migration, and adhesion [6, 36]

P-loop identifying changes in the loop and reduce protein activity [110]
Ti ring functional loss and occurrence of cancer [36]

Lung cancer Entire loss poor prognosis and resistance to EGFR and TKIs [116]
Ovarian cancer Entire loss inducing tubal cancer and subsequently to involve the ovaries; producing 

serous borderline tumors of FTE and endometriosis carcinoma
[125]

Liver Cancer Entire loss high malignant potential/poor prognosis [134]
poor cell differentiation [133]

Breast Cancer Entire loss overgrowth, proliferation, survival, and metabolism of tumor cells [3, 141-147]
Gastric Cancer Entire loss tumor resistance [150-152]
Prostate Cancer Entire loss changes in a variety of genes and pathways that affect the progression 

of cancer
[167, 168]

Esophageal Cancer Gene mutation Stability decline, leading to the development of endometrial cancer [113]
Abbreviations: EGFR: epidermal growth factor receptor; TKIs: tyrosine kinase inhibitors; FTE: fallopian tube epithelium; PI3K: phosphatidylinositol 
3-kinase.



The biochemical and clinical implications of PTEN

5841	 Am J Cancer Res 2021;11(12):5833-5855

the proliferation and metastasis of OC. More 
importantly, PTEN siRNA disrupted the appar-
ent ability of miR-552 to induce the growth and 
metastasize between OC cells, compared to its 
effect on control cells. Moreover, miR-552 may 
be a good prognostic biomarker for patients 
with OC [59]. The miR-200a can directly bind  
to PTEN and negatively regulate the mRNA 
expression of PTEN in SKOV3 or OVCAR3 cells. 
By inhibiting PTEN expression, miRNA-200a 
contributes to the proliferation and invasion of 
OC cells [123]. In human epithelial ovarian can-
cer (EOC), there may be an intercommunication 
between miR-21 and PTEN [124]. On the one 
hand, miR-21 was overexpressed in clinical 
EOC tumors and EOC cell lines. On the other 
hand, PTEN gene expression was significantly 
decreased. These findings indicate that the 
overexpression of miR-21 and the downregula-
tion of PTEN can regulate EOC cells. Further- 
more, downregulation of PTEN may contribute 
to miR-21 expression [124].

In terms of drug resistance and radiotherapy, 
studies have found that PTEN, which inhibits 
the function of PI3K at the molecular level, is 
upregulated by paeonol and inhibits the activa-
tion of the PI3K pathway [125]. This inhibition 
may be the cause of an increased apoptosis 
rate and enhanced radiation sensitivity, which 
can support the development of barriers to 
radiotherapy resistance in OC [125].

Overall, PTEN is regulated by various microR-
NAs, which play vital roles in OC, and the 
absence of PTEN is associated with the occur-
rence of OC. PTEN can also lead to apoptosis 
and increased radiotherapy sensitivity, con- 
tributing to the formation of a barrier to radio-
therapy resistance in OC. As suggested, PTEN 
is a very important regulatory gene in OC.

PTEN and liver cancer

As a negative regulator of the EGFR/PI3K/AKT 
signaling pathway, loss and mutation of PTEN 
often occur in liver cancer [126]. A progenitor 
cell mechanism may be associated with the 
PTEN mutations observed in human liver can-
cer and high malignant potential/poor progno-
sis [126]. Twenty-nine percent of HCC tissues 
lost cytoplasmic PTEN, and 25% of HCC tis- 
sues lost all expression of PTEN. In HCC tis-
sues, PTEN expression was significantly reduc-
ing than that in adjacent nonneoplastic tissues 

[127, 128], and its downregulation was associ-
ated with poor differentiation [129, 130]. High 
levels of reactive oxygen species (ROS) are 
associated with tumorigenesis in PTEN-defi- 
cient mouse models [131]. Moreover, the dele-
tion and downregulation of PTEN were signifi-
cantly associated with the overexpression of 
fatty acid synthase (FAS) and histological grade 
of HCC. In addition, PTEN deficiency is related 
to poor prognosis in patients with advanced 
HCC. When FAS is overexpressed, the situation 
worsens [132].

In liver cancer cells, both the expression and 
the tumor suppressive ability of PTEN are sig-
nificant [132]. Notably, the expression density 
of PTEN is connected with the development of 
liver cancer. This phenomenon may protect of 
the body itself in the case where tumor cells 
further express PTEN in adjacent cancer tis-
sues under high-pressure conditions [133]. 
PTEN can act as a negative switch of the AKT 
pathway, thereby promoting the aggressive  
progression of hepatocellular carcinoma (HCC) 
by activating the AKT pathway [134]. On the 
other hand, the level and activity of PTEN in 
liver cancer are changed by various complex 
mechanisms. For instance, the expression of 
PI3K is negatively connected to the expression 
of PTEN. PI3K overexpression may be closely 
correlated with the formation of tumors. The 
anticancer effect of PTEN depends on the 
extent of its negative regulation of PI3K signal-
ing [135]. In addition, phosphatase in regener-
ating liver-3 (PRL-3) can enhance the phos- 
phorylation level of PTEN to reduce the PTEN 
level. Through this negative regulation of PTEN 
expression, PRL-3 may activate the PI3K/AKT 
signaling pathway, which promotes HCC pro-
gression [134]. PTEN serves as the down-
stream target of miR-21, and ectopic miR-21- 
mediated downregulation of PTEN and highly 
upregulated miR-21 expression were evident in 
hepatocellular carcinoma cell lines. PTEN is 
involved with miR-21 triggering of liver cancer 
cell death [136, 137].

In summary, the expression of PTEN is closely 
connected with the occurrence and develop-
ment of liver cancer, and its mechanism is 
related to various other mechanisms, such as 
those associated with the AKT pathway, PI3K, 
PRL-3, and miR-21. Deletions and mutations 
are frequent in liver cancer. PTEN is associat- 
ed with the prognosis and drug resistance of 
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liver cancer, making it a potential diagnostic 
and prognostic marker.

PTEN and colon cancer

In terms of the association between PTEN vari-
ations and cancers, a considerable proportion 
of patients with colon cancer (34.3%) showed 
PTEN expression deficiency [138]. In terms of 
mechanisms, it has been revealed that PTEN 
inhibits colon cancer progression through 
restraining paxillin expression downstream of 
the PI3K/AKT/NF-κB pathway [106]. In addi-
tion, PTEN expression can be regulated by 
aldose reductase (AR). Studies have shown 
that AR inhibition can inhibit PTEN phosphory-
lation induced by growth factors, thereby acti-
vating PTEN and increasing the expression of 
this protein in tumor cells, thus inhibiting colon 
cancer cells proliferation [108]. Furthermore, 
inhibition of PTEN increases the expression of 
microRNA-26b and contributes to the invasive-
ness, migration and stem cell-like phenotype  
of colorectal cancer (CRC) [139]. In summary, 
PTEN deficiency is closely associated with the 
occurrence of colon cancer, and this gene can 
affect PI3K/AKT/NF-κB, AR and miR-26b to 
inhibit colon cancer, and therefore, PTEN may 
be a new prognostic biomarker or therapeutic 
target.

PTEN and breast cancer

Breast cancer is the most frequent cancer in 
women and PTEN gene is strongly linked to it 
[140]. First, PTEN deficiency leads to the over-
growth, survival, proliferation, and metabolism 
of tumor cells [3]. It causes AKT-mediated 
phosphorylation and increased NF-κB activity, 
thereby promoting P53 degradation. Then,  
P53 degradation reduces the apoptotic ability 
of cells and induces cell cycle progression 
[141]. Heterozygosity disorders in chromosome 
10q23 are evident in advanced sporadic tu- 
mors, including breast cancer [58, 142-144].

In addtion, a recent meta-analysis demonstrat-
ed that hypermethylation of the PTEN promoter 
is considered to be among the most important 
mechanisms for inactivating PTEN in ductal 
carcinoma in situ (DCIS) and invasive ductal 
carcinoma of the breast, suggesting that the 
inactivation of PTEN is involved in the early 
stage of breast neoplasia [145, 146]. In terms 
of PTEN and cancer prognosis, it has also  

been previously reported that tumor cells with 
loss of PTEN function lead to poor prognoses 
[147]. The inactivation of PTEN was significant-
ly associated with a decrease in 5-year overall 
survival and disease-free survival rates in 
breast tumor patients. PTEN reduction was  
significantly correlated with tumor volume in- 
creases, estrogen progesterone receptor (ER)/
progesterone receptor (PR) negativity, axillary 
lymph node metastasis positivity, and advan- 
ced stage and local recurrence of breast can-
cer, indicating a worsening prognosis [145].

Some researches have also demonstrated that 
the level of PTEN mRNA in breast cancer tissue 
is significantly decreased. The expression level 
of mIR-142-5p was positively and negatively 
correlated with PTEN, and the PTEN level was 
related to tumor size and metastasis [148].

PTEN and gastric cancer (GC)

Scientists found that the expression of PTEN 
decreased gradually as GC progressed [93]. 
The expression of PTEN in primary tumors was 
obviously lower than that in adjacent non-tu- 
mor tissues [149]. Therefore, the decrease or 
loss of PTEN expression is a dynamic process 
in gastric cancer progression and the level of 
PTEN can be considered as an indicator for the 
diagnosis of GC pathological status [150-152].

In terms of prognosis, PTEN and miR-718 have 
been identified as prognostic factors for GC. 
MiR-718 can promote the proliferation and 
invasion of GC cells through targeting PTEN 
mRNA [153]. Thus, PTEN is a prognostic risk 
factor for poor prognosis of GC. These findings 
are helpful for studying the progress and treat-
ment of GC. In addition, tumor resistance is 
mainly caused by the inactivation of PTEN and 
subsequent activation of the AKT pathway 
[154-156]. To date, many mechanisms have 
been proven for the specific role of PTEN in 
endowing tumor cells with chemotherapy drug 
resistance. First, through inducing the expres-
sion of multidrug resistance protein 1 (MRP1), 
the PI3K signaling pathway is activated, espe-
cially PI3K3a and PAKT, which induces PTEN-
induced drug resistance [157-159]. In addi- 
tion, reduced expression of PTEN in cancer 
cells can lead to increased phosphorylation 
and activation of SRC kinase, leading to resis-
tance to chemotherapy drugs such as trastu-
zumab [160].



The biochemical and clinical implications of PTEN

5843	 Am J Cancer Res 2021;11(12):5833-5855

In conclusion, the dysfunction of PTEN in GC 
leads to multiple processes. PTEN level not 
only can be used as a diagnostic indicator of 
GC pathological status but also as a risk factor 
for the poor prognosis in patients with GC. 
PTEN also has an inseparable relationship with 
drug resistance and is a promising potential 
therapeutic factor for cancers. However, fur- 
ther research is needed to study how PTEN  
regulates the interactions between these pro-
cesses, interaction dynamics, and homeosta-
sis under pathological conditions.

PTEN and prostate cancer

PTEN mutations can cause alterations in vari-
ous genes and pathways that affect the devel-
opment of prostate cancer, which may be sig-
nificant to the individualized treatment of 
prostate cancer. Thus, drugs directed at lipid 
metabolism pathways may be targeted to 
PTEN-mutant prostate cancer in the develop-
ment of new treatments for patients. As 
patients with PTEN mutations may be more 
sensitive to docetaxel and because these pa- 
tients need early intervention to prolong their 
survival, docetaxel chemotherapy may be the 
most effective treatment [161]. In addition, 
advanced disease and poor prognosis are 
associated with PTEN mutations, and known 
mechanisms of ectopic PTEN effects include 
PTEN deletion, dysregulated transcription, and 
epigenetic modification [162, 163]. In general, 
the disease progression of various cancer 
types is related to low PTEN expression levels 
[164-166], indicating the importance of PTEN 
mutation in disease progression. Furthermore, 
PTEN is associated with two oncogenes: phos-
pholipase Ce (PLCe) and miR-20b in prostate 
cancer. PLCe expression downregulates PTEN 
expression in cancer cell lines and inhibits tu- 
mor cell proliferation by the PTEN/AKT signal-
ing pathway [167], while miR-20b can restrain 
PTEN expression through directly combine with 
the 3’-UTR of PTEN mRNA [168].

PTEN has a strong link with oncogenes, but the 
mechanisms remain unclear. Reduced expres-
sion of PTEN is often related to the progression 
of many types of cancers and is one of the 
important potential mechanisms by which 
PTEN mutations are associated with cancer 
progression. However, the determination of the 
mechanisms and verification of gene muta- 
tions in cancer needs further molecular bio- 

logical and clinical experimental research, and 
the characterization of the relationship bet- 
ween PTEN mutations and specific events in 
prostate cancer requires data from larger sam-
ples to produce the most accurate results.

PTEN and pancreatic cancer

PTEN is an essential factor in regulating the 
development of pancreatic cancer cells. PTEN 
plays a vital role in Jumonji AT-rich interactive 
domain 1B (JARID1B)-promoted cell and tumor 
proliferation. JARID1B may affect the activa- 
tion of PTEN by regulating the methylation of 
lysine 4 on histone H3 (H3K4), thus promoting 
PC cell proliferation and tumor growth [169]. 
Moreover, studies have indicated that miR-486 
can facilitate the proliferation of CAPAN-2 
human pancreatic cancer cells through target-
ing PTEN. The tumor suppressor gene PTEN is 
the regulatory target gene of miR-486 [170]. At 
the protein level, miR-486 can negatively regu-
late the expression of PTEN. Moreover, PTEN 
gene overexpression disrupts the proliferation 
of miR-486 mimics because miR-486 is func-
tionally targeted by PTEN in CAPAN-2 cells 
[171]. Furthermore, PTEN can be downregulat-
ed to target NF-κB and cMyc in pancreatic can-
cer cell lines through the activation of the  
PI3K/AKT signaling pathway, thereby playing  
an inhibitory role in pancreatic cancer [172]. 
Furthermore, PTEN is related to the regulation 
of pancreatic cancer cell angiogenesis, which 
may be related to chemotherapy resistance 
and tumor recurrence [173, 174]. In conclu- 
sion, there is still a lack of effective diagnostic 
markers, drug targets, and treatment strate-
gies to successfully treat PC. PTEN acts main- 
ly on JARID1B and miR-486 in pancreatic can-
cer, both of which are potential therapeutic 
targets.

PTEN and esophageal cancer (EC)

Studies on EC have suggested that the down-
regulation of PTEN in EC is due to the hyper-
methylation of its promoter region [175]. The 
downregulation of PTEN can inhibit the phos-
phorylation of AKT in EC cells, while long inter-
genic nonprotein-coding RNA 184 (LINC00- 
184) can activate AKT phosphorylation, thus 
positively regulating PTEN gene methylation 
[175]. Furthermore, other studies have shown 
other factors that affect PTEN and thus the 
development of cancer cells. For example, 
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JARID1B can promote the proliferation of 
esophageal carcinoma cells and tumor growth 
after activating PTEN [169, 176]. miR-93-5p 
may affect the expression of p21 and Cyclin 
D1, downstream proteins of PTEN in the PTEN/
PI3K/AKT pathway, so contributed to cancer 
cells proliferation [177].

In conclusion, the downregulation of PTEN  
in EC is due to the hypermethylation at its pro-
moter region. However, the relationship bet- 
ween the regulation of glucose metabolism by 
LINC00184 and EC cell tumors remains un- 
clear and requires further study. On the other 
hand, both JARID1B and miR-93-5p can pro-
mote the proliferation of cancer cells by affect-
ing PTEN, making them potential therapeutic 
targets to cure EC.

PTEN and endometrial carcinoma

Deficiency of the phosphatase and catalytic 
activities of the PTEN protein has been associ-
ated with various types of cancer, including 
endometrial cancer (EDC). Mutant PTEN is less 
stable than normal PTEN. Substrate binding 
sites in PTEN are abrogated when PTEN is 
mutated, leading to the development of endo-
metrial cancer [113]. Furthermore, the miRNAs 
associated with PTEN are often dysregulated  
in human cancers. Among these miRNAs, miR-
205 can directly regulate the expression of 
PTEN in endometrial tumor cells and result in 
cell apoptosis inhibition. As an oncogene, miR-
205 restrains apoptosis through targeting the 
PTEN/AKT pathway. Thus, the increasing ex- 
pression of miR-205 in cancer cells may have 
essential effect on EDC progression [178].

In terms of prognosis, it has been shown that 
PTEN is associated with clinicopathological  
factors and prognosis in EDC patients. The 
decrease in PTEN expression is associated 
with poor prognosis. By contrast, EDC patients 
with high level of PTEN had low malignant 
tumor levels, diminished proliferative activity 
and a better prognosis [179]. In summary, the 
dysregulation and loss of PTEN expression  
are related to endometrial cancer and progno-
sis, which is a potential factor for cancer 
treatment.

Drugs of targeting the PTEN/PI3K/AKT/mTOR 
axis

The overall active role of PI3K/AKT/mTOR sig-
naling pathway in cell growth and development 

makes it possible for small molecule inhibitors 
of PI3K, AKT or mTOR to target the treatment  
of PTNE deficient cancer [180-183]. As the 
most common abnormal regulatory pathway in 
tumors, this pathway has attracted more and 
more attention because of its potential in tar-
geted therapy of many kinds of malignant 
tumors. In this context, a variety of inhibitors  
for this pathway are mainly targeted at PI3Ks, 
AKT and mTOR [181, 184-186]. PI3K inhibitors 
include LY294002 [187], wortmannin [188], 
curcumin [189], BLY719 [190], BKM120 [191], 
idelalisib [192], copanlisib [193], etc. AKT in- 
hibitors include perifosine [194], celecoxib 
[195], GSK690693 [196], deguelin [197], 
MK-2206 [198], etc. mTOR inhibitors include 
RAD-001 (everolimus) [199], CCI-779 (temsiro-
limus) [200], AP23573 (deforolimus) [201] and 
so on. 

The mTOR-based inhibitors temsirolimus and 
everolimus, as well as PI3K-based inhibitors 
idelalisib and copanlisib, have been approved 
by the Food and Drug Administration for clini- 
cal anticancer treatment [192, 193, 199, 200, 
202]. Curcumin (NCT03211104, NCT0398- 
0509), perifosine (NCT01048580, NCT0122- 
4730), celecoxib (NCT03896113, NCT0242- 
9427), GSK690693 (NCT00666081), MK- 
2206 (NCT01147211, NCT01240928), AP23- 
573 (NCT00704054, NCT00122343) have 
entered the clinical experimental research in 
the treatment of tumors. However, LY294002, 
Wortmannin [186] and deguelin are still in the 
stage of experimental research [187, 203].

Although the most effective anti-tumor effect  
of PTEN is the passive regulation of PI3K/
mTOR/AKT carcinogenic signal pathway, but  
further tumor inhibition functions have been 
reported, such as chromosome integrity and 
DNA repair [10, 74]. At present, some small 
molecular inhibitors have been experimentally 
explored as a potential treatment by pharma- 
cological inhibition of PTEN. For example, bpv 
(phen), bpv (pic), bpv (HOpic), bpv (pis), Vo-OH-
pic, the effect of this inhibitor on PTEN can be 
reversed by reductant, just like the inhibition of 
PTEN by ROS [204-206]. SF1670, an inhibitor 
targeting PTEN, has been found that SF1670 
restrains cells apoptosis and inflammation by 
inhibiting PTEN and activating AKT, thus pre-
venting intervertebral disc degeneration [207]. 
It has also been found that SF1670 protects 
PC12 cells from cell death induced by oxygen-
glucose deprivation by restraining PTEN [208]. 
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However, there are few studies on the mecha-
nism of SF1670 inhibiting PTEN in tumor.

On the PI3K/AKT/mTOR axis, PTEN plays impor-
tant tumor inhibitory role through regulating 
transcription, translation, cell cycle progres-
sion, inducing cell death, stimulating angiogen-
esis and stem cell self-renewal [17, 34, 94, 
164, 209]. From this point of view, it can be 
considered that it is of great benefit to streng- 
then the research and development of PTEN 
activators in the future. However, PTEN inhibi-
tion is considered as a potential treatment. 
Most pathological conditions depend on the 
direct negative regulation of PIP3 phosphatase 
activity on the signal of PI3K/AKT/mTOR path-
way. The evidence shows that PTEN protein 
phosphatase activity and non-catalytic PTEN 
activity exert significant function on physiologi-
cal and pathological processes. Whether it is 
feasible to selectively inhibit the activity of 
small molecular PTEN lipoprotein phospha- 
tase or protein phosphatase remains to be 
discussed.

Perspectives and future directions

PTEN has been extensively studied by scholars 
as a tumor factor. PTEN inhibits tumorigenesis 
by various mechanisms, including phospha-
tase-dependent and independent activities, 
subcellular localization and protein-protein 
interactions, affecting many physiological and 
pathological processes, including growth, 
development, survival, DNA repair and cells 
movement [3, 11, 61, 210]. To date, consider-
able progress has been made in the study of 
PTEN mutation and deficiency in cancers, and 
knowledge of anticancer mechanisms, progno-
ses and drug resistance in different cancer 
types has advanced. In terms of the mecha-
nism of cancer inhibition, the PI3K/AKT path-
way has been widely and frequently mention- 
ed. However, there are still a few cancers for 
which PTEN has been rarely studied, and more 
extensive research is needed. As a vital tumor 
suppressor gene, the main function of PTEN is 
to control apoptosis and regulate the cycle of 
cancer cells. Apart from the inherent tumor 
inhibitory function of PTEN, some research- 
es have also emphasized the key function of 
PTEN in regulating tumor microenvironment. It 
acts on cancer cells, stroma and immune 
response at different levels, thereby promoting 

the occurrence, development and metastasis 
of the diseases [1, 35, 211-215]. In view of the 
fact that PTEN is an important target with a 
variety of biological functions in tumors, the 
future drug research on PTEN will be of great 
significance to the treatment and prognostic 
diagnosis of tumors. Although, in the PTEN/
PI3K/AKT/mTOR axis, targeted PI3K, AKT and 
mTOR inhibitors have appeared or even enter- 
ed clinical trials, there are still few studies on 
drugs related to PTEN. However, whether to 
develop an activator or an inhibitor of PTEN  
still needs follow-up experimental studies to 
provide more evidence.
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