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Abstract: In this study, in vitro cytotoxic effects of seven adamantyl isothiourea derivatives were evaluated against 
five human tumor cell lines using the MTT assay. Compounds 5 and 6 were found to be the most active derivatives 
particularly against hepatocellular carcinoma (HCC). To decipher the potential mechanisms involved, in vivo stud-
ies were conducted in rats by inducing HCC via chronic thioacetamide (TAA) administration (200 mg/kg, i.p., twice 
weekly) for 16 weeks. Compounds 5 and 6 were administered to HCC rats, at a dose of 10 mg/kg/day, for further 
2 weeks. In vitro and in vivo antitumor activities of compounds 5 and 6 were compared to those of the anticancer 
drug doxorubicin (DOXO). In the HCC rat model, compounds 5 and 6 significantly reduced serum levels of ALT, AST 
with ALP and α-fetoprotein. H & E and Masson trichrome staining revealed that both compounds suppressed hepa-
tocyte tumorigenesis and diminished fibrosis, inflammation and other histopathological alterations. Mechanistically, 
compounds 5 and 6 markedly decreased protein expression levels of α-SMA, sEH, p-NF-κB p65, TLR4, MyD88, 
TRAF-6, TNF-α, IL-1β and TGF-β1, whereas they increased caspase-3 expression in liver tissues of HCC rats. In most 
analyses, the effects of compound 6 were more comparable to DOXO than compound 5. These findings suggested 
that the compounds 5 and 6 displayed in vitro and in vivo cytotoxic potential against HCC, probably via inhibition of 
TLR4-MyD88-NF-κB signaling.
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Introduction

Hepatocellular carcinoma (HCC) is among the 
most common cancer types, accounting for 
8.2% of cancer-related death worldwide [1]. 
Several etiologies of chronic liver inflammation, 
including viral hepatitis B (HBV) and C (HCV) 
infection, excessive alcohol intake and non-
alcoholic fatty liver disease, inevitably lead to 
liver cirrhosis, the major risk factor for the 
development of HCC [2]. Multiple molecular 
pathways contribute to the initiation and pro-
gression of HCC [3]. Of these, Toll-like receptor 
4 (TLR4)/the myeloid differentiation primary 
response 88 (MyD88)/nuclear factor-κB (NF-
κB) cascade has been suggested to be impli-
cated in inducing liver inflammation and pro-
moting progression to cirrhosis and HCC [4-7]. 

TLR4 is expressed in different liver cell types, 
including Kupffer cells, hepatocytes and stel-
late cells and functions as a receptor for lipo-
polysaccharide (LPS) from intestinal microbiota 
[4, 8]. LPS can bind and activate TLR4, recruit-
ing MyD88 that triggers the downstream adapt-
er protein tumor necrosis factor (TNF) receptor-
associated factor 6 (TRAF-6), which activates 
NF-κB, resulting in the production of proinflam-
matory cytokines [8]. Overexpression of TLR4 
was detected in livers from HBV and HCV 
patients and HCC tissues [6, 9, 10]. On the 
other hand, TLR4-deficient mice showed less 
fibrosis in experimental fibrosis models, indicat-
ing a role of TLR4 in hepatic fibrogenesis [7]. 
Moreover, deficiency of TLR4 and MyD88 in 
mice resulted in reduced incidence, number 
and size of diethylnitrosamine (DEN)-induced 
HCC tumors [11].
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The adamantane nucleus is an established 
pharmacophore in numerous chemotherapeu-
tic agents [12-14]. The adamantane-based 
analogues exhibited significant antiviral activity 
against influenza A viruses [15, 16], human 
immunodeficiency viruses [17, 18] and herpes 
simplex viruses [19].

Anticancer activity was reported for some ada-
mantane derivatives (Figure 1). The synthetic 
retinoid adamantane derivative CD437 was 
discovered as a potent inducer of apoptosis in 
human primary tumor types, including ovarian 
cancer, non-small cell lung cancer, leukemia, 
breast cancer and squamous cell carcinoma 
[20, 21]. The adamantyl arotinoid chalcone 
derivative MX781 was also developed as anti-
cancer acting via inhibition of IκB kinase  
[22, 23]. Opaganib (ABC294640) is a recently 
approved anticancer drug for the treatment of 
patients with advanced solid tumors [24, 25].

Interestingly, previous research has shown that 
adamantane derivatives containing an isothio-
urea moiety can inhibit soluble epoxide hydro-
lase (sEH) enzyme [26-28]. Inhibition of sEH is 
potentially associated with attenuation of 
inflammation [29]. Pharmacological inhibition 
of sEH reduced liver fibrosis in carbon tetra-
chloride-treated rats [30]. A combination of 
sEH inhibitor and cyclooxygenase-2 inhibitor 
suppressed primary lung tumor in mice [31].

In a previous study [32], we reported the  
synthesis and potent broad spectrum antibac-
terial activity of series of adamantyl isoth- 
iourea derivatives namely 4-arylmethyl (Z)-N’-
(adamantan-1-yl)-4-phenylpiperazine-1-carbo-

thioimidates (Figure 2, compounds 1-4) and 
arylmethyl (Z)-N’-(adamantan-1-yl)-morpholine-
4-carbothioimidates 5-7 (Figure 2, compounds 
5-7). Based on the pronounced anticancer 
activities of adamantane derivatives [20-25] 
and marked chemotherapeutic properties of 
isothiourea derivatives [32-37], it was of inter-
est to study the anticancer activity of adaman-
tane-linked isothiourea derivatives 1-7. The in 
vitro cytotoxic activity of compounds 1-7 was 
assessed towards five human tumor cell lines, 
and the in vivo activity was further evaluated 
for the highly active compounds 5 and 6 against 
HCC in rats.

Materials and methods

Chemicals and reagents

Adamantane isothiourea derivatives 1-7 were 
prepared following the previously described 
procedure [32]. Doxorubicin (DOXO), thioacet-
amide (TAA), dimethyl sulfoxide (DMSO), 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetra-
zolium bromide (MTT) and RPMI-1640 medium 
were purchased from Sigma Aldrich Chemical 
Co. (St. Louis, MO, USA). Fetal bovine serum 
(FBS), penicillin sodium and streptomycin sul-
fate were obtained from Gibco Ltd (Paisley, UK). 
All other chemicals were of the analytical 
reagent grades.

Cell lines

Five human tumor cell lines, namely prostate 
cancer (PC-3), colorectal carcinoma (HCT-116), 
breast cancer (MCF-7), human cervical epitheli-
oid carcinoma (Hela) and HCC (Hep-G2) were 

Figure 1. Adamantane-based 
anticancer agents.
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obtained from American Type Culture Collection 
(ATCC) via Holding company for biological prod-
ucts and vaccines (VACSERA, Cairo, Egypt). 
Cells were cultured in RPMI-1640 medium, con-
taining 10% FBS, 100 U/mL penicillin and 100 
μg/mL streptomycin, and incubated in a 5% 
CO2 humidified atmosphere at 37°C.

In vitro MTT cytotoxicity assay

The cytotoxic effects of compounds 1-7 on 
human cancer cell viability were assessed 
using the MTT assay [38, 39]. Briefly, PC-3, 
HCT-116, MCF-7, Hela and Hep-G2 cells were 
grown at ~70-80% confluence, dispersed by 
trypsin and then plated at a density of 1.0×104 
cells/well in 96-well plates for 48 hours. The 
cells were then treated with different concen-
trations of test compounds and further incu-
bated for 24 hours. After the incubation period, 
20 µL of MTT solution (5 mg/mL) was added 
into each well and plates were incubated for 4 
hours at 37°C. The supernatants were then 
removed and 100 µL of DMSO was added into 
each well to dissolve the formed purple forma-
zan color. The absorbance at 570 nm were 
determined using ELx800 Microplate Reader 
(Biotek, Winooski, VT, USA). The relative cell 
viability was calculated, as follows:

570

570
Cell viability (%) A of DMSO containing control wells

A of compound containing wells
100= -

-
#

Three independent experiments were per-
formed in duplicate were conducted to calcu-
late the half maximal inhibitory concentration 
(IC50) values.

Animals

Male Sprague-Dawley rats (180-200 g) were 
obtained from VACSERA. Animals were main-
tained under standard laboratory conditions 
(temperature: 23 ± 2°C, regular 12 hours light-
dark cycle, free access to food and water). The 
animals were permitted to acclimatize to the 
laboratory environment for 10 days before  
the start of the experiment. The Research 
Ethics Committee of the Faculty of Pharmacy, 
Delta University for Sciences and Technology 
approved the experimental protocols (FPDU 
16/2020), which were in accordance with 
National Institute of Health guidelines for labo-
ratory animal care (NIH publication No. 85-23, 
revised 2011).

Thioacetamide-induced HCC model

Based on the results obtained from in vitro MTT 
anti-proliferation assay of tested compounds 
on tumor cell lines, the cytotoxic effects of com-
pounds 5 and 6 were further investigated in 
HCC model. Male Sprague-Dawley rats were 
administered 200 mg/kg thioacetamide (TAA) 
in normal saline, intraperitoneally (i.p.) twice 

Figure 2. The structures of the investigated adamantane-linked isothiourea derivatives. The red and blue moieties 
denote the adamantane and isothiourea fragments, respectively.
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weekly for 16 weeks to induce HCC [40, 41]. 
Surviving animals were then randomly allocat-
ed into four groups (n = 8/group), which 
received the following treatments for further 
two weeks:

• HCC group: received 1% DMSO (500 µL/day, 
i.p.).

• HCC-C5 and HCC-C6 groups: received com-
pounds 5 and 6, respectively, at a dose of 10 
mg/kg/day (diluted in 1% DMSO to a final vol-
ume of 500 µL/day, i.p.). 

• HCC-DOXO group: received DOXO (1 mg/kg, 
dissolved in distilled water, i.p, twice weekly).

The study controls included three groups of 
age-matched normal rats (n = 8/group) that 
received equal doses of both TAA and com-
pounds vehicle (control group) or both TAA vehi-
cle and the compounds 5/6 (C5 and C6 groups) 
in a similar manner to those administered to 
HCC-treated groups. The dose of DOXO admin-
istered to HCC rats was previously described 
[41].

Animal sacrifice and sample collection

At the end of the experiment, blood was col-
lected from anesthetized rats (sodium pento-
barbital, 40 mg/kg, i.p.) by retro-orbital punc-
ture using capillary hematocrit tubes. Blood 
samples were kept at room temperature for 30 
minutes and centrifuged (3000×g for 15 min-
utes) to obtain serum for biochemical analyses. 
Animals were then sacrificed by cervical dislo-
cation and livers were isolated and washed 
with ice-cold physiological saline (0.9% NaCl). A 
small part from right lobe of liver was removed 
and fixed in 10% neutral buffered formalin  
for histopathological and immunohistochemi-
cal assessments. The remaining liver tissues 
were kept in liquid nitrogen for subsequent 
analyses.

Morphometric assessment of in vivo liver tu-
mors

After rat sacrifice, livers of the study groups 
were morphologically examined for visible 
tumor nodules in hepatic tissues. Neoplastic 
nodules of 2 mm diameter or more in each rat 
liver were counted by two independent investi-
gators who were unaware of the experimental 
design [5]. 

Serum biochemical parameters

Commercially available rat ELISA kits were used 
to assess serum levels of alanine and aspar-
tate transaminase (ALT and AST, respectively; 
MyBioSource, San Diego, USA), alkaline phos-
phatase (ALP; BioVision, Milpitas, CA, USA) and 
α-fetoprotein (Elabscience, Wuhan, China) in 
accordance with the manufacturer’s instruc- 
tions.

Hepatic levels of transforming growth factor-β1 
(TGF-β1), interleukin-1β (IL-1β) and tumor ne-
crosis factor-α (TNF-α)

ELISA kits from MyBioSource, Elabscience and 
BioLegend (San Diego, USA) were used to deter-
mine protein levels of TGF-β1, IL-1β and TNF-α, 
respectively, in liver tissue homogenates (10% 
w/v in 0.05 M phosphate buffer, pH 7.4).

Histopathological and immunohistochemical 
analyses

Formalin-fixed hepatic tissues were embedded 
in paraffin wax, cut into 4 µm-thick sections 
and stained with hematoxylin and eosin (H & E) 
and Masson’s trichrome stains. Moreover, addi-
tional sections were used for immunohisto-
chemical detection using primary antibodies 
for α-smooth muscle actin (α-SMA, 1:100, cata-
log number GTX100034, GeneTex, CA, USA), 
caspase-3 (1:200, catalog number GTX30246, 
GeneTex), MyD88 (1:100, catalog number 
AF5195, Affinity Biosciences, OH. USA) and 
TRAF-6 (1:100, AF5376, Affinity Biosciences). 
The percentages areas of fibrosis and positive 
protein immunostaining in acquired images of 
liver tissues were assessed using ImageJ 
Software (National Institutes of Health, USA). 
All histopathological and immunohistochemical 
assessments were performed by two indepen-
dent pathologists who were blinded to experi-
mental grouping.

Western blotting analysis

Proteins were extracted from rat liver tissues 
using ReadyPrep protein extraction kit (Bio-Rad 
Laboratories Inc., CA, USA) and Bradford pro-
tein assay kit (Bio-Rad) was used to determine 
protein concentration. Samples were loaded on 
polyacrylamide gels (20 μg protein/sample), 
separated by SDS-PAGE and transferred to 
PVDF membrane. The membranes were blo- 
cked in tris-buffered saline with tween 20 
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(TBST) and 3% bovine serum albumin (BSA) 
and probed with the following primary antibod-
ies from Santa Cruz Biotechnology (CA, USA): 
TLR4 (1:800, sc-293072), NFκB-p65 (1:800, 
sc-8008), sEH (1:600, sc-166961). Anti-p 
NF-κB p65 antibody (Ser536) was purchased 
from Cell Signaling Technology (Danvers, MA, 
USA). Subsequently, membranes were incubat-
ed with secondary horseradish peroxidase con-
jugated antibody. The chemiluminescent sub-
strate (Clarity Western ECL substrate, Bio-Rad) 
was applied to the blots and the chemilumines-
cent signals were captured using a CCD cam-
era-based imager. The band intensities of tar-
get proteins were normalized against the levels 
of the β-actin housekeeping control (for sEH 
and TLR4) or against total NF-κB p65 levels (for 
p NF-κB p65).

Statistical analysis

Data were shown as mean ± SEM. Statistics 
were carried out using one-way analysis of vari-
ance (ANOVA) followed by Tukey’s post-hoc test. 
Statistical analyses and graphing were per-
formed using GraphPad Prism 7 software (CA, 
USA). Differences were considered significant 
at P < 0.05.

Results

In vitro cytotoxic effects

The in vitro cytotoxic effects of the adamantyl 
isothiourea derivatives 1-7 and the potent anti-
cancer drug Doxorubicin (DOXO) against all 
assayed human tumor cell lines are depicted in 
Table 1. The results revealed that the com-
pounds showed varying degrees of inhibition of 
tumor cell proliferation. In general, the cytotox-

ic effect of the morpholine derivatives 5, 6 and 
7 was higher than their 4-phenylpiperazine 
analogues 1-4, and the best activity was gener-
ally attained against the HCC Hep-G2, human 
cervical epithelioid carcinoma Hela and co- 
lorectal carcinoma HCT-116 tumor cell lines. 
The optimum cytotoxic activity was attained for 
compounds 5 and 6 which displayed IC50 < 10 
µM against three and four cell lines, respective-
ly. Based on these results, compounds 5 and 6 
are considered as good candidates for further 
investigation as potential chemotherapeutic 
agents for HCC and their in vivo cytotoxic activ-
ity in TAA-induced HCC rat model was studied.

Serum biochemical parameters in TAA-
administered rats

HCC rats showed significant elevations in 
serum levels of ALT, AST, ALP and α-fetoprotein 
as compared to control group (P < 0.0001 for 
all, Figure 3A-D). Compounds 5 and 6 signifi-
cantly reduced serum activities of ALT, AST and 
ALP in HCC rats (P < 0.0001 vs. HCC group) to 
levels that were insignificantly different to  
those observed in HCC-DOXO group (P >  
0.05). Compared to untreated HCC group, com-
pounds 5 and 6 significantly diminished serum 
α-fetoprotein levels by 35.2% (P < 0.0001 vs. 
both HCC and HCC-DOXO groups) and 43.9%  
(P < 0.0001 vs. HCC group, P > 0.05 vs. HCC-
DOXO group), respectively.

In vivo liver tumors in TAA-administered rats

As shown in Figure 4, livers from control, C5 
and C6 groups showed normal glossy-brown 
appearance with soft smooth texture. Con- 
versely, HCC rat livers were bigger in size with a 

Table 1. Cytotoxicity (IC50, µM) of compounds 1-7 and doxorubicin (DOXO) on human cancer cell lines
Cell lines

PC-3 HCT-116 MCF-7 Hela Hep-G2
Compound 1 39.25 ± 3.2 25.23 ± 2.3 28.39 ± 2.6 23.61 ± 1.9 19.90 ± 1.6
Compound 2 61.90 ± 4.1 41.31 ± 3.3 54.58 ± 4.0 30.63 ± 2.7 35.11 ± 2.9
Compound 3 33.60 ± 2.9 17.69 ± 1.5 16.83 ± 1.4 9.33 ± 1.0 12.94 ± 1.3
Compound 4 46.12 ± 3.4 27.27 ± 2.5 43.34 ± 3.5 17.84 ± 1.6 11.61 ± 1.2
Compound 5 21.35 ± 1.7 9.65 ± 0.9 11.05 ± 1.2 8.18 ± 0.9 7.70 ± 0.6
Compound 6 10.09 ± 1.0 6.25 ± 0.7 8.49 ± 0.9 6.87 ± 0.6 3.86 ± 0.2
Compound 7 29.02 ± 3.1 20.07 ± 2.1 24.37 ± 2.0 13.54 ± 1.4 7.98 ± 0.8
DOXO 8.87 ± 0.6 5.23 ± 0.3 4.17 ± 0.2 5.57 ± 0.4 4.50 ± 0.2
Data are shown as means ± SEM of 3 separate experiments performed in duplicate, DOXO: doxorubicin, PC-3: prostate cancer, 
HCT-116: colorectal carcinoma, MCF-7: breast cancer, Hela: human cervical epithelioid carcinoma, Hep-G2: hepatocellular 
carcinoma, IC50: the concentration that inhibits cell growth by 50%.
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Figure 3. Effect of compounds 5 and 6 on serum levels of ALT (A), AST (B), ALP (C) and α-fetoprotein (D) in TAA-
administered rats. Data are presented as mean ± SEM, n = 8/group. *P < 0.05 vs. control group, #P < 0.05 vs. HCC 
group, $P < 0.05 vs. HCC-DOXO group. ALT: alanine transaminase, ALP: alkaline phosphatase, AST: aspartate trans-
aminase, DOXO: doxorubicin, HCC: hepatocellular carcinoma, TAA: thioacetamide.

rough granulose cirrhotic appearance com-
pared to those of control groups. Moreover, 
white to reddish nodules were consistently visi-
ble on the surface of livers from all untreated 
HCC rats (percentage incidence = 8/8; 100%). 
On the other hand, HCC rats treated with com-
pounds 5, 6 and DOXO showed improved liver 
morphology and reduced cirrhotic changes as 
compared to untreated HCC group. Additionally, 
the numbers of visible hepatic nodules in  
HCC-C5 (percentage incidence = 7/8; 87.5%), 
HCC-C6 (percentage incidence = 5/8; 62.5%) 
and HCC-DOXO (percentage incidence = 5/8; 
62.5%) groups were significantly lower than 
those of untreated HCC rats. Interestingly, C6 
treatment reduced number of liver nodules in 
HCC rats to a level that was not significantly dif-
ferent from numbers brought about by DOXO 
treatment. 

Hepatic histopathological alterations in TAA-
administered rats

H&E-stained hepatic tissues from the study 
groups are shown in Figure 5. Liver specimens 

from control, C5 and C6 groups exhibited nor-
mal arrangement of hepatic cords around the 
central veins with normal portal areas and 
sinusoids.

In contrast, liver tissues from HCC group dem-
onstrated well-differentiated HCC tumor cells 
that were separated from the non-tumorous 
hepatic tissue by a vascularized capsule. HCC 
tumor cells were polygonal with eosinophilic 
granular cytoplasm, rounded vesicular nuclei 
with coarse chromatin, higher nuclear-cytoplas-
mic ratio, multiple nuclei and cytoplasmic and 
nuclear eosinophilic inclusions. Moreover, non-
tumorous hepatic tissues in HCC rats showed 
loss of normal hepatic architecture due to 
arrangement of hepatocytes in solid nodules 
without central vein and subdivided by thick 
fibrous septa. These nodules also demonstrat-
ed leukocytes infiltration, proliferated bile duct-
ules and congested blood vessels. Some other 
nodules showed hydropic to ballooning degen-
eration with ground-glass hepatocytes charac-
terized by vacuolated cytoplasm with apoptotic 
nuclei and micro to macro-vesicular steatosis. 
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Figure 4. Effect of compounds 5 and 6 on in vivo hepatic 
tumorigenesis in TAA-administered rats. Representative 
macroscopic images of rat livers from the experimen-
tal groups and statistical analysis of number of hepatic 
tumor nodules are shown (n = 8/group). Red arrows 
denote neoplastic liver nodules. *P < 0.05 vs. control 
group, #P < 0.05 vs. HCC group, &P < 0.05 vs. HCC-C5 
group, $P < 0.05 vs. HCC-DOXO group. DOXO: doxorubi-
cin, HCC: hepatocellular carcinoma, TAA: thioacetamide.

The hepatocytes on the periphery of the nod-
ules were necrotic.

These pathological changes in liver tissues 
were markedly reduced in HCC rats treated 
with compounds 5, 6 and DOXO, leading to par-
tially retained normal organization of hepatic 
tissues, which only showed thin fibrous strands 
extending from portal areas, periportal macro-
vesicular steatosis with few necrotic cells and 
mild congestion. Liver sections from HCC-C6 
group had slightly less pronounced lesions 
than those from HCC-C5 rats.

Hepatic cirrhosis in TAA-administered rats

Masson’s trichrome-stained hepatic sections 
(Figure 6) showed no fibrosis in control, C5 and 
C6 groups. In contrast, liver tissues from HCC 
rats demonstrated disrupted parenchymal 
structure due to extensive deposition of dense 
blue stained fibrous tissue containing dilated 
blood vessels, dividing hepatic parenchyma 
into solid nodules lacking normal structures of 
hepatic lobules. On the other hand, hepatic 
sections from HCC-C5 group exhibited moder-
ate light blue stained fibrous tissue deposition 
in portal areas. Similarly, the HCC rats treated 
with compound 6 showed mild to moderate 
light blue stained fibrous tissue deposition in 
hepatic portal areas. Liver tissues from HCC-
DOXO rats demonstrated thin strands of light 

blue stained fibrous tissue deposition in portal 
areas. Statistical analysis of percentages of 
collagen deposition areas in hepatic sections 
from the study groups showed a significant 
reduction in fibrosis percentage in HCC-C5, 
HCC-C6 and HCC-DOXO groups when com-
pared with untreated HCC group (P < 0.0001 
for all groups).

Hepatic α-SMA expression

Whereas liver tissues from control, C5 and C6 
groups showed negative α-SMA immunoex-
pression, hepatic sections from HCC group de- 
monstrated marked immunopositivity against 
α-SMA mainly around hepatic solid nodules. 
Hepatic tissues from HCC-C5 group showed 
moderate positive α-SMA immunostaining in 
portal areas, while those from HCC-C6 rats 
exhibited mild to moderate positive α-SMA 
immunoexpression against α-SMA in portal 
areas. The hepatic sections from HCC-DOXO 
group showed weak positive expression against 
α-SMA in portal areas (Figure 7).

Statistical analysis of percentages of α-SMA-
immunostained areas showed a significant 
reduction in α-SMA immunoexpression in HCC-
C5, HCC-C6 and HCC-DOXO groups when com-
pared with untreated HCC group (P < 0.0001 
for all groups).
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Figure 5. Representative microimages of H & E-stained hepatic tissues from the experimental groups. Images were captured at magnification of 100× (scale bar, 
100 µm) or 400× (scale bar, 50 µm). The arrow color represents; black: vascularized capsule, brown: infiltrated leukocytes, blue: hypertrophied nuclei of Kupffer 
cells, green: fibrous septa, red: congested blood vessels, white: proliferated bile ductules, yellow: multiple nuclei. The arrowhead color represents; black: eosino-
philic inclusions, green: apoptotic nuclei, red: necrotic hepatocytes, yellow: vesicular steatosis. CV: central vein. DOXO: doxorubicin, HCC: hepatocellular carcinoma, 
H & E: hematoxylin and eosin, NT: non-tumor cells, PA: portal areas, S: sinusoids, T: tumor cells.

Figure 6. Representative microimages of Masson’s trichrome-stained hepatic tissues from the experimental groups. Images were captured at magnification of 100× 
(scale bar, 100 µm) or 400× (scale bar, 50 µm). Black arrows point to areas of fibrosis. Statistical analysis of area of collagen deposition in hepatic sections is shown. 
*P < 0.05 vs. control group, #P < 0.05 vs. HCC group, &P < 0.05 vs. HCC-C5 group, $P < 0.05 vs. HCC-DOXO group. DOXO: doxorubicin, HCC: hepatocellular carcinoma.
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Figure 7. Effect of compounds 5 and 6 on hepatic α-SMA protein expression in TAA-administered rats. Representative microimages of immunostaining for α-SMA 
protein (IHC counterstained with Mayer’s hematoxylin) in hepatic tissues and statistical analysis of positive area of immunolabelling (%) are shown. Black arrows 
denote positive immunoexpression. Images were captured at magnification of 100× (scale bar, 100 µm) or 400× (scale bar, 50 µm). *P < 0.05 vs. control group, #P 
< 0.05 vs. HCC group. α-SMA: α-smooth muscle actin. DOXO: doxorubicin, HCC: hepatocellular carcinoma, IHC: immunohistochemistry, TAA: thioacetamide.
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Hepatic expression of sEH, p-NF-κB p65 and 
TLR4

In HCC rats, the hepatic levels of sEH, p-NF-κB 
p65 and TLR4 were significantly increased as 
compared with levels in control group (Figure 
8A-D). Moreover, Western blot analysis revealed 
that liver tissues from HCC-C5, HCC-C6 and 
HCC-DOXO exhibited significantly lower expres-
sion levels of sEH, p-NF-κB p65 and TLR4 pro-
teins compared to those of untreated HCC 
group (P < 0.0001 for all comparisons).

Hepatic MyD88 and TRAF-6 expression

Figures 9 and 10 show immunohistochemical 
labeling of MyD88 and TRAF-6 proteins, respec-

tively, in hepatic tissues. Negative MyD88 and 
TRAF-6 immunostaining of hepatocytes was 
observed in control, C5 and C6 groups. In con-
trast, hepatic sections from HCC group exhibit-
ed marked increase of positive immunostaining 
against MyD88 (Figure 9) and TRAF-6 (Figure 
10). On the other hand, hepatic sections from 
HCC-C5 group showed multifocal positive 
immunolabeling areas against MyD88, while 
HCC rats treated with compound 6 demonstrat-
ed few focal positive immunostained areas of 
MyD88 (Figure 9). Similarly, mild positive immu-
nolabeling against TRAF-6 was noticed in HCC-
C5 and HCC-C6 tissues (Figure 10). Hepatic 
tissues from HCC-DOXO group showed marked 
decreases in positive immunoreactivity against 
both MyD88 and TRAF-6.

Figure 8. Effect of compounds 5 and 6 on hepatic expression of sEH, p-NF-κB p65 and TLR4 in TAA-administered 
rats. A: Western blot detection of hepatic expression levels of sEH, p NF-κB p65, total NF-κB p65 and TLR4. (1) 
Control group, (2) C5 group, (3) C6 group, (4) HCC group, (5) HCC-C5 group, (6) HCC-C6 group, (7) HCC-DOXO group. 
The blots were cropped and whole full-length blots are shown in Figure S1. B-D: Quantitative analyses of relative 
expression of sEH, p NF-κB p65/total and TLR4, respectively. Data are presented as mean ± SEM of 3-4 indepen-
dent experiments. *P < 0.05 vs. control group, #P < 0.05 vs. HCC group, $P < 0.05 vs. HCC-DOXO group. DOXO: doxo-
rubicin, HCC: hepatocellular carcinoma, p-NF-κB p65: phosphorylated nuclear factor-κB p65, sEH: soluble epoxide 
hydrolase, TAA: thioacetamide, TLR4: toll-like receptor 4.
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Figure 9. Effect of compounds 5 and 6 on hepatic MyD88 protein expression in TAA-administered rats. Representative microimages of immunostaining for MyD88 
protein (IHC counterstained with Mayer’s hematoxylin) in hepatic tissues and statistical analysis of positive area of immunolabelling (%) are shown. Black arrows 
denote positive immunoexpression. Images were captured at magnification of 100× (scale bar, 100 µm) or 400× (scale bar, 50 µm). *P < 0.05 vs. control group, #P 
< 0.05 vs. HCC group. DOXO: doxorubicin, HCC: hepatocellular carcinoma, IHC: immunohistochemistry, MyD88: myeloid differentiation primary response-88, TAA: 
thioacetamide.
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Figure 10. Effect of compounds 5 and 6 on hepatic on hepatic TRAF-6 protein expression in TAA-administered rats. Representative microimages of immunostaining 
for TRAF-6 protein (IHC counterstained with Mayer’s hematoxylin) in hepatic tissues and statistical analysis of positive area of immunolabelling (%) are shown. Black 
arrows denote positive immunoexpression. Images were captured at magnification of 100× (scale bar, 100 µm) or 400× (scale bar, 50 µm). *P < 0.05 vs. control 
group, #P < 0.05 vs. HCC group. DOXO: doxorubicin, HCC: hepatocellular carcinoma, IHC: immunohistochemistry, TAA: thioacetamide, TRAF-6: tumor necrosis factor 
receptor-associated factor-6.
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Statistical analyses of positive areas of immu-
nolabeling (%) against MyD88 and TRAF-6 in 
immunostained hepatic sections showed sig-
nificant increases of immunolabeling areas in 
HCC group compared to control group (P < 
0.0001), which was significantly reduced in 
HCC-C5, HCC-C6 and HCC-DOXO groups com-
pared to untreated HCC group.

Hepatic levels of TNF-α, IL-1β and TGF-β1

HCC liver tissues showed significant increases 
in levels of TNF-α (by 2.5-fold, Figure 11A), 
IL-1β (by 6.2-fold, Figure 11B) and TGF-β1 (by 
2.2-fold, Figure 11C) compared to control lev-
els (P < 0.0001 vs. control group for all cytokine 
levels).

Treatment of HCC rats with compounds 5 and 6 
significantly reduced hepatic levels of TNF-α (by 
40.0% and 40.1%, respectively), IL-1β (by 
58.0% and 63.9%, respectively) and TGF-β1 (by 
29.1% and 36.5%, respectively) compared to 
untreated HCC group. The attenuative effects 
of compound 6 on hepatic cytokine levels were 
comparable to, but still significantly different 
from, those observed in HCC-DOXO rats, which 
showed decreases in TNF-α, IL-1β and TGF-β1 
levels by 47.0%, 65.7% and 45.0%, respective-
ly, relative to HCC group.

Hepatic caspase-3 expression

Liver tissues from control, C5 and C6 groups 
showed mild positive caspase-3 immunostain-
ing of hepatocytes cytoplasm. Conversely, 
hepatic sections from HCC group exhibited a 
marked decrease of positive immunolabelling 

against caspase-3. On the other hand, hepatic 
tissues from HCC-C5 rats showed mild positive 
immunolabelling against caspase-3 in few 
hepatocytes, while hepatic sections from HCC-
C6 group demonstrated multifocal positive 
immunoreactive areas against caspase-3. The 
hepatic specimens from HCC-DOXO group 
showed marked increase in caspase-3 immu-
noexpression (Figure 12).

Statistical analysis of percentages of caspase-
3-immunostained areas showed a significant 
increase in caspase-3 immunoexpression in 
HCC-C5 (P < 0.05), HCC-C6 (P < 0.001) and 
HCC-DOXO (P < 0.0001) groups when com-
pared with untreated HCC group.

Discussion

HCC is one of the most life-threatening cancer 
types, accounting for 8.2% of cancer-related 
death worldwide [1]. Current chemotherapy of 
HCC is generally ineffective, and thus novel 
treatments that diminish mortality and increase 
survival rates are warranted [42]. In the pres-
ent study, in vitro cytotoxic activity of the ada-
mantyl isothiourea derivatives 1-7 was asse- 
ssed against five human tumor cell lines. The 
compounds displayed marked cytotoxic effect 
and the optimum activity was attained for com-
pounds 5 and 6 (IC50 values were 7.70 and 3.86 
µM, respectively) particularly against the HCC 
Hep-G2 tumor cell lines. Accordingly, com-
pounds 5 and 6 could be considered as promis-
ing candidates for further investigation as 
potential chemotherapeutic agents for HCC 
and their in vivo cytotoxic activity in TAA-
induced HCC rat model was thus evaluated. 

Figure 11. Effect of compounds 5 and 6 on hepatic levels of TNF-α (A), IL-1β (B) and TGF-β1 (C) in TAA-administered 
rats. Data are presented as mean ± SEM, n = 8/group. *P < 0.05 vs. control group, #P < 0.05 vs. HCC group, &P < 
0.05 vs. HCC-C5 group, $P < 0.05 vs. HCC-DOXO group. DOXO: doxorubicin, HCC: hepatocellular carcinoma, IL-1β: 
interleukin-1β, TAA: thioacetamide, TGF-β1: transforming growth factor-β1, TNF-α: tumor necrosis factor- α.
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Figure 12. Effect of compounds 5 and 6 on hepatic caspase-3 protein expression in TAA-administered rats. Representative microimages of immunostaining for 
caspase-3 protein (IHC counterstained with Mayer’s hematoxylin) in hepatic tissues and statistical analysis of positive area of immunolabelling (%) are shown. Black 
arrows denote positive immunoexpression. Images were captured at magnification of 100× (scale bar, 100 µm) or 400× (scale bar, 50 µm). *P < 0.05 vs. control 
group, #P < 0.05 vs. HCC group, $P < 0.05 vs. HCC-DOXO group. DOXO: doxorubicin, HCC: hepatocellular carcinoma, IHC: immunohistochemistry, TAA: thioacetamide.
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Moreover, in TAA-induced HCC rat model, com-
pounds 5 and 6 elicited the following beneficial 
effects: a) they significantly reduced serum lev-
els of ALT, AST and ALP and α-fetoprotein, b) 
they suppressed hepatocarcinogenesis and 
diminished liver fibrosis, inflammation and 
other histopathological alterations, c) they 
reduced hepatic protein expression levels of 
α-SMA, sEH, p-NF-κB p65, TLR4, MyD88, TRAF-
6, TNF-α, IL-1β and TGF-β1 and d) they increased 
caspase-3 expression in liver tissues of HCC 
rats. In most assessments, the effects of com-
pound 6 were more comparable, than were 
those of compound 5 to the cytotoxic effects of 
DOXO.

Chronic TAA administration was used to induce 
HCC in rats. This model involves chronic liver 
damage, inflammation, fibrogenesis, cirrhosis, 
neoplastic nodules and enhanced levels of the 
TLR4 ligand LPS, and therefore shares multiple 
aspects with human HCC tumor microenviron-
ment [7, 40, 43, 44]. DOXO is an established 
antineoplastic agent which is extensively used 
for chemotherapy of solid cancers, including 
HCC [45-48].

The development of HCC tumors in TAA-
administered rats was evidenced by significant-
ly elevated serum levels of α-fetoprotein in HCC 
group (Figure 3D), observed macroscopic he- 
patic neoplastic nodules (Figure 4) and appear-
ance of well-differentiated HCC tumor cells in H 
& E-stained liver tissues from HCC rats (Figure 
5). α-Fetoprotein is a robust marker of HCC 
since its expression is consistently elevated 
during cirrhosis-associated hepatocarcinogen-
esis [49]. Serum α-fetoprotein levels were sig-
nificantly reduced in HCC rats treated with com-
pounds 5 and 6, suggesting that they sup-
pressed HCC tumor growth.

Elevated serum levels of ALT, AST and ALP in 
HCC rats (Figure 3A-C) are potentially attribut-
ed to leakage of these enzymes from neoplas-
tic cells or necrotic hepatocytes into circulation 
[50]. Compounds 5 and 6 significantly dimin-
ished serum liver enzyme levels in HCC rats, 
implying hepatoprotective and/or antitumor 
effects of these compounds. These findings are 
supported by histopathological analyses which 
showed that compounds 5 and 6 partially 
restored normal organization of hepatic tissues 
and reduced liver parenchymal damage and 
hepatocyte necrosis (Figure 5). Moreover, they 
markedly attenuated fibrous tissue deposition 

in portal areas and improved the hepatic struc-
ture (Figure 6).

In this work, western blot analyses demonstrat-
ed that HCC liver tissues showed elevated 
expression of sEH relative to controls. Consis- 
tently, carbon tetrachloride cirrhotic rats show- 
ed upregulated hepatic expression of sEH [30]. 
Mammalian sEH is a hydrolytic enzyme that 
degrades epoxy-fatty acids, which possess 
beneficial anti-inflammatory effects, into less 
active diols [51, 52]. Therefore, inhibition of 
sEH is potentially associated with attenuation 
of inflammation [29]. Interestingly, previous 
research has shown that adamantyl thiourea 
derivatives can exhibit inhibitory activity against 
sEH [26]. In line with this, compounds 5 and 6 
reduced hepatic sEH expression in HCC rats, 
which might contribute to their anti-inflammato-
ry, antifibrotic and anticancer activities. Sup- 
porting this notion, sEH inhibition caused sup-
pression of inflammatory TLR4/MyD88/NF-κB 
signaling pathway in CNS of mice with experi-
mental encephalomyelitis [53]. Moreover, phar-
macological inhibition of sEH reduced liver 
fibrosis in carbon tetrachloride-treated rats 
[30]. Furthermore, a combination of sEH inhibi-
tor and cyclooxygenase-2 inhibitor suppressed 
primary lung tumor in mice [31]. Intriguingly, the 
anticancer agent sorafenib, currently used for 
treatment of advanced HCC, was reported to 
inhibit human sEH along with its tyrosine kinase 
inhibitory effect [54].

Chronic hepatic inflammation is an established 
risk factor mediating development of fibrosis/
cirrhosis and their progression into HCC [55]. 
TLR4-MyD88-NF-κB signaling cascade was 
reported to be actively involved in hepatic 
inflammation-fibrosis-HCC axis [56]. Bacteria 
from the intestine may cross the intestinal bar-
rier into the portal vein and from there to the 
liver. Thereafter, engagement of hepatic TLR4 
receptors with bacterial products from intesti-
nal microbiota may lead to an inflammatory 
response that contributes to subsequent long-
term liver tissue alterations into HCC [4, 57].

In the present study, HCC liver tissues showed 
enhanced expression of TLR4, MyD88, TRAF-6 
and p-NF-κB p65. This agrees with previous 
studies on experimental and human HCC tis-
sues [5, 58-60]. The adamantane derivatives 5 
and 6 suppressed the hepatic expression lev-
els of these proteins, which might explain their 
antifibrotic and antitumor effects. Pharma-
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cological inhibition of TLR4-MyD88-NF-κB sig-
naling was shown to suppress HCC progression 
[5, 58]. TLR4-deficient mice showed less fibro-
sis in experimental fibrosis models, indicating  
a role of TLR4 in hepatic fibrogenesis [7]. 
Moreover, mice deficient in TLR4 and MyD88 
[11] and mice carrying TLR4-inactive mutant [4] 
exhibited reduced incidence, number and size 
of DEN-induced HCC tumors compared to wild 
type mice. Furthermore, knock-down of TRAF-6 
in HCC cell lines resulted in a decrease in their 
viabilities [60].

Activation of TLR4/MyD88/NF-κB cascade 
leads to subsequent production of pro-inflam-
matory cytokines, including IL-1β and TNF-α 
[61, 62]. It is well established that enhanced 
hepatic levels of inflammatory cytokines medi-
ate liver inflammation and tumorigenesis [63-
65]. In the present study, compounds 5 and 6 
significantly reduced hepatic levels of TNF-α 
and IL-1β in HCC rats, indicating their anti-
inflammatory effects that might explain, at 
least in part, tumor suppression in HCC-C5 and 
HCC-C6 groups.

Moreover, compounds 5 and 6 significantly 
reduced hepatic levels of TGF-β1 and attenuat-
ed α-SMA expression in liver tissues of HCC 
rats, which might contribute to their antifibrotic 
effects. It was reported that TLR4-MyD88-NF-
κB axis activates TGF-β signaling, which 
enhances fibrotic changes in inflamed liver [7] 
via activating differentiation of hepatic stellate 
cells and portal fibroblasts into myofibroblasts, 
increasing α-SMA expression and boosting 
excessive deposition of extracellular matrix 
proteins [66]. TGF-β signaling also enhances 
HCC tumor growth and progression [67].

Declined expression of caspase-3 correlated 
with poor prognosis in HCC patients, suggest-
ing that it might be implicated in HCC progres-
sion. Moreover, caspase-3-deficient mice ex- 
hibited a significant increase in DEN-induced 
HCC [68]. In this work, marked increases in cas-
pase-3 immunoexpression were observed in 
liver tissues from HCC-C5, HCC-C6 and HCC-
DOXO groups when compared with those from 
untreated HCC rats, suggesting that their anti-
tumor activities against HCC could be attribut-
ed to induction of apoptosis of transformed 
hepatocytes. Previously, DOXO has been shown 
to significantly increase hepatic caspase-3 
mRNA expression in HCC tissues from TAA-

administered rats [41]. These effects could be 
attributed to inhibition of NF-κB activation and 
inflammatory cytokine production, which mutu-
ally enhance tumors survival via suppressing 
apoptosis of transformed hepatocytes [62].

In conclusion, this research demonstrated that 
the adamantly isothiourea derivatives 5 and 6 
exhibited in vitro cytotoxic effects against HCC 
Hep-G2 cell line and suppressed liver tissue 
inflammation, fibrosis and tumorigenesis, pos-
sibly via reducing expression of sEH and impair-
ing TLR4-MyD88-NF-κB signaling. More investi-
gations are needed to confirm these findings in 
other experimental HCC models and explore 
detailed molecular mechanisms that may 
underlie their antitumor effects.
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Figure S1. Original Blots of Figure 8A.


