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Abstract: An early and accurate prediction of hepatocellular carcinoma (HCC) is beneficial for individualized treat-
ment and follow-up of chronic hepatitis B (CHB) patients. We aimed to establish a prediction model for HCC by 
radiomics analysis in CHB patients and compare performance with liver stiffness measurement (LSM) and other 
clinical prognostic scores. Initially, 1215 patients were included and finally 434 CHB patients with 5-year follow-up 
were enrolled, 96.3% of them underwent liver biopsy. Deep learning radiomics analysis was performed on 2170 
two-dimensional shear wave elastography (2D-SWE) and corresponding B-mode ultrasound (US) images. These 
high-throughput imaging features were also combined with low-dimensional serological clinical data by deep learn-
ing radiomics to establish different HCC prediction models and to overcome challenges of an unbalanced sample. 
The best model which is simple with high accuracy was selected. Prediction performance of the selected model was 
compared with LSM and other clinical prognostic scores. During 5-year follow-up, 32 (7.4%) of 434 patients devel-
oped HCC. The best prediction model was HCC-R, which included 2D-SWE and B-mode US images, sex and age. This 
model showed a high predictive value with areas under the receiver operating characteristic curve (AUCs) of 0.981, 
0.942 and 0.900 in training, validation and testing cohorts for predicting 5-year prognosis of HCC. These predictive 
values were significantly higher than that of LSM (AUC: 0.676~0.784, p < 0.05) and better than that of other clinical 
prognostic scores (AUC: 0.544~0.869). HCC-R radiomics model based on 2D-SWE and B-mode US images, sex and 
age comprehensively reflected biomechanical and morphological information of patients and can accurately predict 
HCC occurrence; thus, this model has great value for treatment and follow-up of CHB patients.
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Introduction

Hepatocellular carcinoma (HCC) is ranked as 
the sixth most common neoplasm and the third 
leading cause of cancer-related death [1]. Most 
HCC cases (80%) occur in sub-Saharan Africa 
and eastern Asia, especially China, where the 
main risk factors are chronic hepatitis B (CHB) 
infection. China is a large country with more 
than 90 million people infected with hepatitis B 
[2]. It is of great clinical significance to detect 
HCC in the early stage to promote prognosis 
and the quality of disease prevention and ther-
apeutic effect of patients. Therefore, an accu-

rate evaluation of the risk of HCC can enable 
clinicians to start treatment as early as possi-
ble. Furthermore, it is necessary to conduct 
individualized follow-up for high-risk patients 
with effective antiviral therapy, and on the  
other hand, avoid radical treatment for low- 
risk patients to reduce the waste of medical 
resources. 

Current clinical methods used serological indi-
cators such as “Guide with Age, Gender, hepa- 
titis B virus deoxyribonucleic acid (HBV-DNA), 
Core promoter mutations and Cirrhosis” (GAG-
HCC) score [3], “Cirrhosis, Age, Male sex, and 
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Diabetes mellitus” (CAMD) score [4], “Hepato- 
cellular Carcinoma after Hepatitis B e-antigen 
Seroclearance” (HCC-ESC) score [5] and “Age, 
Albumin, Bilirubin, HBV-DNA, and Clinical Cirr- 
hosis” (CU-HCC) score [6] have been applied  
to predict HCC development but with unsatis-
factory effective for HCC development at 5- 
year with areas under receiver operating char-
acteristic curve (AUC) of 0.699~0.757. At pres-
ent, there is a lack of highly accurate, truly ef- 
fective, recognizable, operable and convenient 
methods to predict HCC development.

Recently, some studies have shown that the 
accuracy of HCC prediction can be improved by 
using transient elastography (TE) to measure 
the liver stiffness combined with clinical bio-
chemical indicators, with the AUC for HCC pre-
diction at 5-year of 0.759~0.806 [7]. However, 
the application of TE has several limitations, 
such as the inability to measure in patients  
with ascites [8]. Two-dimensional shear wave 
elastography (2D-SWE) has the ability to over-
come the limitations of TE, and its accuracy  
in assessing the degree of fibrosis appeared 
similar to that of TE. Furthermore, 2D-SWE 
showed better performances than TE in the 
assessment of liver fibrosis especially in cir-
rhotic (F4) and advanced fibrotic (≥ F3) pati- 
ents with higher sensitivity and specificity [9]. 
Moreover, 2D-SWE provided both elastography 
and B-mode ultrasound (US) images in real 
time, making it possible to perform radiomics 
analysis for clinical diagnosis and prognosis.

Equipped with machine learning technique, ra- 
diomics can extract, quantify and select high-
throughput image features from medical imag-
es, and thus has the potential to uncover dis-
ease characteristics that fail to be caught by 
naked eyes [10]. Our previous study [11] sh- 
owed that deep learning radiomics of 2D-SWE 
significantly improved performance of noninva-
sive liver fibrosis detection, which is similar to 
the histopathological diagnosis with AUC for F3 
and F4 at 0.97 to 1.00. The development of 
CHB patients into HCC is a long process. In the 
long-term US follow-up of CHB patients, there 
must be important image features indicating 
quantitative change to qualitative change, that 
is, from the progress of hepatitis to HCC.

Therefore, the purpose of this study was to 
establish a prediction model based on deep 
learning radiomics analysis on 2D-SWE images 

with corresponding B-mode US images, clinical 
information and serological data for predicting 
the occurrence of HCC in CHB patients, and to 
compare the model with existing clinical prog-
nostic scores.

Patients and methods

Study design

This was a retrospective study. Enrolled pati- 
ents were divided into training, validation and 
testing cohort. Each patient has different sets 
of features: 2D-SWE images, B-mode US im- 
ages, serological data, and demographic fea-
tures. In training cohort, different models with 
one or more sets of features are trained to  
predict the occurrence of HCC. We compared 
all the models with each other and selected  
the best one as the new radiomics prediction 
model, HCC-R. The performance of HCC-R was 
validated and compared with that of liver stiff-
ness measurement (LSM) and many other cli- 
nical prognostic scores in training, validation 
and testing cohorts. 

Patients

We included CHB patients who underwent 2D- 
SWE examination in the hospital between 1 
April 2011 and 1 September 2017. Inclusion 
criteria were as follows: (1) older than 18 years 
old; (2) hepatitis B surface antigen positive for 
more than 6 months; (3) with available B-mode 
US and 2D-SWE examination and images; (4) 
CHB patients underwent liver biopsy or cirr- 
hotic patients diagnosed by clinical diagnostic 
criteria [3]. Exclusion criteria were as follows: 
(1) follow-up period less than 5 years; (2) pre- 
existing HCC or other hepatic metastases can-
cer; (3) coinfection with human immunodefi-
ciency virus or other viral hepatitis; (4) com-
bined with alcoholic liver disease, autoimmu- 
ne liver disease or another liver diseases; (5) 
missing important serological data; (6) unsuc-
cessful B-mode US or 2D-SWE measurements 
or unavailable images. All the patients were 
given standard medical treatments [12]. This 
study was approved by the local medical ethics 
committee of the hospital. The study protocol 
conforms to the ethical guidelines of the 1975 
Declaration of Helsinki as reflected in a priori 
approval by the institution’s human research 
committee. Written informed consent was ob- 
tained from each patient included in the study. 
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Clinical and laboratory data collection

At baseline, clinical characteristics [sex, age, 
height, weight, body mass index (BMI) and  
antiviral therapy history] and serological data 
[aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), albumin (ALB), total 
bilirubin (TB), gamma-glutamyl transpeptidase 
(GGT), alkaline phosphatase (ALP), platelets 
(PLT), prothrombin time (PT), serum α-fetopro- 
tein (AFP) and HBV-DNA] of each patient were 
collected.

Clinical prognostic scores of hepatocellular 
carcinoma

Clinical prognostic scores included GAG-HCC 
score [3], CAMD score (Supplementary Table 1) 
[4], HCC-ESC score [5] and CU-HCC score 
(Supplementary Table 2) [6] (for more details 
see Supplementary Materials).

Ultrasonography and two-dimensional shear 
wave elastography

US and 2D-SWE examinations were perform- 
ed by two operators (both with more than  
2 years of US experience and 500 2D-SWE 
examinations), using the Aixplorer US system 
(SuperSonic Imagine, Aix-en-Provence, France) 
with a convex broadband probe (SC6-1, 1-6 
MHz). The 2D-SWE protocol has been describ- 
ed in our previous studies [13, 14], which is 
also recommended by European Federation of 
Societies for Ultrasound in Medicine and Bio- 
logy guideline [8] (for more details see Supple- 
mentary Materials). Five independent 2D-SWE 
measurements were taken, and the median 
value of five 2D-SWE measurements was re- 
corded as LSM for statistical analysis. Mea- 
surements were considered failed if little or no 
signal was obtained in the region of interest 
(ROI). Five 2D-SWE images with corresponding 
liver parenchyma images from each patient 
were obtained and stored.

Liver biopsy

Liver biopsy with US guidance was performed  
in the right lobe of liver within 3 days of the  
US and 2D-SWE examinations by using a 16 or 
18 G needle (Bard Magnum, GA, USA). All the 
biopsy specimens were analyzed by two liver 
pathologists (with more than 10 years of ex- 
perience). Unqualified samples, including por-

tal tracts less than 6 or length less than 15 
mm, were excluded. Liver fibrosis was staged 
according to METAVIR scoring system [15] as 
follows: F0, no fibrosis; F1, portal fibrosis with-
out septa; F2, portal fibrosis and few septa;  
F3, numerous septa without cirrhosis; F4, cir-
rhosis. Necro-inflammatory activity of liver was 
graded according to METAVIR scoring system 
as follows: A0 for none; A1 for mild; A2 for  
moderate; A3 for severe. Liver steatosis was 
graded based on Brunt scoring system as fol-
lows: S0, minimal steatosis (< 5%); S1, mild  
steatosis (5%-33%); S2, moderate steatosis (> 
33%-66%); S3, severe steatosis (> 66%).

Follow-up and diagnosis of hepatocellular car-
cinoma 

Patients were followed up for five year until  
HCC occurrences, death or the end of the  
study. Liver biopsy or contrast-enhanced im- 
aging (contrast-enhanced ultrasound, multi-
phasic computed tomography or dynamic con-
trast-enhanced magnetic resonance imaging) 
were performed if suspected during the US or 
clinical examination. HCC was diagnosed ac- 
cording to the latest European Association for 
the Study of the Liver (EASL) guideline [16] ba- 
sed on pathological confirmation or contrast-
enhanced imaging criteria for nodule(s) ≥ 1 cm 
in diameter.

Radiomics analysis and establishment of pre-
diction model of hepatocellular carcinoma 

The HCC and non-HCC patients were divided  
at a ratio of 3:1:1 respectively, and 3/5 pa- 
tients, 1/5 patients and 1/5 patients were 
used as training, validation and testing co- 
horts. For radiomics analysis, two square pat- 
ches were first manually extracted containing 
2D-SWE and B-mode US ROIs (Figure 1A), and 
then the ROIs were resized to the same size 
and normalized. By back propagation, the ROIs 
were fed into network and the parameters of 
the model were updated automatically [17]. 
After the training process was complete, the 
network was considered as an encoder that 
could convert high-throughput image features 
into low-dimensional features. We selected the 
penultimate fully connected (FC) layer outputs 
as deep features. Sparse representation and 
support vector machine (SVM) were finally us- 
ed for feature reduction and classification, 
respectively [18] (Figure 1B) (for more details 
see Supplementary Table 3).
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Figure 1. Illustration of selection of ROIs and radiomics analysis flow chart. A. 2D-SWE ROI and corresponding B-mode US ROI (white dotted area). B. Radiomics 
analysis flow chart. C1-C5 represents the residual block. 2D-SWE ROIs and B-mode US ROIs extracted from training cohort optimize model parameters automati-
cally. The network features combined with clinical features then used to train SVM model.
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Integrated modeling of image features and 
low-dimensional clinical information

The trained network was an encoder and the 
outputs of the penultimate FC layer were used 
as image features. To integrate the image fea-
tures and clinical information, we first encoded 
nonnumeric clinical information (for example, 
gender was encoded as 0 or 1) and then nor-
malized them. There were three types of fea-
tures including image features (2D-SWE image 
features and B-mode US image features), sero-
logical features, and demographic features. By 
combining different sources of features, ten 
sets of features were obtained and modeled. 
Then, the prediction performance of these 
models was evaluated.

Data augmentation of very asymmetric sample 
data

The challenges in training cohort was the insuf-
ficient and unbalanced data. Due to the insuf-
ficiency of sample, a transfer learning strategy 
was adopted to alleviate the problem of overfit-

details see Supplementary Materials). The flow 
chart of data balancing and data augmenta- 
tion is shown in Figure 2.

Comparison of HCC-R and other methods and 
statistical analysis

Statistical analysis was performed using Sta- 
tistical Package for Social Science (version 
13.0, SPSS Inc.) or MedCalc software (version 
11.2, MedCalc Software). Continuous data we- 
re expressed as means ± standard deviation 
(SD) or medians with interquartile range (IQR) 
and were compared by Student’s t-test or 
Mann-Whitney U test. Categorical data were 
expressed as numbers with percentages and 
were compared by chi-square test or Fisher’s 
exact test. Univariate and multivariate logistic 
regression analyses were used to assess as- 
sociations between individual variables and 
clinical outcomes. 

The performance of HCC-R was compared with 
that of other methods, including LSM and dif-
ferent clinical prognostic scores, in all the train-

Figure 2. The flow chart of data balancing and data augmentation. The loop-
based data generator acquired data from Non-HCC set and HCC set with 
equal probability for each training step, and then the data was fed into the 
data augmentation module.

ting [19]. In terms of data, 
online data augmentation was 
used, which added random 
vertical and horizontal flip 
modules and random crop 
modules to the data stream. 
In terms of model, the L² re- 
gularization loss was added  
to control the complexity of 
models. In terms of the un- 
balanced data, a loop-based 
training procedure was used 
when optimizing model para- 
meters. Instead of randomly 
using samples from training 
cohort, we first divided train-
ing cohort into HCC set and 
non-HCC set, and used sam-
ples to optimize model pa- 
rameters from the two sets 
with equal probability for each 
training step. The loop speed 
of two sets was inversely pro-
portional to the number of 
samples in the set. Combined 
with the above online data 
augmentation, the sample di- 
versity can be guaranteed to 
the greatest extent (for more 
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ing, validation and testing cohorts. To com- 
pare the predictive value of HCC-R with that of 
other clinical prognostic methods, we calculat-
ed AUCs and compared them using Delong 
test. The sensitivity, specificity, positive predic-
tive values, negative predictive values, positive 
likelihood ratio and negative likelihood ratio of 
maximizing the Youden index on the estimated 
receiver operating characteristic (ROC) were 
calculated. Statistical significance level was 
defined as P < 0.05. 

Results

Baseline characteristics

Between 1 April 2011 and 1 September 2017, 
a total of 1215 patients met the inclusion cri- 
teria. After excluding 781 patients (Figure 3 
and Supplementary Materials), 434 CHB pati- 
ents with 2170 2D-SWE images were event- 
ually enrolled in the final analysis. Among all  
the patients, 418 (96.3%) went through liver 
biopsy with qualified samples. The remaining 
16 patients were diagnosed with cirrhosis ac- 
cording to the clinical criteria.

During 5-year follow-up, 32 patients (7.4%) of 
all the 434 patients developed HCC, 12 of 
which were diagnosed by liver biopsy and 20 
which were diagnosed by contrast-enhanced 
imaging. Among all the patients, 262 patients 
with 1310 images, 86 patients with 430 imag-
es and 86 patients with 430 images were 
assigned to training, validation and testing 
cohorts, respectively. Baseline characteristics 
are shown in Table 1 and details of antiviral 
therapy are shown in Supplementary Table 4. 

Development and validation of radiomics pre-
diction model of hepatocellular carcinoma

Factors associated with hepatocellular carci-
noma: By comparing with HCC and non-HCC 
groups in training cohort, patients who devel-
oped HCC were older, had higher levels of LSM 
and lower levels of GGT and PLT than those 
without HCC (Table 2). Among all the character-
istics, sex, age, ALB, and LSM were identified in 
the univariate analysis. Based on multivariate 
regression analysis, age and LSM were identi-
fied as independent risk factors for HCC devel-
opment. Patients who developed HCC had a 

Figure 3. The results of patient enrolments in this study. 
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higher stage of fibrosis (62.5% were histolo- 
gical F4 or clinically diagnosed with cirrhosis) 
and a higher grade of inflammation (57.9% 
were A3), but had a lower grade of steatosis 
(63.2% were S0).

Visualization of feature distribution: Due to the 
high dimensional characteristics of deep learn-
ing features in diagnosis model, it is difficult to 
understand the diagnosis efficiency of the mo- 
del explicitly. To prove the validity of the net-
work feature, we used the t-Stochastic Neigh- 
bour Embedding (t-SNE) method to reduce the 
64-dimensional features to three [20], as dis-

played them in Figure 4. The scatter diagram 
describes the spatial distribution of network 
features after dimension reduction by t-SNE 
method. The network features of HCC and non-
HCC cases were clearly distinguishable, which 
proved that the 2D-SWE and B-mode US imag-
es do contain the important features for HCC 
prediction and the model could encode the 
images into distinguishing features.

Establishment and selection of radiomics pre-
diction models: We compared relevant param-
eters including 2D-SWE images, B-mode US 
images, sex, age, serological data (AST, ALT, TB, 

Table 1. Baseline characteristics of patients
Variables Training cohort Validation cohort Testing cohort
Number of patients (%) 262 86 86

Male, n (%) 209 (79.8) 58 (67.4) 68 (79.1)

Age (y) 37.7 ± 10.5 38.3 ± 10.8 36.8 ± 11.4

BMI (kg/m²) 22.4 ± 3.3 22.3 ± 3.6 22.0 ± 3.2

AST (U/L) 33.0 (26.0-51.8) 35.5 (25.0-53.8) 30.0 (24.0-44.3)

ALT (U/L) 44.5 (29.0-76.0) 42.5 (26.0-66.0) 37.0 (26.3-60.5)

ALB (g/L) 43.8 (40.1-46.0) 42.6 (38.9-45.3) 43.5 (41.1-46.1)

TB (μmol/L) 14.4 (10.7-20.6) 15.0 (11.3-20.3) 12.8 (10.3-16.7)

GGT (U/L) 35.0 (23.0-80.0) 44.0 (18.3-94.5) 27.5 (20.0-48.8)

ALP (U/L) 69.0 (56.0-87.0) 68.0 (57.0-82.5) 68.0 (55.0-86.0)

PLT (* 109/L) 178.0 (144.8-220.3) 182.0 (145.0-217.0) 197.0 (157.5-223.5)

PT (s) 13.2 (12.7-13.8) 13.2 (12.7-13.9) 13.4 (13.0-14.0)

AFP (ng/mL) 4.0 (2.7-9.4) 3.7 (2.7-8.6) 2.9 (2.1-5.1)

HBV-DNA (IU/ml) 1.3 * 106 (7.9 * 104-1.9 * 107) 5.9 * 105 (5.5 * 104-2.9 * 107) 2.7 * 105 (1.5 * 104-2.2 * 106)

LSM (kPa) 10.7 ± 6.7 10.2 ± 6.4 9.5 ± 6.2

Antiviral therapy before LSM (%) 51 (19.5) 16 (18.6) 9 (10.5)

Antiviral therapy after LSM (%) 197 (75.2) 63 (73.3) 55 (64.0)

HCC cases (%) 20 (7.6) 6 (7.0) 6 (7.0)

Patients with liver biopsy (%) 252 83 83

    Fibrosis stages

        F0 41 (16.3) 12 (14.5) 20 (24.1)

        F1 77 (30.6) 23 (27.7) 29 (34.9)

        F2 51 (20.2) 24 (28.9) 11 (13.3)

        F3 37 (14.7) 11 (13.3) 12 (14.5)

        F4 46 (18.3) 13 (15.7) 11 (13.3)

    Necro-inflammation grades

        A0 9 (3.6) 6 (7.2) 4 (4.8)

        A1 96 (38.1) 25 (30.1) 44 (53.0)

        A2 76 (30.2) 28 (33.7) 19 (22.9)

        A3 71 (28.2) 24 (28.9) 16 (19.3)

    Steatosis grades

        S0 187 (74.2) 64 (77.1) 60 (72.3)

        S1 52 (20.6) 15 (18.1) 19 (22.9)

        S2 7 (2.8) 4 (4.8) 2 (2.4)

        S3 6 (2.4) 0 (0) 2 (2.4)
Data are presented as mean ± standard deviation, median (IQR) or n (%). P values were calculated between training, validation and testing cohorts. BMI, body mass in-
dex; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALB, albumin; TB, total bilirubin; GGT, gamma-glutamyl transpeptidase; ALP, alkaline phosphatase; 
PLT, platelet count; PT, prothrombin time; AFP, serum α-fetoprotein; HBV-DNA, Hepatitis B virus deoxyribonucleic acid; LSM, liver stiffness measurement; HCC, hepatocel-
lular carcinoma.
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ALB) and built ten different models, named R1 
to R10 (Supplementary Table 5). In the training 
cohort, all the models demonstrated a very 
high prognostic accuracy with the AUCs more 
than 0.970 in predicting HCC. Since R8 (B- 
mode US images + 2D-SWE images + sex + 

age) did not include serological data, and rea- 
ched 0.942 and 0.900 in validation and test- 
ing cohorts, respectively, with no significant  
difference in R10 (B-mode US images + 2D- 
SWE images + sex + age + serological data). 
Therefore, we chose R8 as the best radiomics 
prediction model and named it HCC-R.

Comparison of HCC-R and other methods

Performance of HCC-R in predicting HCC in 
training cohort was significantly higher than 
that of LSM, GAG-HCC, CAMD, HCC-ESC and 
CU-HCC (Table 3 and Figure 5). Comparable 
results were observed in validation and testing 
cohorts: performance of HCC-R was the best  
in both validation and testing cohorts for pre-
dicting HCC, with the AUCs of 0.942 in valida-
tion cohort and 0.900 in testing cohort. Predi- 
ctive ability of HCC-R was significantly higher 
than LSM, GAG-HCC, HCC-ESC and CU-HCC in 
validation cohort, and significantly higher than 
LSM and CU-HCC in testing cohort (Table 3).

Prediction performance of HCC-R and liver 
stiffness measurement in different trans-
aminase levels and under different antiviral 
therapy conditions

Performance of HCC-R and LSM for predicting 
HCC in different transaminase levels and un- 

Table 2. Baseline characteristics of the HCC and Non-HCC CHB patients in training cohort
Variables HCC (n = 20) Non-HCC (n = 242) P values
Male, n (%) 19 (95.0) 190 (78.5) 0.077
Age (y) 47.7 ± 10.6 36.9 ± 10.1 < 0.001
BMI (kg/m²) 23.6 ± 4.1 22.3 ± 3.2 0.162
AST (U/L) 35.5 (27.5-55.8) 33.0 (26.0-51.0) 0.510
ALT (U/L) 40.5 (30.3-90.0) 45.5 (29.0-75.8) 0.901
ALB (g/L) 39.0 (36.9-45.3) 43.9 (40.8-46.0) 0.060
TB (μmol/L) 17.3 (12.9-23.6) 14.3 (10.6-19.9) 0.093
GGT (U/L) 43.0 (28.0-114.0) 35.0 (23.0-79.0) 0.043
ALP (U/L) 80.0 (67.0-108.0) 69.0 (56.0-87.0) 0.093
PLT (* 109/L) 122.0 (80.3-168.5) 180.0 (148.8-222.5) < 0.001
PT (s) 14.0 (13.5-15.3) 13.2 (12.6-13.8) 0.102
AFP (ng/mL) 4.5 (2.9-14.9) 3.9 (2.7-8.0) 0.257
HBV-DNA (IU/ml) 1.6 * 106 (2.1 * 105-5.1 * 106) 1.3 * 106 (7.2 * 104-1.9 * 107) 0.593
2D-SWE (kPa) 14.2 ± 8.1 10.4 ± 6.6 0.015
Data are presented as mean ± standard deviation, median (IQR) or n (%). P values were calculated between patients devel-
oped HCC and others. BMI, body mass index; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALB, albumin; 
TB, total bilirubin; GGT, gamma-glutamyl transpeptidase; ALP, alkaline phosphatase; PLT, platelet count; PT, prothrombin time; 
AFP, serum α-fetoprotein; HBV-DNA, Hepatitis B virus deoxyribonucleic acid; 2D-SWE, two-dimensional shear wave elastogra-
phy; HCC, hepatocellular carcinoma.

Figure 4. The spatial distribution of network features 
after dimension reduction by t-SNE. Purple dots and 
green triangles correspond to the features of non-
HCC cases and HCC cases, respectively.
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Table 3. Comparison of diagnostic performance of HCC-R, LSM and other clinical prognostic scores in predicting HCC in training, validation and 
testing cohorts

Scores N AUC SEN (%) SPE (%) PPV (%) NPV (%) PLR NLR P
Training cohort HCC-R 262 0.981 (0.965-0.996) 100.0 (82.4-100.0) 96.7 (93.6-98.6) 70.4 (49.4-86.5) 100.0 (98.4-100.0) 30.4 (29.7-31.1) 0 (-)

LSM 262 0.676 (0.615-0.732) 65.0 (40.8-84.6) 66.5 (60.2-72.4) 13.8 (7.6-22.5) 95.8 (91.6-98.3) 1.9 (1.4-2.7) 0.5 (0.3-1.0) < 0.001

GAG-HCC 239 0.869 (0.820-0.909) 88.9 (65.3-98.6) 80.1 (74.2-85.1) 26.7 (16.0-39.8) 98.9 (96.0-99.9) 4.5 (3.7-5.3) 0.1 (0.04-0.5) 0.011

CAMD 262 0.797 (0.743-0.844) 60.0 (36.1-80.9) 93.8 (90.0-96.5) 44.4 (25.5-64.7 96.6 (93.4-98.5) 9.7 (6.8-13.9) 0.4 (0.2-0.9) 0.006

HCC-ESC 239 0.763 (0.703-0.815) 83.3 (58.6-96.4) 62.0 (55.2-68.4) 15.2 (8.7-23.8) 97.9 (93.8-99.6) 2.2 (1.7-2.8) 0.3 (0.1-0.8) < 0.001

CU-HCC 239 0.801 (0.744-0.849) 88.9 (65.3-98.6) 70.1 (63.6-76.1) 19.5 (11.6-29.7) 98.7 (95.5-99.8) 3.0 (2.5-3.6) 0.2 (0.04-0.6) 0.002

Validation cohort HCC-R 86 0.942 (0.874-1.000) 83.3 (35.9-99.6) 95.0 (87.7-98.6) 55.6 (21.2-86.3) 98.7 (92.9-100.0) 16.7 (11.6-23.9) 0.2 (0.02-1.3)

LSM 86 0.722 (0.615-0.813) 66.7 (22.3-95.7) 78.8 (68.2-87.1) 11.6 (3.9-25.1) 100.0 (88.8-100.0) 1.8 (1.4-2.4) 0 (-) 0.014

GAG-HCC 75 0.703 (0.586-0.803) 100.0 (47.8-100.0) 45.7 (33.7-58.1) 38.5 (13.9-68.4) 98.2 (90.5-100.0) 6.7 (4.6-9.6) 0.2 (0.03-1.3) 0.040

CAMD 86 0.743 (0.637-0.831) 66.7 (22.3-95.7) 73.8 (62.7-83.0) 16.0 (4.4-36.6) 96.7 (88.7-99.6) 2.5 (1.4-4.5) 0.5 (0.1-1.5) 0.063

HCC-ESC 75 0.606 (0.486-0.717) 60.0 (14.7-94.7) 78.6 (67.1-87.5) 16.7 (3.6-41.4) 96.5 (87.8-99.6) 2.8 (1.4-5.8) 0.5 (0.2-1.6) < 0.001

CU-HCC 75 0.544 (0.425-0.660) 60.0 (14.7-94.7) 72.9 (60.9-82.8) 13.6 (2.9-34.9) 96.2 (86.9-99.6) 2.2 (1.1-4.6) 0.6 (0.2-1.7) 0.006

Testing cohort HCC-R 86 0.900 (0.717-1.000) 83.3 (35.9-99.6) 96.3 (89.4-99.2) 62.5 (22.1-92.7) 98.7 (93.0-100.0) 22.2 (15.5-31.9) 0.2 (0.02-1.4)

LSM 86 0.784 (0.683-0.866) 83.3 (35.9-99.6) 78.8 (68.2-87.1) 22.7 (7.8-45.4) 98.4 (91.5-100.0) 3.9 (2.7-5.7) 0.2 (0.03-1.3) 0.032

GAG-HCC 71 0.815 (0.705-0.897) 80.0 (28.4-99.5) 93.9 (85.2-98.3) 50.0 (13.9-86.1) 98.4 (91.5-100.0) 13.2 (8.5-20.5) 0.2 (0.03-1.6) 0.170

CAMD 86 0.863 (0.771-0.927) 83.3 (35.9-99.6) 78.8 (68.2-87.1) 22.7 (7.8-45.4) 98.4 (91.5-100.0) 3.9 (2.7-5.7) 0.2 (0.03-1.3) 0.514

HCC-ESC 71 0.779 (0.665-0.869) 80.0 (28.4-99.5) 90.9 (81.3-96.6) 40.0 (12.2-73.8) 98.4 (91.1-100.0) 8.8 (5.6-13.7) 0.2 (0.03-1.5) 0.132

CU-HCC 71 0.773 (0.658-0.864) 80.0 (28.4-99.5) 90.9 (81.3-96.6) 40.0 (12.2-73.8) 98.4 (91.1-100.0) 8.8 (5.6-13.7) 0.2 (0.03-1.5) 0.047
HCC-R: B-mode US images + 2D-SWE images + sex + age. Data in parentheses are 95% CIs. P values were calculated between HCC-R and other methods in training, validation and testing cohorts. LSM, liver stiffness measurement; ROC, 
receiver operating characteristic; N, number of patients; AUC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; 
NLR, negative likelihood ratio.
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Figure 5. Comparison of ROC curves between HCC-R, LSM and other clinical prognostic scores in predicting HCC in training (A), validation (B) and testing (C) cohorts.
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der different antiviral therapy conditions was 
shown in Supplementary Tables 6 and 7. Per- 
formances of HCC-R was not significantly dif- 
ferent with regard to different AST or ALT le- 
vels. On the other hand, AUCs of LSM in AST ≤ 
2×ULN and ALT ≤ 2×ULN group (AUC: 0.732~ 
0.734) were higher than that in AST > 2×ULN 
and ALT > 2×ULN group (AUC: 0.582~0.689), 
although there was no significant difference 
between them. Also, there was no significant 
difference in the AUCs between HCC-R and 
LSM under different antiviral therapy condi-
tions before LSM. Accuracy of HCC-R in pre- 
dicting HCC was significantly higher than that  
of LSM in each stratification (P < 0.001).

Discussion

To our knowledge, this is the first study that 
applied radiomics method to predict HCC in 
patients with CHB. Our study enrolled 2170 
images obtained from 434 CHB patients with 
5-year follow-up duration in order to establish  
a new model to predict HCC. According to 
radiomics analysis and modeling, we built the 
HCC-R, which was based on 2D-SWE and B- 
mode US images as well as clinical information 
and serological data, with a better prediction 
performance than LSM and clinical prognostic 
scores.

In this study, we used single or multiple pa- 
rameters to build different kinds of prediction 
models, and aimed to determine which model 
was the most suitable one for clinical use. This 
series of work is too difficult to finish merely  
by manpower, but can be easily achieved by 
radiomics. After radiomics analysis and opti- 
mization of parameters, we have built many 
models during our study. Compared with other 
models, R8 was not only accuracy in HCC pre-
diction, but also simple as it was only com-
posed of two images (2D-SWE and B-mode US 
images) from US examination and two basic 
information (sex and age) that could be easily 
acquired from each patient. In this way, opera-
tors only need to provide sex and age of the 
patient and perform a routine US with 2D-SWE 
examination, which is particularly convenient 
and valuable for clinical applications. Accord- 
ing to prediction accuracy and clinical practica-
bility, we finally chose R8 as our new HCC pre-
diction model and named it HCC-R. The radio- 
mics signatures of model R1 to R10 are sum-

marized in Supplementary Materials. In addi-
tion to the two clinical information (sex and 
age), there are 12 deep features that jointly 
trained the HCC-R model.

A recent cohort study [7] of CHB patients  
demonstrated that LSM by TE was available in 
HCC prediction and produced a new prognos- 
tic score based on TE values (including age, 
albumin, HBV-DNA and LSM) with AUC of 0.83 
for 5-year prognosis. However, in our study 
HCC-R showed higher accuracy with AUC of 
0.981, 0.942 and 0.900 in training, validation 
and testing cohorts for 5-year prognosis. The 
reasons for such excellent performance are  
as follows: First, 2D-SWE provided both elas-
tography and B-mode US images instead of  
just LSM value on TE, making it possible to  
perform radiomics analysis. By using high-th- 
roughput computer image analysis, radiomics 
analyzed every pixel within 2D-SWE and B- 
mode US images, which contain more accurate 
information than that of LSM value alone. In 
this way, the AUC of HCC-R, i.e. radiomics pre-
diction model, was not only higher than AUC 
obtained LSM by using 2D-SWE (AUC: 0.676~ 
0.784) in our study but also by that using TE 
(AUC: 0.73) in literature [7]. Second, 2D-SWE is 
relatively new shear-wave technique which can 
be used in patients with ascites. The diagnos- 
tic performance of 2D-SWE is even higher than 
that of TE, especially for advanced fibrosis (≥ 
F3) and cirrhosis (F4) [21]. Furthermore, HCC- 
R integrates both biomechanical and morpho-
logical information, which is more comprehen-
sive and objective than serological data and 
LSM value.

The other study similar with us proposed a ra- 
diomics model to calculate HCC risk score in 
cirrhotic patients with indeterminate liver nod-
ules [22]. Based on triphasic CT scans data, 
the author extracted massive quantitative im- 
aging features and trained a radiomics signa-
ture with AUC of 0.70. In model building pro-
cess, a CNN model is applied to extract high 
level vision features. During classifier training, 
deep features combined with clinical features 
jointly construct model and thus the model 
achieve promising performance. In addition, 
our model aims to predict prognostic score  
in patients with CHB for 5-years prognosis of 
HCC, focusing on the future.
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The latest Elastography Guidelines and Re- 
commendations [8, 23, 24] note that LSM 
might be affected by AST or ALT levels, which 
was also demonstrated in our previous stu- 
dies [25]. To investigate whether AST or ALT 
level affects performances of HCC-R and LSM 
or not, stratification analysis was performed. 
The results showed that the accuracy of HCC-R 
was higher than that of LSM in each stratifica-
tion, and neither AST level nor ALT level im- 
pacted the performance of HCC-R in HCC pre-
diction. These findings revealed that HCC-R is 
also suitable for patients with high AST and/ 
or ALT levels, which indicates that radiomics 
analysis may avoid the influence of elevated 
transaminase level on the detection of liver 
stiffness.

Currently, many well-established clinical prog-
nostic scores, such as GAG-HCC [3], CAMD [4], 
HCC-ESC [5] and CU-HCC [6], have been used 
to predict risk of HCC. Parameters like sex, age 
and cirrhosis considered the essential featur- 
es in these scores (CU-HCC contains the latter 
two while other scores contain all of them). 
Surprisingly, our results demonstrated that sex 
and age were extremely important features 
which were also included in HCC-R. Further- 
more, assessing cirrhosis with radiomics is  
better than assessing cirrhosis with clinical 
methods, since radiomics could analyze many 
more features and details that may provide 
valuable information in clinical practice, as  
confirmed in our previous study. On the other 
hand, there were still some common limita- 
tions to these clinical prognostic scores, such 
as the components involved were insufficient. 
In contrast, our research applied radiomics 
analysis to contain many more features with 
advanced computing methods and revealed 
HCC-R as a comprehensive and accurate ap- 
proach in HCC prediction. By comparing the 
prognostic accuracy of HCC-R with that of  
other methods, we found that the AUC of CA- 
MD were higher in testing cohort than in train-
ing cohort, which might be due to the small 
sample size of testing cohort. However, HCC-R 
achieved a much better accuracy in all the 
training, validation and testing cohorts for HCC 
prediction.

The strengths of radiomics analysis applied  
in this study were as follows. First of all, we 
were the first to effectively combine the high-

throughput US image features with low-dimen-
sional clinical information to build a new radio- 
mics model, which was more comprehensive. 
Second, to overcome the challenge of unbal-
anced sample size, we proposed an effective 
data amplification strategy in the training of 
deep learning network, which greatly improved 
the prognostic efficiency of our model. In addi-
tion, we have already developed the software 
according to the results of this study and up- 
loaded it to the website (https://drive.google.
com/drive/folders/140h9OUbH1JIN7UVs7foFk
7q70B8LJCV6?usp=sharing), making it valu-
able for clinical guidance and application.

We must admit that the population size of our 
study, especially that of HCC patients, was lim-
ited, and unbalanced data distribution might 
compromise the efficacy of HCC-R. However, 
previous studies focusing on these areas sh- 
owed that the 5-year cumulative incidence of 
HCC was 4.3-8.7% [26, 27], which is consis- 
tent with the data in our current study. Addi- 
tionally, according to EASL guideline [16], ap- 
proximately 2% of hepatitis B virus (HBV) relat-
ed infected cirrhotic patients (F4) develop HCC 
per year, and even fewer patients with other 
stages of fibrosis (F0-F3). Since the patients 
enrolled in our study were suffered from differ-
ent stages of liver fibrosis, which might cause 
the number of events to be relatively small. In 
fact, our study not merely focused on decom-
pensated cirrhotic patients, but also enrolled 
patients with compensated cirrhosis and early 
fibrosis stages. Currently, many CHB patients, 
especially those with early stages of fibrosis,  
do not pay any attention to regular follow-up 
and treatment until complications (such as 
HCC) occur. Since HCC-R can accurately pre- 
dict HCC in patients with all stages of fibrosis,  
it may arouse attention of many more patients 
and their physicians and play a key role in clini-
cal practice and personalized medicine.

The major limitation of our study is that this  
was a single-disease investigation that con- 
sidered only HBV-infected patients. This was 
because that HBV infection is the main cause 
of HCC worldwide, mostly in Asia and sub- 
Saharan Africa [28], which led us to pay speci- 
fic attention to CHB patients. In the future, we 
need further prospective multicenter studies 
that involve more patients, not only with HBV 
infection, but also with hepatitis C virus infec-
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tion, nonalcoholic fatty liver disease, alcoholic 
liver disease and other etiologies, to optimize 
and improve HCC-R. Also, we would like to find 
out whether HCC-R is valuable for predicting 
tumor recurrence or died in patients with HCC.

In conclusion, radiomics model HCC-R based 
on 2D-SWE and B-mode US images, sex and 
age of patients can accurately predict HCC 
occurrence in CHB patients. It can overcome 
the influence of elevated transaminase level in 
LSM and is beneficial to HCC surveillance, indi-
vidualized treatment and clinical outcomes.
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Supplementary Materials

Patients and methods

GAG-HCC score [1]

14 * sex (male = 1; female = 0) + age (in years) + 3 * HBV-DNA levels (copies/mL in log) + 33 * cirrhosis 
(presence = 1; absence = 0).

CAMD score [2]

Supplementary Table 1. CAMD score
Variables CAMD Score
Cirrhosis
    No cirrhosis 0
    Cirrhosis with age < 40 years 10
    Cirrhosis with age ≥ 40 years 6
Age
    Age: < 40 years 0
    Age: 40-49 years 5
    Age: 50-59 years 8
    Age: 60 years or older 10
Male Sex
    Female sex 0
    Male sex 2
Diabetes Mellitus
    Not diabetic 0
    Diabetic 1

HCC-ESC score [3]

Age (years) + 20 * sex (male = 1; female = 0) + 29 * cirrhosis (presence = 1; absence = 0) + 5 * DNA 
(log IU/mL) + 31 * ALT group (flares or persistently abnormal ALT = 1; otherwise = 0) + 23 * hypoalbu-
minemia (< 39 g/L, presence = 1; absence = 0).

CU-HCC score [4]

Supplementary Table 2. CU-HCC score
Factor Score
Age, years
    > 50 3
    ≤ 50 0
Albumin, g/L
    ≤ 35 20
    > 35 0
Bilirubin, μmol/L
    > 18 1.5
    ≤ 18 0
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HBV-DNA, log copies/mL
    ≤ 4 0
    4-6 1
    > 6 4
Cirrhosis
    Yes 15
    No 0

Ultrasonography and two-dimensional shear wave elastography

All of the patients were fasted for at least 2 hours and rested for at least 10 minutes before two-dimen-
sional shear wave elastography (2D-SWE) measurements. 2D-SWE was performed on the right lobe of 
liver for each patient during a brief breath hold, in supine position through a right intercostal space with 
right arm elevated above head. The size of region of interest (ROI) for 2D-SWE was 4 cm×3 cm, and it 
was located in liver parenchyma approximately 1 cm beneath liver capsule free of large vessels or bile 
ducts. A 2 cm diameter circular Q-Box was placed in the ROI area, then the elastography values were 
automatically calculated and displayed.

HCC-R model and training process

The HCC-R model is mainly based on ResNet50 and inherits all convolution layers of it [5]. Globally, one 
path of the HCC-R model is stacked from a 224 * 224 * 3 input layer, a 7 * 7 convolutional layer, a max-
pooling layer and a series of residual blocks, following a global average pooling (GAP) layer and three 
fully connected (FC) layers with 128, 64 and 2 neurons, respectively. For the 2D-SWE and US ROIs 
inputs, a parallel path is added and both share parameters. After encoded by GAP layer, the two modal 
features were concatenated and used as the input of the following FC layers. We disentangle context 
between two modal image information by feature fusion. The detailed structure of the model is shown 
in Table 1.

Supplementary Table 3. Detailed model structure of HCC-R
Layer name Output size HCC-R
Conv1 112×112 7×7,64, stride 2
Conv2_x 56×56 1×1,64

          3×3,64     ×3
1×1,256

Conv3_x 28×28 1×1,128
         3×3,128    ×4

1×1,512
Conv4_x 14×14 1×1,256

         3×3,256    ×6
1×1,1024

Conv5_x 7×7 1×1,512
         3×3,512    ×3

1×1,2048
Fc1 1×1 Average pool, 256-d fc
Fc2* 1×1 64-d fc
Fc3 1×1 2-d fc, softmax
*Note that the gray shading (Fc2) refers to deep feature output layer. Conv, convolution; Fc, fully connected.

In order to accelerate the convergence of the model and reduce the training difficulty, we use the param-
eters pre-trained on the ImageNet dataset to initialize the convolution layers [6]. The three fully con-
nected layers were initialized by Xavier weights. The cross-entropy of the output and the label was cal-
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culated as the loss function. We set learning rate to 1e-4 and the Adam optimizer is used to optimize 
the objective function and update the model parameters with batch size 48. The maximum training step 
is set to 5000 and the learning rate decayed by 1/2 at 1000 and 3000 steps. After the training is fin-
ished, we select the last but one fully connected layer outputs as deep features with dimension of 64.

For the feature selection, a wrapper based method was applied, which considered the effect of a subset 
of features on each iteration. According to the idea of sparse representation, in each iteration step, the 
subset features are used to represent the classification labels [7]. And the above process can be formu-
lated as:

argmin
2
2Y D(k) (k) (k)

0= - +;; ;; ;; ;;ca a m a
a

Where Y(k) is the sample label of kth iteration. D(k) is the feature set of kth iteration. α is the sparse coef-
ficients and a lager αi means higher importance. By using OMP algorithm, the k-iteration results can be 
obtained:

1
k 1i

k
( ) ( )k i= ca a

=
/

The loop ended when the residual of regression reaches a specific ε.

For the feature classification, the SVM model is used and we adjust the penalty coefficients of different 
sample categories to reduce the influence of imbalance data [8]. The mathematical formulates can be 
written as:

min 2
1 C C

,b, y 1 y 1

T
i i

i i

+ +~ ~ p p
= =-~ p

+ -/ /

subject to yi(ω
Tф(xi) + b) ≥ 1-ξi

ξi ≥ 0, i = 1,…, l

Where ф(·) is the kernel function. ω and b determine the classification hyperplane. ξi is a small constant 
and C+(-) is the penalty coefficients.

Data processing and l2 regularization

In the training cohort, there are 226 non-HCC samples and 21 HCC samples. For each samples, 5 US 
images are enrolled for analysis and thus non-HCC set and HCC set have 1130 and 105 images, respec-
tively. Before fed into the model, the images were randomly selected from the two sets in equal probabil-
ity, then perform data augmentation and normalization. To statistical model performance, the model 
predicts 5 images of each sample and votes to determine the final prediction result.

In the training process, we adopted a transfer learning strategy to save training cost. To reduce the risk 
of overfitting, we used l2 regularization to constrain the complexity of the model. The mathematical pro-
cess can be formulated as:

* argmin ( , (x ; ))L y f
i

2i i= + ;; ;;~ ~ m ~
~
/

Where ω is model parameters and L(·) is loss function. xi and yi correspond to sample and label, respec-
tively. By adjusting the constant λ, model complexity can be controlled.

Radiomics signature

To build the radiomics, we extract 64 deep features and 6 clinical features (sex, age, serological data 
(AST, ALT, TB, ALB)). A wrapper based feature selection algorithm is used to reduce feature dimension 
and the radiomics signatures of model R1 to R10 are summarized below:
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R1: 14 deep features.

R2: age + 9 deep features.

R3: age + AST + ALT + 27 deep features.

R4: 25 deep features.

R5: age + 12 deep features.

R6: age + AST + ALT + 17 deep features.

R7: 18 deep features.

R8: sex + age + 12 deep features.

R9: sex + age + AST + ALT + 9 deep features.

R10: ALT + TB + 13 deep features.

Results

Baseline characters

Patients were excluded because of unsuccessful 2D-SWE measurements (5 patients for overweight, 18 
patients for inability to hold breath), follow-up less than five years (710 patients), combined with other 
liver diseases (3 patients combined with hepatitis C virus infection, 2 patients combined with alcoholic 
liver disease, 1 patient combined with primary biliary cholangitis, 25 patients combined with HCC, 1 
patient combined with hepatic metastases cancer), and missing important serological data (16 patients).

Supplementary Table 4. Antiviral therapy before and after LSM
Antiviral therapy Number of patients
Before LSM 76
    Interferon-based therapy 1
    Lamivudine 5
    Telbivudine 22
    Adefovir 6
    Entecavir 38
    Tenofovir 5
After LSM 319
    Interferon-based therapy 66
    Lamivudine 12
    Telbivudine 81
    Adefovir 51
    Entecavir 181
    Tenofovir 57
LSM, liver stiffness measurement.
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Supplementary Table 5. Diagnostic performance of different radiomics prediction models in predicting HCC in training, validation and testing 
cohorts

AUC SEN (%) SPE (%) PPV (%) NPV (%) PLR NLR P
Training cohort n = 262 R1 0.979 (0.964-0.995) 100.0 (82.4-100.0) 96.3 (93.1-98.3) 67.9 (47.6-84.1) 100.0 (98.4-100.0) 27.0 (26.3-27.7) 0 (-) 0.2738

R2 0.980 (0.965-0.995) 100.0 (82.4-100.0) 95.1 (91.5-97.4) 61.3 (42.2-78.2) 100.0 (98.4-100.0) 20.3 (19.7-20.8) 0 (-) 0.3284

R3 0.985 (0.971-0.998) 100.0 (82.4-100.0) 97.1 (94.2-98.8) 73.1 (51.7-88.7) 100.0 (98.4-100.0) 34.7 (34.0-35.5) 0 (-) 0.8424

R4 0.983 (0.970-0.997) 100.0 (82.4-100.0) 96.7 (93.6-98.6) 70.4 (49.4-86.5) 100.0 (98.4-100.0) 30.4 (29.7-31.1) 0 (-) 0.6349

R5 0.984 (0.970-0.997) 100.0 (82.4-100.0) 96.7 (93.6-98.6) 70.4 (49.4-86.5) 100.0 (98.4-100.0) 30.4 (29.7-31.1) 0 (-) 0.5983

R6 0.977 (0.959-0.994) 100.0 (82.4-100.0) 96.3 (93.1-98.3) 67.9 (47.6-84.1) 100.0 (98.4-100.0) 27.0 (26.3-27.7) 0 (-) 0.1466

R7 0.985 (0.973-0.998) 100.0 (82.4-100.0) 96.7 (93.6-98.6) 70.4 (49.4-86.5) 100.0 (98.4-100.0) 30.4 (29.7-31.1) 0 (-) 0.8820

R8 0.981 (0.965-0.996) 100.0 (82.4-100.0) 96.7 (93.6-98.6) 70.4 (49.4-86.5) 100.0 (98.4-100.0) 30.4 (29.7-31.1) 0 (-) 0.2080

R9 0.990 (0.980-1.000) 100.0 (82.4-100.0) 97.9 (95.3-99.3) 79.2 (57.8-92.9) 100.0 (98.5-100.0) 48.6 (47.7-49.5) 0 (-) 0.3060

R10 0.986 (0.974-0.998) 100.0 (82.4-100.0) 97.1 (94.2-98.8) 73.1 (51.7-88.7) 100.0 (98.4-100.0) 34.7 (34.0-35.5) 0 (-) -

Validation cohort n = 86 R1 0.896 (0.759-1.000) 83.3 (35.9-99.6) 93.8 (86.0-97.9) 50.0 (18.7-81.3) 98.7 (92.8-100.0) 13.3 (9.3-19.2) 0.2 (0.02-1.3) 0.4155

R2 0.902 (0.759-1.000) 83.3 (35.9-99.6) 96.3 (89.4-99.2) 62.5 (22.1-92.7) 98.7 (93.0-100.0) 22.2 (15.5-31.9) 0.2 (0.02-1.4) 0.5731

R3 0.875 (0.694-1.000) 83.3 (35.9-99.6) 95.0 (87.7-98.6) 55.6 (21.2-86.3) 98.7 (92.9-100.0) 16.7 (11.6-23.9) 0.2 (0.02-1.3) 0.3759

R4 0.860 (0.652-1.000) 83.3 (35.9-99.6) 92.5 (84.4-97.2) 45.5 (15.6-78.0) 98.7 (92.8-100.0) 11.1 (7.7-16.0) 0.2 (0.03-1.3) 0.3557

R5 0.883 (0.736-1.000) 83.3 (35.9-99.6) 92.5 (84.4-97.2) 45.5 (15.6-78.0) 98.7 (92.8-100.0) 11.1 (7.7-16.0) 0.2 (0.03-1.3) 0.2793

R6 0.892 (0.747-1.000) 83.3 (35.9-99.6) 92.5 (84.4-97.2) 45.5 (15.6-78.0) 98.7 (92.8-100.0) 11.1 (7.7-16.0) 0.2 (0.03-1.3) 0.3998

R7 0.925 (0.837-1.000) 83.3 (35.9-99.6) 95.0 (87.7-98.6) 55.6 (21.2-86.3) 98.7 (92.9-100.0) 16.7 (11.6-23.9) 0.2 (0.02-1.3) 0.8119

R8 0.942 (0.874-1.000) 83.3 (35.9-99.6) 95.0 (87.7-98.6) 55.6 (21.2-86.3) 98.7 (92.9-100.0) 16.7 (11.6-23.9) 0.2 (0.02-1.3) 0.2032

R9 0.913 (0.740-1.000) 83.3 (35.9-99.6) 100.0 (95.5-100.0) 100.0 (47.8-100.0) 98.8 (93.3-100.0) 0 (-) 0.2 (0.02-1.3) 0.8690

R10 0.921 (0.829-1.000) 83.3 (35.9-99.6) 93.8 (86.0-97.9) 50.0 (18.7-81.3) 98.7 (92.8-100.0) 13.3 (9.3-19.2) 0.2 (0.02-1.3) -

Testing cohort n = 86 R1 0.831 (0.510-1.000) 83.3 (35.9-99.6) 97.5 (91.3-99.7) 71.4 (29.0-96.3) 98.7 (93.1-100.0) 33.3 (23.3-47.8) 0.2 (0.02-1.6) 0.3385

R2 0.852 (0.581-1.000) 83.3 (35.9-99.6) 95.0 (87.7-98.6) 55.6 (21.2-86.3) 98.7 (92.9-100.0) 16.7 (11.6-23.9) 0.2 (0.02-1.3) 0.3150

R3 0.842 (0.588-1.000) 83.3 (35.9-99.6) 96.3 (89.4-99.2) 62.5 (22.1-92.7) 98.7 (93.0-100.0) 22.2 (15.5-31.9) 0.2 (0.02-1.4) 0.1651

R4 0.856 (0.710-1.000) 66.7 (22.3-95.7) 93.8 (86.0-97.9) 44.4 (13.7-78.8) 97.4 (90.9-99.7) 10.7 (6.0-18.8) 0.4 (0.09-1.5) 0.2605

R5 0.866 (0.779-1.000) 83.3 (35.9-99.6) 78.8 (68.2-87.1) 22.7 (7.8-45.4) 98.4 (91.5-100.0) 3.9 (2.7-5.7) 0.2 (0.03-1.3) 0.0941

R6 0.867 (0.661-1.000) 83.3 (35.9-99.6) 95.0 (87.7-98.6) 55.6 (21.2-86.3) 98.7 (92.9-100.0) 16.7 (11.6-23.9) 0.2 (0.02-1.3) 0.1181

R7 0.865 (0.608-1.000) 83.3 (35.9-99.6) 98.8 (93.2-100.0) 83.3 (31.1-99.8) 98.7 (93.2-100.0) 66.7 (46.6-95.4) 0.2 (0.01-2.4) 0.3624

R8 0.900 (0.717-1.000) 83.3 (35.9-99.6) 96.3 (89.4-99.2) 62.5 (22.1-92.7) 98.7 (93.0-100.0) 22.2 (15.5-31.9) 0.2 (0.02-1.4) 0.5429

R9 0.881 (0.667-1.000) 83.3 (35.9-99.6) 97.5 (91.3-99.7) 71.4 (29.0-96.3) 98.7 (93.1-100.0) 33.3 (23.3-47.8) 0.2 (0.02-1.6) 0.3201

R10 0.910 (0.748-1.000) 83.3 (35.9-99.6) 96.3 (89.4-99.2) 62.5 (22.1-92.7) 98.7 (93.0-1.0) 22.2 (15.5-31.9) 0.2 (0.02-1.4) -
R1: B-mode US images; R2: B-mode US images + sex + age; R3: B-mode US images + serological data; R4: 2D-SWE images; R5: 2D-SWE images + sex + age; R6: 2D-SWE images + serological data; R7: B-mode US images + 2D-SWE images; 
R8: B-mode US images + 2D-SWE images + sex + age; R9: B-mode US images + 2D-SWE images + serological data; R10: B-mode US images + 2D-SWE images + sex + age + serological data; Data in parentheses are 95% CIs. P values were 
calculated between R10 and other models in training, validation and testing cohorts. AUC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; 
PLR, positive likelihood ratio; NLR, negative likelihood ratio.
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Supplementary Table 6. Diagnostic performance of HCC-R and LSM for predicting HCC in different AST and ALT levels
N AUC SEN (%) SPE (%) PPV (%) NPV (%) PLR NLR p

HCC-R AST > 2×ULN 53 0.944 (0.844-0.988) 100.0 (39.8-100.0) 91.8 (80.4-97.7) 50.0 (13.9-86.1) 100.0 (92.1-100.0) 12.3 (11.3-13.3) 0 (-) 0.859
AST ≤ 2×ULN 381 0.936 (0.907-958) 89.3 (71.8-97.7) 96.3 (93.8-98.0) 65.8 (48.4-80.5) 99.1 (97.5-99.8) 24.2 (21.3-27.6) 0.1 (0.03-0.4)
ALT > 2×ULN 110 0.974 (0.925-0.995) 94.4 (72.7-99.9) 96.7 (93.6-98.6) 68.0 (46.5-85.1) 99.6 (97.7-100.0) 28.8 (25.7-32.3) 0.1 (0.01-0.04) 0.208
ALT ≤ 2×ULN 324 0.927 (0.893-0.953) 100.0 (63.1-100.0) 96.1 (90.3-98.9) 66.7 (33.4-90.8) 100.0 (96.3-100.0) 25.5 (24.5-26.5) 0 (-)

LSM AST > 2×ULN 53 0.582 (0.438-0.716) 75.0 (19.4-99.4) 63.3 (48.3-76.6) 14.3 (3.0-36.3) 96.9 (83.8-99.9) 2.0 (1.1-3.7) 0.4 (0.1-2.2) 0.433
AST ≤ 2×ULN 381 0.734 (0.687-0.778) 67.9 (47.6-84.1) 71.7 (66.7-76.3) 16.0 (9.9-23.8) 96.6 (93.6-98.4) 2.4 (1.8-3.1) 0.5 (0.3-0.8)
ALT > 2×ULN 110 0.689 (0.593-0.774) 62.5 (24.5-91.5) 73.5 (63.9-81.8) 15.6 (5.2-33.1) 96.2 (89.2-99.2) 2.4 (1.4-4.1) 0.5 (0.2-1.3) 0.726
ALT ≤ 2×ULN 324 0.732 (0.681-0.780) 54.2 (32.8-74.4) 86.0 (81.6-89.7) 23.6 (13.2-37.0) 95.9 (92.8-97.9) 3.9 (2.7-5.6) 0.5 (0.3-0.9)

HCC-R: B-mode US images + 2D-SWE images + sex + age. Data in parentheses are 95% CIs. P values were calculated between different AST and ALT levels. LSM, liver stiffness measurement; AST, aspartate 
aminotransferase; ALT, alanine aminotransferase; ULN, upper limit of normal; N, number of patients; AUC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; PPV, posi-
tive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio.

Supplementary Table 7. Diagnostic performance of HCC-R for predicting HCC in different antiviral therapy situations before LSM
N AUROC SEN (%) SPE (%) PPV (%) NPV (%) PLR NLR P

HCC-R Antiviral therapy 76 0.987 (0.930-1.000) 100.0 (76.8-100.0) 95.2 (86.5-99.0) 82.4 (55.6-96.5) 100.0 (93.9-100.0) 20.7 (19.5-21.9) 0 (-) 0.081
No antiviral therapy 358 0.906 (0.871-0.934) 83.3 (58.6-96.4) 95.9 (93.2-97.7) 51.7 (32.2-70.9) 99.1 (97.4-99.8) 20.2 (16.4-24.9) 0.2 (0.1-0.6)

LSM Antiviral therapy 76 0.713 (0.598-0.811) 57.1 (28.9-82.3) 80.7 (68.6-89.6) 40.0 (19.1-63.9) 89.3 (78.0-96.0) 3.0 (1.8-4.7) 0.5 (0.2-1.2) 0.960
No antiviral therapy 358 0.718 (0.669-0.764) 72.2 (46.5-90.3) 66.8 (61.5-71.8) 10.3 (5.6-17.0) 97.8 (95.0-99.3) 2.2 (1.6-2.9) 0.4 (0.2-0.9)

HCC-R: B-mode US images + 2D-SWE images + sex + age. Data in parentheses are 95% CIs. P values were calculated between different AST levels and ALT levels. LSM, liver stiffness measurement; N, num-
ber of patients; AUROC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; 
NLR, negative likelihood ratio.
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