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Abstract: Ubiquitination is a key enzymatic post-translational modification that influences p53 stability and function. 
p53 protein regulates the expression of MDM2 (mouse double-minute 2 protein) E3 ligase and MDMX (double-min-
ute 4 protein), through proteasome-based degradation. Exploration of targeting the ubiquitination pathway offers a 
potentially promising strategy for precision therapy in a variety of cancers. The p53-MDM2-MDMX pathway provides 
multiple molecular targets for small molecule screening as potential therapies for wild-type p53. As a result of its 
effect on molecular carcinogenesis, a personalized therapeutic approach based on the wild-type and mutant p53 
protein is desirable. We highlighted the implications of p53 mutations in cancer, p53 ubiquitination mechanistic 
details, targeting p53-MDM2/MDMX interactions, significant discoveries related to MDM2 inhibitor drug develop-
ment, MDM2 and MDMX dual target inhibitors, and clinical trials with p53-MDM2/MDMX-targeted drugs. We also 
investigated potential therapeutic repurposing of selective estrogen receptor modulators (SERMs) in targeting p53-
MDM2/MDMX interactions. Molecular docking studies of SERMs were performed utilizing the solved structures of 
the p53/MDM2/MDMX proteins. These studies identified ormeloxifene as a potential dual inhibitor of p53/MDM2/
MDMX interaction, suggesting that repurposing SERMs for dual targeting of p53/MDM2 and p53/MDMX interac-
tions is an attractive strategy for targeting wild-type p53 tumors and warrants further preclinical research.
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Introduction

The incidence and mortality associated with 
cancer worldwide, were estimated to be 18.1 
million new cases and 9.6 million cancer  
deaths respectively in 2018 [1]. Tumor hetero-
geneity, acquired resistance, lack of specific 
molecular targeted drugs, difficulties in target-
ing cancer stem cells, the dearth of infor- 
mation on the epigenetic profile of cancers, as 
well as lack of specificity of existing chemother-
apeutic drugs, and their toxicities, represent 
the major challenges [2-4]. Further, a large pro-
portion of investigational cancer drugs fail dur-
ing phase III clinical trials and the lack of a bio-
marker-driven strategy, has been identified to 

be one the prime factors for such late-stage 
drug development failures [5]. Precision medi-
cine has marked a new revolution in cancer 
management by focusing on developing inno- 
vative drug candidates and novel biomarkers  
to treat patients, primarily by delineation of 
molecular signaling pathways involved in tumor 
biology [6, 7]. As the ubiquitin system plays an 
important role in the coordination of various 
cellular processes via regulation of both pro- 
tein degradation and nonproteolytic signaling 
functions, the enzymes involved in this system 
are implicated as either oncogenes or tumor 
suppressors in numerous cancers [8]. With in- 
creased understanding of ubiquitination mech-
anisms over the past decades, exploration of 
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targeting this pathway offers a new promising 
strategy for precision medicine in numerous 
cancers [9-12].

Role of p53 mutation in cancer

The TP53 gene located on chromosome 
17p13.1, encodes the p53 tumor suppressor 
protein. TP53 is the most commonly mutated 
gene in human cancer. The p53 protein is a 
transcriptional factor regulating the expression 
through proteasome based degradation by 
MDM2 (mouse double-minute 2 protein) E3 
ligase and MDMX (Double minute 4 protein), 
also known as MDM4 [13]. The structure of  
p53 consists of multiple domains such as the 
N-terminal domain [transactivation domain 
(TA), proline-rich domain (TAD-II/PRD)], core 
domain [central sequence-specific DNA bind- 
ing domain (DBD)] and C-terminal domain 
[nuclear localization sequences (NLS), tetra-
merization domain, nuclear export signal (NES) 
area, basic domain], that enable its transcrip-
tional activities [14-16]. Upon activation as a 
tetramer, it binds to p53 response elements 
(TP53 RE) on the promoter region to transacti-

vate the canonical target gene. TP53 known as 
“guardian of the genome”, modulates an array 
of cellular processes-angiogenesis, apoptosis, 
autophagy, differentiation, DNA repair, ferrop-
tosis, metabolism, proliferation, and senes-
cence [1, 13]. Acquisition of TP53 mutation 
leads to early-onset breast cancer, soft tissue, 
and bone sarcoma, adrenocortical carcinoma, 
brain tumors, and Li-Fraumeni and Li-Fraumeni 
like syndromes [17]. Data extracted from the 
International Agency for Research on Cancer 
(IARC) TP53 database on TP53 mutation distri-
bution for 16 cancer types and the expression 
of mutation effects in somatic and germline 
mutations [18] are depicted in Figure 1.

TP53 mutations

Tumor Suppressor Genes (TSGs) exhibit loss of 
protein expression by frameshift mutations 
(the majority are insertion mutations) or non-
sense mutations in the DNA-binding domain 
(DBD). Unlike other TSGs, missense mutations 
comprise more than 80% of somatic and germ-
line TP53 alterations promoting the accumula-
tion of a stable mutant protein in the nucleus  

Figure 1. TP53 mutation distribution for 16 
cancer types. A and B: Pie chart graphical rep-
resentation of the tumor site distribution (in 
percentage) of the somatic and germline mu-
tation frequency in humans. C: A grouped bar 
graph representing the expression of mutation 
effects in somatic and germline mutations, 
respectively. The data was extracted from the 
International Agency for Research on Cancer 
(IARC) TP53 database [18].
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of tumor cells. These mutations are predomi-
nantly clustered around 4-9 exons of p53 with 
86% of the mutations clustered between 
codons 125 and 300 [13]. These mutations 
cause single residue modifications in the DNA-
binding core domain of the protein leading to 
dominant, gain-of-function activities genera- 
ting genomic instability. Thus, the progression 
of cancer cells by TP53 mutation occurs by the 
absence of tumor suppressor activities and  
the presence of activity promoting genomic 
instability [19].

Mechanisms of mutant p53 functions

Alterations in DNA binding ability, enhance-
ment/aversion of transcription factors, and 
direct change of function of certain proteins 
takes place through several molecular mecha-
nism models. Mutant p53 couples with various 
regions of DNA (centrosome/p53 site/matrix 
attachment region) using mutant p53 binding 
elements to regulate transcription involving 
proteins (PML, EGR1, TOP1) and transcriptional 
cofactors (p300). It enhances transcription by 
complexing with TFs (ETS1, p63, p73, NF-kB, 
SP1, SREBP, ETS2, NF-Y, E2F1), which can 
involve proteins (EGR1, TopBP1, PIN1, VDR) 
and transcriptional cofactors (p300, HDAC, 
CBP). A stimulus can activate target gene 
expression when mutant p53 interacts with 
transcription regulatory complex-transcription 
factors (NF-Y, SP1), cofactor (VDR, PLK2) and 
proteins (p300). Mutant p53 decreases tran-
scription by preventing the binding of transcrip-
tion regulatory complex transcription factors 
(p63, p73, SP1), cofactors (p300), proteins 
(TopBP1, ANKRD11, VDR, SMAD2) to DNA. It 
also interacts with proteins (NRD1, EFEMP2, 
TOP1, BTG2, MRE11) which are not involved in 
transcriptional regulation resulting in the block-
ing of their function [16].

Gain-of-functions and dominant negative ef-
fect

Expression of mutant p53 occurs when a  
mutation in one TP53 allele in cancer cells 
occurs followed by loss of second wild type 
TP53 allele leading to loss of heterozygosity 
[13]. The mutation leads to three different phe-
notypes: loss of function (LOF), gain of function 
(GOF) and separation of function (SOF) muta-
tions. Loss of functions is one of the primary 
outcomes, where the mutant p53 results in 

loss of wild type p53 function. However, the 
stability of the p53 protein is controlled by 
MDM2 and MDMX interaction. Loss of sup- 
pressor functions of wild-type p53 occurs on 
protein accumulation in the nucleus of tumor 
cells. Uniform p53 accumulation is not found  
in all cancerous cells throughout the body. 
Unlike cancerous pancreatic tissues, liver 
metastasis and lymph node metastasis docu-
mented accumulation of p53. Hence, p53 
immunostaining may be used as a biomarker 
for identifying pre-cancerous cells, since p53 
accumulate in unstressed cells. The hotspot 
mutant codons 175, 245, 248, 249, 273 and 
282 often acquire novel oncogenic functions 
generating GOF. The oncogenic property arises 
due to: (i) induction of chromosomal instability 
by transactivating an isolated group of target 
genes in synergism, with transcription cofac-
tors such as peptidyl-prolyl cis-trans iso-mera- 
se (PIN1) and promyelocytic leukemia protein 
(PML) proteins, leading to tumor progression (ii) 
inhibition of DNA repair and epigenetic path-
ways: NF-kB, PDGFRβ, mevalonate, proteasom-
al integrins and (iii) stimulation of the Warburg 
Effect. Therapeutically, inhibition of GOF, reduc-
es cancer cell survival and metastasis [7, 19].

Alternatively, mutant p53 is a dominant-nega-
tive inhibitor of wild-type p53. Mediated by  
p21, wild-type p53 controls G1 checkpoint in 
cells lacking functional p53. Simultaneous 
expression of p53 in biochemical and cell-cul-
ture studies demonstrate that p53, binds to 
DNA as a tetramer comprising of the dimer of 
dimers [19]. Studies have concluded that a 
minimum of 3:1 ratio of DBD-mutant to wild 
type p53 is required for expression of p53 
activity [13]. Additionally, p63 and p73 are the 
family members of p53. These transcription 
factors have a similar functional organization 
as p53 comprising of (a) an N-terminal (b) a 
core domain (c) a C-terminal. The p63 and p73 
are found to induce senescence and maintain 
genetic stability. Therefore, a reduction in the 
activity of these proteins promotes cell prolif-
eration by inhibiting cell cycle checkpoints and 
apoptosis [19].

An experiment in mice with lung adenocarcino-
ma (p53R172H/+) showed that advanced 
tumors express elevated levels of p53. On 
determining its effects on tumorigenesis in 
mice, it was found that the allele p53R172H_g 
encodes R172H mutation. This mutation is 
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caused by a single nucleotide G deletion at the 
splice acceptor site resulting in decreased 
p53172H protein levels. The alteration further 
results in increased carcinoma and decreased 
lymphoma formation. On the contrary, allele 
p53R172H/R172H generates higher levels of 
p53 protein. This variant develops increased 
lymphomas followed by sarcomas, rather than 
carcinomas. Although experiments on mice 
concluded that the wild type and mutant p53 
function in a similar way but the mechanism by 
which it is stabilized in human tumors is un- 
known [19]. New therapeutic approaches have 
opened up due to their predominant expres- 
sion in several cancers as a therapeutic target, 
especially after the advent of precision medi-
cine. Therefore, a tailored therapeutic appro- 
ach based upon the wild-type and mutant p53 
protein, due to its effect on molecular carcino-
genesis is desirable.

p53 ubiquitination mechanistic details

Various post-translational modifications have a 
profound influence on the regulatory functions 
of a cell via their critical roles in stabilization of 
p53 and activation as a transcription factor. 
Ubiquitination is an important enzymatic post-
translational modification that regulates the 
stability and functions of p53 [20]. Protein  
ubiquitination involves the ligation of polypep-
tide-ubiquitin protein (~8500 Da), as mono-
mers or polymers to the lysine residue of the 
substrate protein [21, 22]. Protein ubiquitina-
tion is carried out by a three-step enzymatic 
cascade involving 3 enzymes: ubiquitin-activat-
ing enzymes (E1), ubiquitin-conjugating enzy- 
mes (E2), and ubiquitin ligases (E3). E3 en- 
zymes play a decisive role in the selection of 
the target lysine for ubiquitin attachment and 
determining the type of conjugation (lysine 
specificity) and ubiquitination (mono- and poly-
ubiquitination) [22-28]. The MDM2 gene is 
comprised of 12 exons and two p53 respon- 
sive elements in intron 1 and encodes for the 
489 amino acid oncoprotein MDM2. MDM2 
belongs to the RING family of E3 ubiquitin  
ligases [29].

MDM2 overexpression was reported in a wide 
range of cancers and is also associated with 
decreased level and function of p53 protein, 
leading to an increased risk of cancer deve- 
lopment and/or progression of tumors [30]. 
MDM2 can abrogate the apoptotic functions of 

p53 by targeting p53 for ubiquitin-mediated 
degradation, p53 export from the nucleus to 
the cytoplasm and negatively regulating p53 
transcriptional activity via binding of MDM2 to 
p53 transactivation domain [30-37]. MDM2 
ubiquitinates p53 at six major lysine residues-
K370, K372, K373, K381, K382, and K386, 
located in the C-terminus of the p53 protein 
[38]. Genetic amplification and inheritance of 
the single nucleotide polymorphism (SNP) 
found in the MDM2 promoter have been as- 
sociated with up-regulated MDM2 activity. 
MDM2 gene amplification elevated MDM2 
expression leading to MDM2 pathway attenua-
tion and consequent promotion of tumor pro-
gression. SNP309 found in the MDM2 promot-
er increased MDM2 RNA and protein levels  
and subsequently led to p53 pathway attenua-
tion. The MDM2 SNP309 was associated with 
accelerated tumor formation in hereditary as 
well as sporadic cancers [39, 40]. The antago-
nistic action of MDM2 toward p53, sets up a 
negative regulatory feed-back loop, where p53 
binds to p53-responsive elements located 
within the P2 promoter of MDM2 gene as a 
response to stress signals, to promote its tran-
scriptional activation that leads to p53 degra-
dation. This feedback loop explains a possible 
mechanism for maintaining the activity of  
p53 activity in normal cells, in absence of any 
stress [41, 42]. There is an elevated produc- 
tion of MDM2 with an increase in p53 levels 
and p53 transcriptional activity. A decrease in 
the interaction between MDM2 and p53 with a 
decrease in MDM2 protein levels and/or its ac- 
tivity in response to stress, stabilizes the p53 
protein [43]. MDM2 and p53 levels oscillate in 
this p53-MDM2 feedback loop, especially in 
response to stress [44, 45].

MDMX, is a structural homolog of MDM2 [46, 
47]. The MDMX gene is located on chromo-
some 1q32 encodes for the 490 amino acid 
MDMX [48, 49]. MDMX is a critical regulator of 
the expression and functions of the MDM2. 
MDMX hetero-oligomerizes with MDM2 via 
their C-terminal RING finger domains [50]. The 
interactions between these proteins can in- 
crease the MDM2 levels by interfering with 
MDM2 degradation [51]. Similar to MDM2, 
MDMX can bind to the p53 transactivation 
domain located in N-terminal region and cause 
inhibition of p53 transcriptional activity [46]. 
The MDMX protein, structurally homologous to 
MDM2, does not target p53 for degradation, 
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but stabilizes both p53 and MDM2 [52]. MDMX 
along with MDM2, synergistically inhibited the 
transactivation activity of p53 [50].

Therefore, drugs that target MDM2 and MDMX 
could be employed as a potential direct app- 
roach for activating the wild-type p53 through 
the following mechanisms:

1. Reducing the levels of MDM2 and MDMX in 
cancer cells.

2. MDM2 E3 ubiquitin ligase activity inhibition.

3. Selectively disrupting p53-MDM2 or p53-
MDMX N-terminal interaction [53].

A schematic representation of the MDMX inter-
action and transcriptional inhibition of p53 is 
shown in Figure 2.

Targeting p53-MDM2/MDMX interaction

The tumor suppressor gene TP53, is mutated  
in approximately 50% of all human cancers 
[54]. Under stress and physiological condi- 
tions, p53s tumor suppressor function is con-

trolled by physical interaction with MDM2 and 
MDMX that are negative modulators that weak-
ens or inhibits p53 [55]. MDM2 and MDMX 
oncoproteins exert their negative tumor sup-
pressor activity on p53, by various pathways:  
(i) reduced p53 transcriptional function th- 
rough physical interaction with the p53 NH2-
terminal domain [56]; (ii) MDM2 facilitates 
translocation of p53 from the nucleus to the 
cytoplasm through the MDM2 RING domain, 
inhibiting p53 transcription activity [57]; (iii) 
MDM2 ubiquitin E3 activity facilitates p53 
ubiquitination and proteasomal degradation 
[58]; (iv) the autoregulatory feedback loop 
between MDM2 and p53 plays an important 
role in reducing the presence of physiologi- 
cal p53 and suppressing cumulative p53 on 
stress stimuli [59]; (v) MDMX is strongly homol-
ogous to MDM2 [46, 47] and a negative p53 
regulator owing to its sequence similarity to 
MDM2 and its ability to inhibit overexpress- 
ed p53-induced transcription [60]. Therefore, 
MDM2 and MDMX are critical targets for the 
development of potential cancer therapy 
agents that reactivate p53. About half of all 
cancers have mutated TP53 types and 50% of 

Figure 2. Schematic diagram representing MDMX interaction and transcriptional inhibition of p53.
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tumors expressing wild-type p53 are potential 
candidates for p53 reactivation therapies. The 
most direct way to accomplish these goals  
is to develop potent inhibitors against MDM2 
and MDMX’s p53-binding pockets to avoid 
interaction with p53. There are currently sever-
al MDM2-p53 interaction small-molecule inhib-
itors in clinic. Studies reported that mutant 
reconfiguration to normal, i.e. active wild-type 
p53 conformation restores apoptosis and 
enhances tumor regression [61-63]. Identify- 
ing strategies to restore the homeostasis of 
MDM2 and MDMX functions in tumorigenesis 
can improve diagnostic and prognostic appro- 
aches in treating certain cancers.

Past literature or important discoveries related 
to drug development

Because of the p53-MDM2-MDMX feedback 
loop function in initiating and developing wild-
type p53-containing tumors, substantial rese- 
arch has been carried over the past decade to 

ular strategies of MDM2 inhibition aim at  
controlling the E3 ubiquitin ligase activity of 
MDM2 or by targeting the MDM2-p53 protein 
complex. Indeed, several molecules have been 
developed to target the MDM2-p53 axis in 
order to free p53 from MDM2 regulation and 
restore its onco-suppressor property [68-70].

A non-peptide small-molecule inhibitor with a 
1,2,4,5-tetrasubstituted-4,5-imidazoline struc-
ture known as nutlins, was reported by Vas- 
silev and coworkers in 2004 [71]. The nutlins 
(Nutlin-1, -2, and -3) were the first selective  
and potent MDM2 inhibitors, capable of inter-
rupting p53-MDM2 binding. Nutlin compounds 
induce stabilization of p53, stimulate p21 tar-
get genes, cell cycle arrest, and apoptosis [72]. 
Nutlin-3 (1, Figure 3), the most potent first- 
generation cis-imidazolines, is considered as 
the proof-of-concept molecule for demonstrat-
ing the pharmacological reactivation of p53 by 
antagonizing MDM2 protein. Further optimiza-
tion of the nutlin-3 structure led to the discov-

Figure 3. Chemical structure of nutlin-3a highlighting its p53 mimicking 
chemical features and the chemical structures of SERMs. Vicinal diphenyl 
structure of some SERMs is highlighted in blue.

identify small molecules or 
peptides that could precise- 
ly target individual protein 
molecules of this pathway to 
enhance anticancer therapy. 
The p53-MDM2-MDMX path-
way provides numerous mo- 
lecular targets for screening 
small molecules as potential 
therapies for wild type p53- 
harboring cancers [64]. Late- 
ly, many compounds, target- 
ing MDM2 and MDMX pro- 
teins have been identified to 
reactivate the wild-type p53 
form. Some of the identified 
molecules with promising pre-
clinical results have entered 
clinical trials [65-67].

MDM2 inhibitors

MDM2 oncogene is the prin- 
cipal downstream target of 
p53. It binds to the active 
transcriptional sites of p53, 
which leads to p53 re- 
pressive function. MDM2 in- 
hibitors are aimed at either 
blocking the expression of 
MDM2 or by hindering the 
physical interaction between 
MDM2 and p53. Other molec-
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Table 1. p53-MDM2 and p53-MDMX inhibitors in clinical trials

Class Compounds 
Nature Compound Status NCT  

Identifier
Small molecule MDM2 inhibitors Cis-imidazoline

Cis-pyrrolidine
RG7112 Phase I study in advanced  

solid, hematological cancers, and 
liposarcoma (completed)

NCT00559533

RG7388 (or RO5503781 or 
idasanutlin)

Phase I study in advanced solid cancers 
(completed)

NCT01462175

RG7388 (or RO5503781 
idasanutlin)

Phase I study in polycythemia vera and 
essential thrombocythemia (completed)

NCT02407080

RG7388 (or RO5503781 
idasanutlin) with cytarabine

Phase I study in acute myelogenous 
leukemia (completed)

NCT01773408

Spiro-oxindole SAR405838 (or MI-77301) Phase I study neoplasm malignant 
(completed)

NCT01636479

Piperidinone AMG232 Phase I study in advanced solid cancers 
and multiple myeloma (completed)

NCT01723020

AMG-232 (KRT-232) Phase I study in radiation therapy in 
treating patients with soft tissue  
sarcoma (recruiting)

NCT03217266

MDM2/X inhibitors Peptide ALRN-6924 Phase I study in advanced solid tumors 
and lymphoma (completed)

NCT02264613

Dual target MDM2/MDMX Inhibitors Peptide ALRN-6924 with cytarabine Phase I study-resistant (refractory) 
solid tumor, brain tumor, lymphoma or 
leukemia (recruiting)

NCT03654716

ALRN-6924 with paclitaxel A Phase Ib study in wild-type TP53 
advanced or metastatic solid tumors 
including estrogen-receptor positive 
breast cancer (recruiting)

NCT03725436

ALRN-6924 with topotecan A Phase Ib/2 study in small cell lung 
cancer (recruiting)

NCT04022876

Source: http://www.clinicaltrials.gov, accessed 2nd May 2021.

ery of RG7112, Table 1), [73]. Nutlin-3a shows 
efficacy in many tumor models including acute 
myeloid leukemia [74], chemoresistant neuro-
blastoma [75], and multiple myeloma [76]. 
RG7112, a potent and selective p53-MDM2 
interaction inhibitor with promising oral bio-

availability, was identified from the nutlin  
family [77]. The first MDM2 inhibitor RG7112 
(or RO5045337), entered human clinical trials 
and showed superior cellular potency, pharma-
cokinetic parameters, chemical stability and 
MDM2 affinity compared to nutlin-3a [77].  
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The findings on the therapeutic potential of 
RG7112 in patients with MDM2-amplified lipo-
sarcoma were obtained in a trial of the Eur- 
opean Community (EudraCT number: 2009-
015522-10). Although the study found that the 
drug was effective in inhibiting MDM2 and p53 
activation in this form of tumor in vivo, many 
clinical adverse drug-related events, including 
haematological toxicity, were highlighted in the 
study, rendering long-term treatment with 
RG7112 a major challenge [78].

Furthermore, 4-benzodiazepine-2,5-dione (BDP) 
are another class of antagonists that block 
p53-MDM2 interaction [79]. For example, TDP- 
521252 and TDP665759 benzodi-azepinedi-
one derivatives, have been reported to stabi- 
lize and increase p53 transcriptional function, 
leading to a decrease in the proliferation of 
wild-type p53 expressing tumor cells [80]. 
Other compounds include spirooxindoles (or 
(MI compounds) such as MI-63 and MI-219 
that inhibit the p53-MDM2 interaction [81-84]. 
MI-219 has a high binding affinity, good oral 
bioavailability, and better pharmacokinetic 
parameters than MI-63 compound [83]. Spir- 
ooxindole MI-77301 (SAR405838, Table 1), 
from Sanofi exhibited good anti-tumor activity 
[85]. The isoquinolinones and piperidone bas- 
ed small molecules are also reported to tar- 
get MDM2 and MDMX [86-90]. Idasanutlin 
(RG7388, Table 1) was developed as a second 
generation MDM2 inhibitor through analyzing 
the structure of RG7112 [91]. In wild-type p53 
cell lines, RG7388 activates the p53 pathway 
which enhanced apoptosis of cells. Moreover, 
tumor proliferation was suppressed in xeno-
graft assays. Currently, RG7388 and cytara- 
bine in combination have entered a phase III 
clinical trial for patients with acute myeloid leu-
kemia [73].

MDM2 and MDMX dual target inhibitor

Many compounds are in the drug discovery 
pipeline which simultaneously target both 
MDM2 and MDMX by disrupting p53-MDM2 
and p53-MDMX interactions. RO-5963 is a 
dual inhibitor which interferes with p53- 
MDM2-MDMX interaction by heterodimerizing 
the target genes [92]. Studies showed IC50 
value of 17 nM and 25 nM for MDM2 and 
MDMX respectively [93]. However, very few 
dual inhibitors have been identified so far.  
The pyrrolopyrimidine-based compound report-

ed [94], binds to both MDMX and MDM2. The 
compound OXAZ-1 (a tryptophanol-derived oxa-
zolopiperidone lactam) and the compound 
DIMP53-1 (a tryptophanol-derived oxazolo-
isoindolinone) [95, 96] revealed in vitro, to  
have p53-dependent antitumor activity and 
DIMP53-1 showed in vivo antiproliferative, pro-
apoptotic and antiangiogenic p53-dependent 
properties.

Currently, there are three classes of MDM2 
small molecule inhibitors that have high (nM) 
affinity and specificity in disrupting MDM2-p53 
binding [71]. However, these compounds are 
weak inhibitors of the MDMX-p53 interaction 
(Ki values of 30-70 µM) [97]. Nutlin-3 is the  
first and most well studied compound in the 
p53-MDM2 domain [98]. Spiro-oxindole deriva-
tives constitute a second family of potent and 
highly selective inhibitors of the p53-MDM2 
interaction [99]. MI-219 and MI-63, the most 
optimised spirooxindoles derivatives, bind to 
MDM2 with >1,000-fold affinity than the p53 
wild-type peptide (Ki value of 5-6 nM). MI-219/
MI-63 and Nutlin-3 derivatives have demon-
strated necessary cellular downstream effects 
and are now in advanced preclinical develop-
ment or early phase clinical trials [100]. The 
third group of MDM2-p53 antagonists relies on 
a benzodiazepinedione core scaffold [79]. The 
optimized compounds in this series were able 
to suppress the development of wild-type p53 
cells with IC50s in the 7-30 µM range and 3-9-
fold selectivity for cells with functional p53 
[80]. Su et al., 2019, 2021 [101, 102] investi-
gated the inhibitory effect of nine bicyclic-β-
proline homo-oligomer derivatives on the p53-
MDM2/MDMX protein-protein interaction. Am- 
ong these compounds, C1-substituted bicyclic 
β-proline trimer C-3 and tetramer C-6, which 
take trans-helix conformations, significantly 
inhibited p53-MDM2/MDMX binding and also 
been demonstrated that non-naturally occur-
ring, stable helical trimers of bicyclic-amino 
acids (Abh) with all-trans amide bonds can 
inhibit the p53-MDM2/MDMX-helix-helix inter-
action, which regulates p53 function.

Recently Li et al. have reported on dual inhibi-
tion of p53-MDM2/MDMX inter-actions by pep-
tides, resulting in the activation of p53 in vitro 
and in vivo [103]. Philippe et al. reported that 
angler peptides which are obtained by conju-
gating KD3, a noncell permeable, potent, and 
specific peptide dual inhibitor of p53-MDM2/
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MDMX interaction were able to activate the 
p53 pathway in cancer cells [104]. A series of 
D-amino acid mutational PMI analogues as 
potent dual peptide inhibitors of p53-MDM2/
MDMX interactions have been reported [105]. 
Pairawan et al. reported enhanced antitumor 
efficacy of ALRN-6924, a dual inhibitor of 
MDM2 and MDMX, in hormone receptor-posi-
tive (ER+) breast cancer cell line model [106].  
In wild-type p53 multidrug-resistant breast  
cancer, Fan et al. demonstrated that a re- 
combinant dual-target MDM2/MDMX inhibitor 
could reverse doxorubicin resistance by acti- 
vating the TAB1/TAK1/p38 MAPK pathway 
[107].

Clinical trials with compounds targeting p53-
MDM2/MDMX

Numerous small molecule drugs, targeting 
p53-MDM2/MDMX pathways have entered  
into clinical trials. APR-246 is a small molecule 
that has shown the ability to reactivate mutat-
ed and inactivated p53 protein by restoring 
wild-type p53 conformation and function in 
many types of cancer clinical trials [108]. Re- 
cently it received breakthrough therapy desig-
nation by the FDA in combination with azaciti-
dine for the treatment of TP53 Mutant My- 
elodysplastic Syndromes (MDS), ClinicalTrials.
gov Identifier: (NCT03745716). An overview of 
small molecules that inhibit p53-MDM2 and 
p53-MDMX interactions undergoing clinical tri-
als are shown in the Table 1.

Drug repurposing strategy to target p53-
MDM2/MDMX interactions

In the last decade, several reports have app- 
eared in the literature on the discovery and 
development of novel molecules as inhibitors 
of p53-MDM2 or p53-MDMX interactions or 
dual inhibitors of p53-MDM2/MDMX interac-
tions [53, 109-117]. Few promising candidates 
are also in various phases of clinical trials as 
therapeutics for cancer treatment (Table 1). 
Drug repurposing where new therapeutic indi-
cations for known marketed drugs are investi-
gated, is another viable strategy to discover 
anticancer agents that can lead to significant 
decrease in the time and cost involved in the 
drug discovery process [118, 119]. In early 
studies on drug repurposing strategy for p53/
MDM2 interaction inhibitors, Warner and co-
workers used computational modelling to dock 

>3000 US FDA approved drugs to determine 
their potential to inhibit p53-MDM2 interaction 
[120]. These studies identified 15 FDA appro- 
ved drugs as inhibitors of p53-MDM2 interac-
tion. In a recent development, the repurposing 
potential of the small molecule protoporphyrin 
IX (PpIX) was demonstrated in vitro and it was 
shown to be a dual inhibitor of p53/MDM2 and 
p53/MDMX interactions [121-123]. Studies on 
the drug repurposing potential of another relat-
ed FDA approved drug verteporfin is ongoing 
[117]. The antimalarial drug amodiaquine is 
also known to prevent p53/MDM2 interactions 
[123].

Drug repurposing potential of selective estro-
gen receptor modulators (SERMs)

SERMs are a class of agents that are used to 
treat a number of conditions in women includ-
ing osteoporosis, breast cancer and postmeno-
pausal symptoms [124, 125]. Both tamoxifen 
and raloxifene are used to treat breast cancer 
[126]. Interestingly, other SERMs such as laso- 
foxifene which is used to treat osteoporosis 
and vaginal atrophy, and ormeloxifene which is 
currently used as an oral contraceptive, are 
reported to exhibit anticancer activity in treat-
ing breast cancer [127-131]. While their thera-
peutic activities are attributed to estrogen re- 
ceptor (ER) binding, SERMs are also known to 
exhibit other beneficial effects such as anti-
inflammatory activity [132] and inhibition of cell 
proliferation via ER-independent mechanisms 
[133] which suggests their ability to bind to 
multiple molecular targets in vivo. Furthermore, 
we were intrigued by the anticancer activity of 
one of the SERMs lasofoxifene, which recently 
received a fast-track designation from US FDA 
to treat ER-positive/HER2-negative breast can-
cers in women, and its phase II clinical trials  
are in progress (NCT03781063). The exact 
mechanisms of SERMs in cancer therapy is not 
clear. Therefore, we were interested in investi-
gating the drug repurposing potential of laso- 
foxifene and other related SERMs in targeting 
p53-MDM2/MDMX interactions. It should be 
noted that similar to the dual p53/MDM2 and 
p53/MDMX inhibitor nutlin-3a, lasofoxifene 
also possess a vicinal diphenyl ring substitu-
ents linked to sp3 carbons (Figure 3). The pro-
tein p53 is known to undergo interaction with 
the N-terminal segment of MDM2 through 
hydrophobic contacts via three critical amino 
acids Phe19, Trp23 and Leu26 respectively 
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[53, 109, 110, 134]. The X-ray crystal structure 
data of nutlin-3a and other small molecules 
with p53/MDM2 has demonstrated a 3-point 
pharmacophore model known as the “thumb-
index-middle” fingers, as the minimum struc-
tural requirement to design p53/MDM2 inter-
action inhibitors [53, 110, 111, 134, 135]. The 
2-isopropoxy substituent of nutlin-3a mimics 
Phe19 of p53 whereas the two chlorophenyl 
substituents mimic Trp23 and Leu26 of p53 
protein (Figure 3).

Structural analysis of SERMs 4-hydroxytamoxi-
fen (the active metabolite of tamoxifen) and 
other marketed SERMs raloxifene, bazedoxi-
fene, lasofoxifene, ormeloxifene and ospemi-
fene (Figure 3) shows that they satisfy the 
3-point pharmacophore structural requirement 
for inhibiting p53/MDM2 interactions.

Modelling studies of SERMs as inhibitors of 
p53/MDM2 interactions

Molecular docking studies of SERMs (Figure 4) 
were carried out using the solved structure of 
p53/MDM2 [136]. The CDOCKER algorithm 
was used (Supplementary Materials) and the 
molecular docking protocol was validated first 
by docking the p53/MDM2 interaction inhibi- 
tor nutlin-3a. The top ranked binding pose of 
nutlin3a showed similar binding mode (Figure 
4A) as per the solved structure (all heavy atom 
RMSD =1.13 Å). Figure S1 (Supplementary 
Materials), shows the comparison of nutlin-3a 
crystal structure binding mode with the docked 
model. Nutlin-3a interacts at 3-key hydropho-
bic sites in the p53 binding domain of MDM2 
which includes the interactions of two 4-chlo- 
rophenyl substituents in the hydrophobic pock-

Figure 4. Binding modes of (A) nutlin-3a (green ball and stick cartoon), (B) 4-hydroxytamoxifene (green ball and 
stick cartoon) and ospemifene (light blue ball and stick cartoon), (C) raloxifene (orange ball and stick cartoon) and 
bazedoxifene (dark blue ball and stick cartoon), (D) lasofoxifene (purple ball and stick cartoon) and ormeloxifene 
(light blue ball and stick cartoon) in the p53 binding domain of MDM2 (pdb id: 4HG7).
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ets lined by Leu54, His96, Ile99, Tyr100 and 
Leu54, Leu57, Ile61 respectively via π-π sta- 
cked and π-alkyl interactions (distance <5 Å).  
In addition, the 2-isopropoxy-4-methoxyphenyl 
substituent also undergoes hydrophobic inter-
actions with Val93 (distance <5 Å). Comparing 
the binding modes of 4-hydroxytamoxifen (Fi- 
gure 4B) shows that the C5 4-chlorodiphenyl 
and C2 ethyl substituents were oriented in the 
hydrophobic region comprised of Leu54 and 
Ile61, which was similar to nutlin-3a. The C2 
dimethylaminoethoxyphenyl substituent was in 
contact with Val93 and the dimethylamino 
group underwent cation-π interaction with 
Tyr67. Unlike nutlin-3a, 4-hydroxytamoxifen 
was not close to His96, Ile99 and Tyr100 and 
failed to make any contacts. The related 
(Z)-diphenyl derivative ospemifine, underwent 
superior interactions in the p53 binding pock-
ets of MDM2 compared to 4-hydroxytamoxifen 
with its three phenyl rings and the ethylchloro 
substituent in contact with hydrophobic amino 
acids Leu54, Ile61, Met62, Val93 and Ile99 
(Figure 4B). Interestingly, the terminal hydroxyl 
group of 4-phenoxyethanol substituent under-
went hydrogen bonding interaction with Lys51. 
These predicted binding modes suggest that 
4-hydroxytamoxifen is able to interact with at 
least two hydrophobic sites in MDM2 binding 
whereas ospemifine is able to interact with 
three hydrophobic sites in MDM2. Comparing 
the predicted binding modes of SERM deriva-
tives raloxifene and bazedoxifene (Figure 4C) 
shows that both the benzothiophene and in- 
dole rings underwent π-π stacked interactions 

with His96 and π-alkyl interactions with Leu54 
(distance <5 Å). Bazedoxifene C2 phenolic sub-
stituent underwent additional interactions in 
the MDM2 binding pockets unlike raloxifene 
and was in contact with Met62 and Val93. In 
addition, the C2 phenolic substituent under-
went hydrogen bonding interaction with Gln59 
(Figure 4C). Bazedoxifene exhibits linear con-
formation and was able to interact with all the 
three key hydrophobic regions in the MDM2 
binding pockets whereas raloxifene was able  
to interact in only one of the MDM2 binding 
sites. Comparing the predicted binding modes 
of pyrrolidine containing bicyclic SERMs laso- 
foxifene and ormeloxifene, shows that they 
were able to interact with at least two key 
hydrophobic regions of MDM2 binding pocket 
(Figure 4D). Ormeloxifene exhibited better 
interaction in the MDM2 binding site with the 
C7 methoxy substituent, undergoing π-alkyl 
interactions with His96, Ile99 and Tyr100 (dis-
tance <5 Å) which was not observed for laso- 
foxifene. Figure S2 (Supplementary Materials) 
shows a 2D-interaction map of ormeloxifene 
interacting in the p53 domain of MDM2 high-
lighting the key amino acids involved in ligand 
binding. These molecular docking studies sug-
gest that SERMs have the potential to bind to 
p53 binding sites in MDM2 and have the po- 
tential to be repurposed as inhibitors of p53/
MDM2 interactions in cancer therapy.

In order to assess the binding of SERMs with 
MDM2 further, we also calculated the ligand-
receptor binding energy using the equation 
Ebinding = Energy of complex (Eligand-receptor) - Energy 
of ligand (Eligand) - Energy of receptor (Ereceptor), 
with negative values indicating stable ligand-
receptor complex and positive values indi- 
cating high energy complex (Table 2). These 
studies show that among the SERMs evaluat-
ed, the (Z)-diphenyl derivative ospemifine 
exhibits greater binding to MDM2 (Ebinding 
=-22.40 kcal/mol) followed by bazedoxifene 
(Ebinding =-17.71 kcal/mol) and ormeloxifene 
(Ebinding =-17.06 kcal/mol). None of the SERMs 
were able to exhibit similar binding energy as 
the reference compound nutlin-3a (Ebinding 
=-32.38 kcal/mol) which suggests that SERMs 
are likely to exhibit weaker binding affinity 
toward MDM2 compared to nutlin-3a. This also 
suggests that molecules that are able to inter-
act with the 3-key hydrophobic sites of MDM2 
can exhibit better inhibition of p53/MDM2 in- 

Table 2. Ligand-receptor complex binding 
energy (Ebinding)

1 for SERMs docked in MDM2

Compound Name Ebinding in kcal/mol-1

4-Hydroxytamoxifen -8.37
Ospemifene -22.40
Raloxifene -12.32
Bazedoxifene -17.71
Lasofoxifene -11.23
Ormeloxifene -17.06
Nutlin-3a -32.38
1The binding energy was calculated using the equation 
Ebinding = Energy of complex (Eligand-receptor) - Energy of ligand 
(Eligand) - Energy of receptor (Ereceptor) for the top ranked 
pose obtained using the CDOCKER algorithm. The com-
putational software Discovery Studio Structure-Based-
Design, BIOVIA Inc., USA was used.
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teractions. It should be noted that small mole-
cules that are able to undergo efficient interac-
tions in the hydrophobic site closer to the lid 
region of MDM2 at the N-terminal, and are able 
to keep Tyr100 in open conformation, exhibit 
better inhibition [110].

Modelling studies of SERMs as inhibitors of 
p53/MDMX interactions

The binding interactions of SERMs (Figure 5) in 
the p53 binding domain of MDMX were investi-
gated using the solved structure of MDMX 
[137]. Initially, molecular docking protocol was 
validated by docking the reference compound 
nutlin-3a in the p53 binding domain (Figure 
5A). The binding mode of nutlin-3a was similar 
to the solved structure (all heavy atom RMSD 

=2.05 Å). Figure S3 (Supplementary Materials), 
shows the comparison of nutlin-3a crystal 
structure binding mode with the docked model. 
The interaction of nutlin-3a in the p53 binding 
domain is dominated by hydrophobic contacts 
with Met53, Leu56, Ile60, Met61 and Val92 
(distance <5 Å). Nutlin-3a is a known inhibitor 
of p53/MDMX interaction although it is more 
selective and potent inhibitor of p53/MDM2 
interaction [114, 138]. Furthermore, inhibiting 
p53/MDMX interaction is more challenging  
due to subtle differences in the amino acids 
that line the p53 binding domain. For example, 
MDMX has a bulky Met53 instead of smaller 
Leu54 in MDM2. This decreases the size of the 
binding pocket in MDMX and prevents the 
deeper interactions of ligands in the p53 bind-
ing domain [53, 114].

Figure 5. Binding modes of (A) nutlin-3a (green ball and stick cartoon), (B) 4-hydroxytamoxifene (green ball and 
stick cartoon) and ospemifene (light blue ball and stick cartoon), (C) raloxifene (orange ball and stick cartoon) and 
bazedoxifene (dark blue ball and stick cartoon), (D) lasofoxifene (purple ball and stick cartoon) and ormeloxifene 
(light blue ball and stick cartoon) in the p53 binding domain of MDMX (pdb id: 2N14).
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Predicted binding modes of SERMs show that 
the (Z)-diphenyl derivatives 4-hydroxytamoxi-
fene and ospemifene were able to undergo 
interactions in the p53 binding domain of 
MDMX (Figure 5B). Ospemifene exhibited  
superior hydrophobic interactions and was in 
contact with Met53, Leu56, Ile60, Leu65, 
Val92 and Leu98 (distance <5 Å). The terminal 
hydroxyl group of 4-phenoxyethanol substitu-
ent underwent hydrogen bonding interaction 
with Gln71 backbone (distance =1.78 Å). 
Investigating the binding modes of raloxifene 
and bazedoxifene (Figure 5C) shows that the 
aromatic heterocycles benzothiophene and 
indole rings of raloxifene and bazedoxifene 
underwent π-alky interactions with Met53 (dis-
tance <5 Å), whereas the phenolic rings were  
in contact with Val92 (distance <5 Å). Baze- 
doxifene in general, was in close contact with 
amino acids in the p53 binding domain com-
pared to raloxifene. Furthermore, top binding 
modes of lasofoxifene and ormeloxifene shows 
that they also underwent mostly hydrophobic 
interactions (Figure 5D), with ormeloxifene 
undergoing several π-π and π-alkyl interactions 
with Met53, Met61, Met65, Phe90, Val92, 
Pro95 and Leu98 (distance <5 Å). Figure S4 
(Supplementary Materials) shows a 2D-inter- 
action map of ormeloxifene interacting in the 
p53 domain of MDMX, highlighting the key 
amino acids involved in ligand binding. Binding 
energy calculations (Table 3) identified both 
ospemifene (Ebinding =-15.59 kcal/mol) and 
ormeloxifene (Ebinding =-15.36 kcal/mol) as 
promising drugs with potential to inhibit p53/
MDMX interactions. The reference compound 

nutlin-3a exhibited superior binding compared 
to the SERMs studied (Ebinding =-27.18 kcal/mol).

These studies show that SERMs have the 
potential to exhibit dual inhibition of p53/
MDM2/MDMX interactions. However, they are 
more likely to exhibit weaker inhibition of p53/
MDMX interactions compared to their inhibi- 
tion activity toward p53/MDM2 (Tables 2 and 
3). A recent study on developing dual MDM2/
MDMX inhibitors, proposes a 5-point pharma-
cophore model instead of the 3-point pharma-
cophore model to design novel inhibitors [114]. 
This also suggests that to obtain greater inhibi-
tion of p53/MDMX interaction, ligands should 
be able to target additional hydrophobic area 
consisting of Leu33, Val52 and Leu106. None 
of the SERMs studied here can reach this site, 
which explains their weaker binding affinity 
toward MDMX binding site. Yet, SERMs have 
the potential to exhibit dual inhibition p53/
MDM2/MDMX interactions, which suggests 
their repurposing to treat a wide range of can-
cers. Interestingly, our computational studies 
identified ormeloxifene as a promising dual 
inhibitor of p53/MDM2/MDMX interaction. 
This drug is marketed as a popular contracep-
tive in India with demonstrated safety and effi-
cacy [130]. Ormeloxifene can also be consid-
ered as a potential treatment option for me- 
norrhagia [139-141]. Ormeloxifene has been 
reported to be a SERM with good therapeutic 
and less toxicity profile, and as a potential  
cost-effective treatment option for breast, cer-
vical, ovarian, prostate, chronic myeloid leuke-
mia and head and neck cancers by modulation 
of multiple pathways [142-148]. Many chemo-
therapeutic agents have been reported to 
exhibit ovarian toxicity, hormone disturbances 
and menorrhagia that may lead to significant 
patient discomfort, necessitate the administra-
tion of blood products to account for the blood 
loss, delay or interrupt chemotherapeutic treat-
ments, and consequently result in poor treat-
ment outcomes [149-151]. Hence ormeloxifene 
can be potentially used to explore its role in 
dual management of cancer and chemotherapy 
induced menorrhagia in female cancer patients 
of reproductive age. The potential cancer tar-
gets for the p53/MDM2/MDMX inhibitor thera-
py should possess wild-type TP53, MDM2 and 
MDMX gene. The likely proportion of patients 
with various types of cancer who are eligible for 
the p53/MDM2/MDMX inhibitor therapy are 
shown in the Table S1. Table S2 summarizes 
the potential cancer histologies which has p53 

Table 3. Ligand-receptor complex binding 
energy (Ebinding)

1 for SERMs docked in MDMX

Compound Name Ebinding in kcal/mol-1

4-Hydroxytamoxifen -9.28
Ospemifene -15.59
Raloxifene -11.12
Bazedoxifene -14.25
Lasofoxifene -14.55
Ormeloxifene -15.36
Nutlin-3a -27.18
1The binding energy was calculated using the equation 
Ebinding = Energy of complex (Eligand-receptor) - Energy of ligand 
(Eligand) - Energy of receptor (Ereceptor) for the top ranked 
pose obtained using the CDOCKER algorithm. The com-
putational software Discovery Studio Structure-Based-
Design, BIOVIA Inc., USA was used.
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mutational status and overexpression of MDM2 
and MDMX that could be targeted by SERMs.
Therefore, our studies warrant further research 
to investigate the repurposing potential of 
ormeloxifene and other SERMs in cancer thera-
py as dual p53/MDM2/MDMX inhibitors.

Conclusion

Recent advances in cancer biology have shown 
that targeting the p53/MDM2/MDMX axis is a 
feasible approach to discover novel anticancer 
agents, to treat a wide variety of cancers. In 
this regard, several small molecules have been 
successfully designed to prevent the p53/
MDM2 and p53/MDMX interactions and some 
of these inhibitors are at various stages of clini-
cal trials. Developing dual inhibitors of p53/
MDM2/MDMX is more challenging and recent 
research efforts are aimed in this direction. 
Drug repurposing is an attractive approach to 
identify dual p53/MDM2/MDMX inhibitors. Our 
computational modelling studies have shown 
that novel repurposing of SERMs for dual tar-
geting of the p53/MDM2 and p53/MDMX inter-
actions might be a potential alternative to treat 
wild-type p53 tumors. Further studies using 
preclinical models are required to evaluate the 
therapeutic potential of SERMs in cancer 
therapy.
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Supplementary Materials

Materials and methods

Preparation of nutlin-3a and SERMs

The molecular docking studies were carried out using the computational software Discovery Studio (DS) 
Structure-Based-Design (SBD) from Dassault Systemes Biovia Corp. USA (v20.1.0.19295). The crystal 
structures of SERMs nutlin-3a, 4-hydroxytamoxifene (pdb id: 3ERT), raloxifene (pdb id: 1ERR), bazedoxi-
fene (pdb id: 4XI3) and lasofoxifene (pdb id: 2OUZ), were extracted from the RCSB protein data bank 
(rcsb.org) [31]. These structures were prepared using the Small Molecules module in DS using CHARMm 
force field at pH 7.4. The structures of ormeloxifene, and ospemifene were built in 2D using ChemDraw 
Ultra 19.1 (PerkinElmer Informatics Inc. USA) and were converted to 3D using the Small Molecules mod-
ule in DS using CHARMm force field and were minimized using the Smart Minimizer with 2000 minimiza-
tion steps (RMS gradient =0.01 kcal/mol) and distance dependent dielectric constant at pH 7.4.

Preparation of MDM2 and MDMX proteins for molecular docking

The solved structures of MDM2 and MDMX bound to nutlin-3a were obtained from RCSB data bank (pdb 
id’s 4HG7 and 2N14 respectively) [39]. The NMR solution structure of MDMX (pdb id: 2N14) reports 
20-atomic coordinates/models. We used the first model (2N14_model_1) for small molecule docking 
studies. The proteins were prepared after removing water using the Prepare Proteins option under the 
Macromolecules module in DS using CHARMm force field. A binding sphere of 10 Å was prepared using 
the Receptor-Ligand Interactions module in DS after selecting the bound ligand nutlin-3a. The ligand 
was deleted and molecular docking studies were carried out using the 3D structures of nutlin-3a and 
the SERMs 4-hydroxytamoxifene, raloxifene, bazedoxifene, lasofoxifene, ormeloxifne and ospemifene 
prepared earlier in DS. The CDOCKER algorithm [40, 41] in the Receptor-Ligand Interactions module, 
was used for molecular docking studies. The CDOCKER algorithm is based on a simulated annealing 
protocol [40] and included 2000 heating steps to reach 700 K target temperature followed by 5000 
cooling steps and a target temperature of 300 K. The molecular docking protocol for MDM2 and MDMX 
was validated by docking the known ligand nutlin-3a and by comparing the root-mean-square deviation 
(RMSD) for all the heavy atoms in Å units with the solved binding mode of nutlin-3a. The RMSD was 
calculated using the Structure module in DS. The top 10 docked binding modes of SERMs were evalu-
ated based on the CDOCKER energy and CDOCKER interaction energy scores. The ligand-protein inter-
actions for the top ranked binding modes were evaluated by investigating the type of polar and nonpolar 
interactions and their distance parameters.

Binding energy calculation of nutlin-3a and SERM complex with MDM2 and MDMX proteins

The top ranked binding modes of nutlin-3a and SERMs 4-hydroxytamoxifene, raloxifene, bazedoxifene, 
lasofoxifene, ormeloxifne and ospemifene obtained from the CDOCKER algorithm were further evaluat-
ed by calculating their binding energies (in kcal/mol) using the Calculate binding energies option in the 
Receptor-Ligand Interactions module in DS. The equation Ebinding = Energy of complex (Eligand-receptor) - 
Energy of ligand (Eligand) - Energy of receptor (Ereceptor), the implicit solvent model Generalized Born with a 
simple Switching (GBSW) function, CHARMm force field and Smart Minimizer with 1000 steps of ligand 
minimization (RMS gradient =0.001 kcal/mol) were used to calculate ligand-receptor binding energy 
[41, 42].
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Figure S1. Comparison of the binding mode of nutlin-3a (stick cartoon, blue color) obtained using the CDOCKER 
docking algorithm, with the crystal structure of nutlin-3a (stick cartoon, yellow color) in the p53 binding domain of 
MDM2 (PDB ID: 4HG7). Hydrogen atoms are not shown to enhance clarity.

Figure S2. 2D Interaction map of ormeloxifene in the p53 binding domain of MDM2 (PDB ID: 4HG7). Hydrogen 
atoms are not shown to enhance clarity.
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Figure S3. Comparison of the binding mode of nutlin-3a (stick cartoon, blue color) obtained using the CDOCKER 
docking algorithm, with the crystal structure of nutlin-3a (stick cartoon, yellow color) in the p53 binding domain of 
MDMX (PDB ID: 2N14). Hydrogen atoms are not shown to enhance clarity.

Figure S4. 2D Interaction map of ormeloxifene in the p53 binding domain of MDMX (PDB ID: 2N14). Hydrogen at-
oms are not shown to enhance clarity.
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Table S1. Percentage breakdown of various cancer types having unaltered p53, MDM2 and MDMX 
gene mutations, which are candidates for p53/MDM2/MDMX inhibitor therapy

S. No. Cancer type
% of 

unaltered 
p53

% of 
unaltered 

MDM2

% of 
unaltered 

MDMX

Sample 
size Reference

1 Pilocytic Astrocytoma 100 100 100 96 [1]
2 Pediatric Neuroblastoma 100 100 100 1089 [2]
3 Uveal Melanoma 100 100 100 80 [3]
4 Adenoid Cystic Carcinoma 100 100 100 65 [4]
5 Thyroid Carcinoma 99.6 100 100 490 [3]
6 Pheochromocytoma and Paraganglioma 99.4 100 100 178 [3]
7 Testicular Germ cell cancer 98.6 100 N/A 145 [3]
8 Myeloproliferative Neoplasm 98 100 99.3 151 [5]
9 Pediatric Wilms’ tumor 97.7 100 100 657 [6]
10 Renal clear cell carcinoma 97.3 100 100 402 [3]
11 Thymoma 97 100 100 123 [3]
12 Medulloblastoma 96 100 100 125 [7]
13 Anaplastic Oligodendroglioma and anaplastic oligoastrocytoma 95 100 100 22 [8]
14 Cystic tumor of Pancreas 94 100 100 32 [9]
15 Histiocytosis cobemtinib 93 100 100 33 [10]
16 Chronic lymphocytic leukemia 93 100 99.8 537 [11]
17 Ewing sarcoma 93 100 100 112 [12]
18 Adenoid cystic carcinoma project 93 99.7 99.4 1049 [13]
19 Cervical squamous cell carcinoma 92 99.3 100 291 [3]
20 Myelodysplastic syndrome 91 99.9 99.9 1049 [14]
21 Diffuse large B cell lymphoma 91 100 100 1001 [15]
22 Primary CNS Lymphoma 90 100 100 19 [16]
23 Malignant peripheral nerve sheath tumor 87 100 100 15 [17]
24 Metastatic melanoma 86 98.2 99.1 110 [18]
25 Mesothelioma 84 100 100 86 [3]
26 Cholangiocarcinoma 77 99.5 100 195 [19]
27 Prostate adenocarcinoma 72 99.9 99.7 1465 [20]
28 Liver hepatocellular carcinoma 70 99.7 100 366 [3]
29 Glioblastoma Multiforme 69 98.7 99.2 397 [3]
30 Squamous cell carcinoma of vulva 67 100 100 15 [21]
31 Breast cancer 66 N/P N/P 2509 [22, 23]
32 Uterine corpus endometrial carcinoma 63 98.7 98.1 517 [3]
33 Glioma 60 99.8 98.8 812 [24]
34 Bladder cancer 52 98.8 99.5 412 [25]
35 Stomach adenocarcinoma 51 98.6 98.4 436 [3]
36 Non-Small cell lung cancer 46 99.3 99 915 [26]
37 Esophageal carcinoma 40 98.8 99.2 518 [27]
38 Ampullary carcinoma 38 100 98.7 160 [28]
39 Head and neck squamous cell carcinoma 31 99.4 99.8 523 [29]
40 Metastatic colorectal cancer 27 99.5 99.6 1134 [30]
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Table S2. Summary of TP53/MDM2/MDMX landscape analysis

S. No. Cancer type Sample 
size (all)

TP53  
mutation

mRNA expression (high)
Study

MDM2 MDMX
1 Uveal melanoma 80 0 (80) 7 (80) 4 (80) [31]
2 Pediatric Neuroblastoma 1089 0 (1089) 6 (143) 7 (143) [2]
3 Thyroid carcinoma 500 2 (490) 25 (498) 16 (498) [32]
4 Pheochromocytoma and Paraganglioma 178 1 (178) 7 (178) 14 (178) [33]
5 Testicular Germ Cell Tumors 149 2 (145) 18 (149) 12 (149) [34]
6 Pediatric Wilms’ tumor 657 15 (657) 13 (130) 35 (130) [6]
7 Kidney Renal clear cell carcinoma 512 11 (402) 34 (510) 28 (510) [32]
8 Thymoma 123 2 (123) 4 (119) 2 (119) [33]
9 Cervical squamous cell carcinoma 297 23 (291) 19 (294) 30 (294) [35]
10 Cholangiocarcinoma 36 4 (36) 3 (36) 8 (36) [32]
11 Diffuse Large B-Cell Lymphoma 48 5 (41) 2 (48) 2 (48) [32]
12 Metastatic melanoma 110 15 (110) 2 (40) 1 (40) [18]
13 Mesothelioma 87 14 (86) 3 (87) 8 (87) [35]
14 Uterine Corpus Endometrial Carcinoma 373 69 (248) 3 (333) 4 (333) [36]
15 Liver hepatocellular carcinoma 372 110 (366) 7 (366) 20 (366) [34]
16 Glioblastoma multiforme 592 125 (397) 18 (160) 20 (160) [35]
17 The Metastatic breast cancer project 237 76 (237) 5 (146) 4 (146) [37]
18 Metastatic prostate cancer 150 70 (150) 3 (118) 15 (118) [38]
19 Stomach adenocarcinoma 440 200 (436) 34 (412) 18 (412) [35]
20 Bladder Urothelial Carcinoma 411 200 (410) 46 (407) 28 (407) [35]
21 Lung adenocarcinoma 566 263 (566) 45 (510) 62 (510) [35]
22 Colorectal adenocarcinoma 594 314 (534) 44 (592) 46 (592) [32]
23 Head and Neck Squamous Cell Carcinoma 523 357 (515) 41 (515) 28 (515) [35]
24 Lung squamous cell carcinoma 487 402 (484) 53 (484) 35 (484) [33]
25 Esophageal adenocarcinoma 182 158 (182) 10 (181) 16 (181) [33]
Note: Listed for each cancer type is the number of sample alterations in TP53 mutation with its corresponding mRNA expres-
sion for MDM2 and MDMX. The number in the brackets indicates the number of samples available per cancer study for the 
particular data type.


