
Am J Cancer Res 2021;11(2):546-560
www.ajcr.us /ISSN:2156-6976/ajcr0126593

Original Article 
Predicting EGFR mutation status in lung  
adenocarcinoma: development and validation of  
a computed tomography-based radiomics signature

Guojin Zhang1,2,3*, Yuntai Cao1,2*, Jing Zhang1,2*, Jialiang Ren4*, Zhiyong Zhao1,2, Xiaodi Zhang5, Shenglin Li1,2, 
Liangna Deng1,2, Junlin Zhou2,3

1Second Clinical School, Lanzhou University, Lanzhou, China; 2Key Laboratory of Medical Imaging, Lanzhou, 
Gansu Province, China; 3Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; 4GE 
Healthcare, China; 5Philips (China) Investment Co., Ltd. Chengdu Branch, China. *Equal contributors.

Received November 19, 2020; Accepted December 18, 2020; Epub February 1, 2021; Published February 15, 
2021

Abstract: Patients with epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma can benefit from 
targeted therapy. However, noninvasively determination of EGFR mutation status before targeted therapy remains 
a challenge. This study constructed a nomogram based on a combination of radiomics features with the clinical 
and radiological features to predict the EGFR mutation status. The least absolute shrinkage and selection operator 
(LASSO) and Wilcoxon test were used for feature selection. Decision tree (DT), logistic regression (LR), and sup-
port vector machine (SVM) classifiers were used for radiomics model building. Used the clinical and radiological 
features establish clinical-radiology (C-R) model. The C-R model with the best radiomics model to establish clinical-
radiological-radiomics (C-R-R) model. The predictive performance of the model was evaluated by ROC and calibra-
tion curves, and the clinical usefulness was assessed by a decision curve analysis. The current study showed that 
twelve radiomics features were significantly associated with EGFR mutations. The best radiomics signature model 
was obtained using the SVM classifier. The C-R-R model had the best distinguishing ability for predicting the EGFR 
mutation status, with an AUC of 0.849 (95% CI, 0.805-0.893) and 0.835 (95% CI, 0.761-0.909) in the development 
and validation cohorts, respectively. Our study provides a non-invasive C-R-R model that combines CT-based radiom-
ics features with clinical and radiological features, which can provide useful image-based biological information for 
targeted therapy candidates.
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Introduction

An understanding of the pathological and mo- 
lecular aspects of lung cancer has made great 
progress in recent years [1]. The discovery of 
lung cancer driver genes, especially the epider-
mal growth factor receptor (EGFR) gene, has 
increased the uptake of individualized targeted 
therapy [2, 3]. Patients with EGFR mutations in 
lung adenocarcinoma respond well to EGFR 
tyrosine kinase inhibitors (TKI) [4-7]. By con-
trast, patients without these mutations are not 
eligible for treatment with the TKI at any dis-
ease stage [8]. These findings suggest that it is 
essential to determine patient EGFR mutation 
status ahead of treatment.

Currently, an analysis of the EGFR mutation sta-
tus involves invasive procedures such as biop-

sy or surgical removal to acquire a specimen. 
However, these procedures are associated with 
limitations such as a small number of biopsy 
samples and the risk of sampling errors, among 
others [9, 10]. In addition, tumors tend to be 
heterogeneous; thus, tissue samples obtained 
from a particular site might not be representa-
tive of the whole tumor [11]. Recently, a “liquid” 
biopsy has been proposed as an alternative 
approach; it involves the analysis of nucleic 
acids present in the peripheral blood and has 
high specificity for the detection of EGFR muta-
tions. However, the sensitivity of this method is 
low, and the false negative rate is estimated at 
30%; further, the recognized molecular varia-
tion may be unrelated to the tumor [12, 13]. 
Overall, these findings suggest a need for a 
non-invasive and easy-to-use method to deter-
mine the EGFR mutation status.
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Computed tomography (CT) is the preferred 
imaging method for lung cancer screening and 
diagnosis. Previous studies have shown that 
female sex, a non-smoking status, ground-gla- 
ss opacity, air bronchogram findings, bubble-
like lucencies, pleural retraction, or other CT 
signs are indicative of EGFR mutation [10, 
14-16]. However, these studies had a few limi-
tations. For example, CT scan evaluation was 
performed subjectively by the observer and 
could not be quantified. In addition, the findings 
were inconsistent and their accuracy was rela-
tively low.

Radiomics is a novel, non-invasive, and promis-
ing method, which uses advanced image algo-
rithms in artificial intelligence to extract high-
throughput features from medical images, 
quantify higher-dimensional features that can-
not be observed in the human visual system, 
and apply useful image features to clinical deci-
sion-making [17, 18]. Some studies have tried 
to predict EGFR mutation status with a CT- 
based radiomics model [11, 19-25]. However, 
these studies were limited by a relatively small 
sample size, low accuracy, less radiomics char-
acteristics, or the lack of validation data sets. 
Therefore, heterogeneity of the entire tumor 
cannot be effectively evaluated. In addition, 
clinical risk factors and radiological features 
were not included in the previous models 
despite evidence that including these features 
may improve the diagnostic performance of a 
model [11, 20]. Therefore, we established a 
radiomics model based on the preoperative CT 
radiomics signature to predict the EGFR muta-
tion status in this study. Further, we describe a 
user-friendly radiomics nomogram that com-
bines the clinical risk factors, radiological fea-
tures, and the radiomics signature.

Materials and methods

Patient selection

The institutional review board of our institution 
approved this retrospective study, and the need 
for informed consent was waived. We obtained 
the medical records of 780 patients with lung 
adenocarcinoma diagnosed by histopathology 
from January 2016 to May 2020, and collected 
their preoperative non-enhanced CT images 
and clinical data. The inclusion criteria were as 
follows: (1) patients with adenocarcinoma as 
the histological subtype according to the 2015 

World Health Organization (WHO) lung cancer 
classification; (2) patients with thin-slice CT 
(1.25 mm) images and complete clinical data 
that can be used in the picture archiving and 
communication system (PACS); (3) age over 18 
years; (4) patients who underwent a chest CT 
scan within 2 weeks before biopsy or surgery; 
(5) patients with no previous history of other 
malignant tumors; (6) and patients did not 
receive lung cancer-related treatment (such as 
chemotherapy, radiotherapy, or immunothera-
py) prior to CT scanning. The exclusion criteria 
were as follows: (1) patients whose EGFR muta-
tion status has not been tested; (2) patients 
with a histological subtype of lung cancer other 
than adenocarcinoma; (3) patients in whom the 
tumor boundary could not be easily delineated 
owing to massive pleural effusion or inflamma-
tion; (4) and patients whose CT image quality 
was poor. The flowchart of the inclusion and 
exclusion criteria is listed in the supplementary 
materials (Figure S1).

Based on the above criteria, a total of 420 
patients [mean age ± standard deviation (SD), 
57.43 ± 9.36 years; median age, 56.5 years; 
range age, 21-82 years, including 201 women 
(mean age ± SD, 56.30 ± 8.51 years; median 
age, 55.0 years; range age, 31-82 years) and 
219 men (mean age ± SD, 58.46 ± 9.99 years; 
median age, 59.0 years; range age, 21-79 ye- 
ars)] were enrolled in this study. Patients were 
randomly divided into development and valida-
tion cohorts at a ratio of 7:3. Clinical variables 
included age, sex, smoking history [including 
non-smokers (never smokers) and smokers 
(previous and current smokers)], carcinoembry-
onic antigen (CEA) level, and 14 CT image fea-
tures. The relationship between the clinical va- 
riables and radiological features of the two 
cohorts of patients and the EGFR mutation sta-
tus is listed in the supplementary materials 
(Table S1).

Analysis of the EGFR mutation status

EGFR mutations were detected using the EGFR 
detection kit (Beijing SinoMD Gene Detection 
Technology Co., Ltd., China). The polymerase 
chain reaction (PCR)-based amplified refractory 
mutation system (ARMS) method was used to 
confirm the mutations in EGFR exons 18, 19, 
20, and 21. All methods were performed accor- 
ding to the manufacturers’ instructions.
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CT scanning protocol

CT scanning was performed using two spiral CT 
systems (Discovery CT750 HD, GE Healthcare, 
Waukesha, WI, USA; Philips iCT 256, Koninklijke 
Philips N.V.). The scanning parameters of the CT 
scanners were as follows: tube voltage, 120 
kVp; tube current, 150-200 mA; tube rotation 
time, 0.5-1.0 seconds; collimator width, 40 
mm; matrix, 512 × 512; axial image layer thick-
ness, 5 mm; layer spacing, 5 mm; reconstruc-
tion layer thickness, 1.25 mm; and reconstruc-
tion layer interval, 1.25 mm. The scan range 
was from the tip to the bottom of the lung.

CT image analysis

Two radiologists with 5 years and 16 years of 
experience in thoracic tumor diagnosis, who 
were blinded to the clinical and histological 
data, independently evaluated the radiological 
features (Table S1) of all patients on the PACS. 
In case of disagreement, a consensus was re- 
ached after discussion. All results were ana-
lyzed in the lung window (width, 1500 HU; level, 
-500 HU) and mediastinum settings (width, 
300 HU; level, 40 HU).

Radiomics feature selection

Tumor segmentation and feature extraction: 
Tumor segmentation is a key step in radiomics 
feature extraction and model building. At pres-
ent, manual segmentation is the most accura- 
te and recognized segmentation method [19]. 
Preoperative thin-layer CT images were upload-
ed to ITK-SNAP 3.8 (http:/www.itksnap.org) in 
the medical digital imaging and communicati- 
on (DICOM) format for three-dimensional (3D) 
manual segmentation of the regions of interest 
(ROI) [26]. Bin width was set to 25, that is, every 
25 gray units corresponded to one gray level, 
for a total of 80 (2000/25) gray levels. To mini-
mize between-observer differences [27], a ra- 
diologist (G.J.Z) with 5 years of experience in 
chest diagnostics manually delineated the ROI 
on the axial image of the CT lung window (width, 
1500 HU; level, -500 HU), and then confirmed it 
in the coronal and sagittal positions. If the ROI 
was found to be inaccurate, further manual 
adjustment was required. Finally, the segment-
ed region outlined on each slice was merged to 
generate the volume of interest (VOI) [28]. Each 
VOI was verified by another radiologist (J.Z) with 
16 years of experience. Both readers were 
blinded to the clinical and histological data of 
all patients.

For each accurately segmented VOI, the open 
source Python software package PyRadiomics 
(https://pyradiomics.readthedocs.io/en/Late- 
st/) was used to automatically extract the ra- 
diomics features in the VOI. A total of 1468 
radiomics features were extracted from each 
VOI. The features were divided into three main 
categories: (1) first-order features; (2) shape 
features; (3) and texture features [including gr- 
ay-level co-occurrence matrix features (GLCM); 
gray-level run-length matrix features (GLRLM); 
gray-level size zone matrix features (GLSZM); 
neighboring gray-tone difference matrix fea-
tures (NGTDM); and gray-level dependence ma- 
trix features (GLDM)].

Feature selection: Radiomics feature extrac-
tion and analysis workflow is shown in Figure 1. 
Feature selection is important to improve the 
generalization ability and optimize the model 
[19]. A large number of radiomics features may 
lead to overfitting, reducing model classifica-
tion ability. The radiomics features used to bui- 
ld the model account for only a small part of the 
total. Therefore, in order to reduce the redun-
dancy between the features, we first standard-
ized all radiomics features in the development 
cohort using the z-score method and applied 
the same way on the validation cohort. Subse- 
quently, Wilcoxon rank sum test was used to 
retain features with a P-value of < 0.0000341 
(0.05/1468, the significance level of the test 
level α = 0.05 divided by the number of radio- 
mics features for Bonferroni correction) [29, 
30]. Least absolute shrinkage and selection 
operator (LASSO) regression was applied to 
select the most relevant predictive features. 
The radiomics features selection process is 
described in Figures S2 and S3.

The selection of clinical and radiological fea-
tures was based mainly on their correlation 
with the EGFR mutation status [14, 15]. Firstly, 
univariate analysis was used to select the clini-
cal and radiological features that were signifi-
cantly different from the EGFR mutation status 
in the development cohort; next, multiple logis-
tic regression analysis was further used to 
select the most relevant variables.

To evaluate the reproducibility and robustness 
of the feature extraction process, 3 months 
later, 40 patients were randomly selected from 
the development cohort, and the radiologist 
(G.Z.J) segmented the data again to construct a 
re-segmentation set. In addition, 40 patients 
were randomly selected from each CT scanner 
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Figure 1. Radiomics features extraction and analysis workflow. A. Original CT images of a patient with lung adenocarcinoma. B. Segmentation of the tumor volume 
of interest (VOI) on all CT slices by experienced radiologists. C. Feature extraction from the VOI, including tumor shape, intensity, texture, and wavelet features. D. 
Clinical, radiological, and radiomics feature analysis. E. Model building.
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to establish different CT scanner sets to calcu-
late intra-/interclass correlation coefficients 
(ICCs); values > 0.80 indicated good consis- 
tency.

Radiomics signature building: After eliminating 
the redundant features, we input the final 
selected radiomics features into the classifier 
to construct a radiomics signature for biological 
evaluation. In this study, three classifiers were 
evaluated, namely logistic regression (LR), deci-
sion tree (DT), and support vector machine 
(SVM). For DT, the size of the tree is controlled 
by complex parameters (CP). The CP value of 
the DT model was selected with the minimum 
‘Bxerror’ (the mean value of 10-fold cross-vali-
dation error) [31]. SVM classifier uses radial 
basis function as the kernel function and 
employs 10-fold cross-validation to select the 
best-performing model during development.

The receiver operating characteristic (ROC) 
curve was used to calculate the area under the 
curve (AUC), sensitivity, specificity, and accura-
cy to evaluate the performance of different 
radiomics models, and the radiomics model 
with the highest AUC was taken as the best 
model.

Used the clinical and radiological features inde-
pendently related to EGFR mutation status 
after multivariate analysis to establish a clini-
cal-radiology (C-R) model. Then, combined the 
C-R model with the best radiomics model to 
establish a clinical-radiological-radiomics (C-R-
R) model and calculated the diagnostic efficien-
cy of the C-R-R model.

The goodness of fit of the model was evaluated 
by the calibration curve and the Hosmer-Le- 
meshow test [32]. For the development and 
validation cohorts, a decision curve analysis 
(DCA) was used to calculate the net benefits of 
each model under different threshold probabili-
ties to evaluate the clinical usefulness of the 
model.

Statistical analyses

All statistical analyses were performed with R 
3.6.3 (http://www.rproject.org) and IBM SPSS 
Statistics for Windows 22.0 (IBM Corporation, 
USA). Radiomics feature extraction were per-
formed on Python 3.6.3 (https://www.python.
org) with PyRadiomics tool kit. The chi-square 
or Fisher’s exact tests were used to evaluate on 
category variables as appropriate. Independent 

sample t-test, and Mann-Whitney U test were 
used to evaluate on continue variables as 
appropriate. Receiver operating characteristic 
(ROC) curve analysis was performed to com-
pare the results of models in both sets. You- 
den’s index was used to determine the optimal 
cutoff point in the ROC analysis and the corre-
sponding accuracy, sensitivity and specificity 
were also calculated. The between-model dif-
ferences in AUC values were compared by 
DeLong test. Two-sided P-values of less than 
0.05 were considered of a statistically signifi-
cant finding.

Results

Clinical and radiological features of patients

A total of 420 patients were enrolled in this 
study, of which 294 and 126 were in the devel-
opment and validation cohorts, respectively. 
The rate of EGFR mutation in total, develop-
ment and validation groups was 50.5% (212/ 
420), 50.34% (148/294), and 50.8% (64/126), 
respectively. There was no significant differ-
ence in the EGFR mutation rate between the 
development and validation cohorts (P > 0.05). 
In addition, there was no significant difference 
between other clinical and radiological features 
between the two cohorts (all P > 0.05). The bal-
ance of data between the two cohorts demon-
strates that the grouping of patients in this 
study was reasonable (Table S1).

The relationship between clinical and radiologi-
cal features and the EGFR mutation status in 
the development cohort is shown in Table S2. 
Univariate analysis revealed that 12 features 
were significantly different between the EGFR 
mutant and wild-type groups. Multivariate anal-
ysis revealed that smoking history (odds ra- 
tio [OR], 0.373; 95% confidence interval [CI], 
0.182-0.765; P = 0.007), bubble-like lucency 
(OR, 3.669; 95% CI, 1.975-6.816; P < 0.001), 
pleural attachment (OR, 0.296; 95% CI, 0.148-
0.594; P = 0.001), and pleural retraction (OR, 
2.207; 95% CI, 1.188-4.100; P = 0.012) were 
correlated independently with the EGFR muta-
tion status.

Radiomics feature selection and signature 
building

A total of 1468 radiomics features were suc-
cessfully extracted from each patient’s VOI. In 
order to establish radiological markers, we first 
performed univariate analysis in the develop-
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ment cohort. According to Bonferroni correc-
tion, 57 radiomics features were selected, and 
then simplified to 12 potential predictors by 
LASSO regression (Table S3). In the develop-
ment cohort, ‘wavelet.LLH_firstorder_Kurtosis’ 
and ‘wavelet.LLL_glszm_GLNN’ were signifi-
cantly lower while the other 10 radiomics fea-
tures were significantly higher in the EGFR 
mutant group than in the wild-type group 
(Figure 2). In the development cohort, the 12 
radiomic features selected above were used to 
construct three different radiomics models for 
predicting EGFR mutations using LR, DT, and 
SVM classifiers. The correlation analysis of 12 
radiomics features with one clinical variable 
and three radiological features is shown in 
Figure 3.

Radiomics signature predictive performance 
and validation

The results of the radiomics signature and C-R 
model in the two cohorts are shown in Table 1 
and Figure 4. The AUC values of SVM in the  
two cohorts [0.810 (95% CI, 0.761-0.859) and 
0.796 (95% CI, 0.717-0.876), respectively] were 
higher than those of the other two classifiers 
(LR and DT). The AUC values of LR in the two 
cohorts were 0.783 (95% CI, 0.731-0.836) and 
0.778 (95% CI, 0.695-0.862), and those of DT 
were 0.768 (95% CI, 0.716-0.819) and 0.761 
(95% CI, 0.679-0.844). The AUC values of the 
C-R model in the two cohorts were 0.776 (95% 
CI, 0.724-0.828) and 0.739 (95% CI, 0.652-
0.826), respectively.

The C-R-R model developed by combining the 
radiomics signature derived from the higher 
diagnostic efficiency of SVM and the C-R mo- 
del produced higher AUC values in the deve- 
lopment and validation cohorts: 0.849 (95%  
CI, 0.805-0.893) and 0.835 (95% CI, 0.761-
0.909), respectively. In addition, the C-R-R 
model had the best discriminative ability in 
both cohorts, with sensitivities of 0.808 (95% 
CI, 0.685-0.870) and 0.773 (95% CI, 0.485-
0.879) and specificities of 0.764 (95% CI, 
0.642-0.845) and 0.833 (95% CI, 0.617-0.917). 
In the development cohort, the scores of the 
radiomics, C-R model, and C-R-R model were 
significantly higher in the EGFR mutant group 
than in the wild-type group. This result was con-
firmed in the validation cohort (Figure 5).

Based on the above results, the performance 
of the C-R-R model in the development cohort 

was significantly better than that of the SVM 
classifier (AUC, 0.81; P = 0.008), LR classifier 
(AUC, 0.783; P < 0.001), DT classifier (AUC, 
0.768; P < 0.001), and C-R model (AUC, 0.776; 
P < 0.001). Similarly, the C-R-R model had the 
best performance in the validation cohort, 
which was significantly different from that of 
the C-R model (P = 0.004) but not from that of 
the three classifiers (P > 0.05). In short, the 
C-R-R model had a higher predictive value for 
EGFR mutations. In both cohorts, the AUC va- 
lue, accuracy, and sensitivity of the C-R-R mo- 
del in predicting the EGFR mutation status were 
higher than other classifiers and the C-R model, 
and the effect of the LR classifier was better 
than that of the DT classifier and the C-R model.

Clinical application of the C-R-R model

A nomogram was constructed based on the 
radiomics model with the highest AUC value in 
combination with one clinical variable and th- 
ree radiological features. Among the five mod-
els, the radiomics nomogram had the best dis-
criminating ability (Figures 4 and 6A).

The calibration curve revealed that the proba-
bility of predicting EGFR mutations by the no- 
mogram was in good agreement with the actual 
probability (Figure 6B, 6C). The Hosmer-Leme- 
show test was applied to the SVM classifier, C-R 
model, and C-R-R model with the best discrimi-
nation ability in the development and validation 
cohorts. The values of the SVM classifier in the 
two cohorts were 0.625 and 0.251, those of 
the C-R model were 0.646 and 0.111, and tho- 
se of the C-R-R model were 0.426 and 0.313, 
respectively, indicating that the C-R-R model 
did not deviate from the perfect fit in both 
cohorts (Figure S4).

The decision curve was used to evaluate the 
clinical performance of different classifiers and 
models from the perspective of clinical applica-
tion, thereby reflecting the clinical applicability 
of different classifiers and models (Figure 6D, 
6E). The area under the decision curve of the 
C-R-R model was larger than that of other mod-
els, indicates that the model had the best clini-
cal utility. When the threshold probability was in 
the range of 9%-83%, the C-R-R model provides 
net benefits.

Discussion

In this study, we constructed a C-R-R model 
based on the combination of a CT radiomics 



CT radiomics signature predict EGFR mutation status in lung adenocarcinoma

552 Am J Cancer Res 2021;11(2):546-560

Figure 2. Boxplot showing 12 radiomics features that are significantly different between the EGFR mutant and wild groups in the development cohort.
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Figure 3. Chord diagram of the correlation between a clinical variable and three radiological and 12 radiomics features. Correlation analysis between selected 
radiomics features and clinical and radiological features in the development (A) and validation (B) cohorts. Pearson’s correlation analysis showed that each link 
is significant correlation (P < 0.05). The width of the link indicates the relative strength. For example, pleural attachment was significantly correlated with LLL_gl-
szm_GLNN and LLL_firstorder_Kurtosis in the development and validation cohorts.
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signature with clinical and radiological features 
to predict the EGFR mutation status of lung 
adenocarcinoma using a relatively large data 
set. We used three classifiers (LR, DT, and SVM) 
to calculate the diagnostic performance of ra- 
diomic signatures, and finally selected the SVM 
classifier with the highest AUC value. The C-R-R 
model was developed based on data from 294 
patients. To further verify its diagnostic perfor-
mance, we evaluated the model in a validation 
cohort of 129 patients. In the development and 
validation cohorts, the AUC values of the C-R-R 
model were high (0.849 and 0.835, respective-

ly). Therefore, this model may help determine 
the EGFR mutation status of lung adenocarci-
noma to guide personalized targeted therapy.

The EGFR mutation rate in this study was 50.5% 
(212/420), which was consistent with that in 
previous studies [10, 14, 15, 33]. In the devel-
opment and validation cohorts, the ra- 
te was 50.3% (148/294) and 50.8% (64/126), 
respectively. Our study found that sex and 
smoking history were significantly related to the 
EGFR mutation status: women and non-smok-
ers were more likely to have EGFR mutations. In 

Table 1. Performance of the radiomics signature, C-R and C-R-R models
AUC Accuracy Sensitivity Specificity

Development
    LR 0.783 (0.731-0.836) 0.728 (0.673-0.778) 0.774 (0.664-0.849) 0.682 (0.514-0.743)
    DT 0.768 (0.716-0.819) 0.731 (0.677-0.781) 0.637 (0.496-0.726) 0.824 (0.695-0.877)
    SVM 0.810 (0.761-0.859) 0.748 (0.695-0.797) 0.726 (0.568-0.801) 0.770 (0.648-0.831)
    C-R 0.776 (0.724-0.828) 0.711 (0.655-0.762) 0.720 (0.675-0.794) 0.608 (0.455-0.693)
    C-R-R 0.849 (0.805-0.893) 0.786 (0.734-0.831) 0.808 (0.685-0.870) 0.764 (0.642-0.845)
Validation
    LR 0.778 (0.695-0.862) 0.738 (0.652-0.812) 0.773 (0.560-0.924) 0.700 (0.533-0.834)
    DT 0.761 (0.679-0.844) 0.762 (0.678-0.833) 0.652 (0.368-0.731) 0.883 (0.624-0.953)
    SVM 0.796 (0.717-0.876) 0.746 (0.661-0.819) 0.742 (0.499-0.909) 0.750 (0.583-0.850)
    C-R 0.739 (0.652-0.826) 0.714 (0.627-0.791) 0.712 (0.448-0.803) 0.717 (0.467-0.817)
    C-R-R 0.835 (0.761-0.909) 0.802 (0.721-0.867) 0.773 (0.485-0.879) 0.833 (0.617-0.917)
AUC, area under the curve; C-R, clinical-radiological; C-R-R, clinical-radiological-radiomics; DT, decision tree; LR, logistic regres-
sion; SVM, support vector machine.

Figure 4. Receiver operating characteristic (ROC) curves from LG, DT classifier, SVM classifiers, C-R model, and C-
R-R model used to predict EGFR mutations in development (A) and validation (B) cohorts. C-R, clinical-radiological; 
C-R-R, clinical-radiological-radiomics; DT, decision tree; LR, logistic regression; SVM, support vector machine.
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addition, our findings showed that 10 radiologi-
cal features were significantly related to the 
EGFR mutation status (P < 0.05). For example, 
bubble-like lucency was more common in 
patients with EGFR mutations, while pleural 
attachment was more common in wild-type 
patients, which was consistent with previous 
studies [10, 14]. In multivariate regression 
analysis, smoking history, bubble-like lucency, 
pleural attachment, and pleural retraction were 
independently correlated with EGFR mutation 
status (P < 0.05), while sex and seven other 
radiological features were not significantly dif-
ferent between the two groups (P > 0.05).

To construct the radiomics signature, we sc- 
reened 12 independent features highly corre-
lated with EGFR mutations from 1468 candi-
date features, which were stable in the valida-
tion cohort. Since most of the selected radio- 
mics features (11/12) were extracted from the 
filtered image, among which seven features 
were obtained through wavelet transform, so 
the texture and high-dimensional features were 
more strongly correlated with the EGFR muta-
tion status. Wavelet transform is currently one 
of the commonly used methods for signal pro-
cessing, such as noise elimination, and data 

smoothing and filtering. It can smooth the 
image and improve the ability to acquire fea-
tures related to tumor heterogeneity [31]. 
Texture features cannot be recognized by the 
human visual system, nor can they be under-
stood as specific meanings [34, 35]. Our re- 
sults showed that the radiomics features, in- 
cluding original_firstorder_Skewness, exponen-
tial_glrlm_SRE, and wavelet.LLL_glszm_ZE, 
were higher in the EGFR mutation group and 
were significantly related to EGFR mutations. 
Among them, exponential_glrlm_SRE was 
related to run length and fine textural texture. A 
larger value represented a shorter run length 
and a finer textural texture [36, 37], while wave-
let.LLL_glszm_ZE was related to texture het-
erogeneity; a higher value represented more 
extensive heterogeneity in texture patterns 
[38]. However, the features of wavelet.LLL_fir-
storder_Kurtosis and wavelet.LLL_glszm_GL- 
NN were more extensive in the wild-type group, 
and were significantly correlated with wild-ty- 
pe EGFR. Among them, wavelet.LLL_firstorder_
Kurtosis was related to the “peakedness” in 
the image ROI. A higher kurtosis value implies 
that the quality of the distribution was concen-
trated in the tail [39], and wavelet.LLL_glszm_
GLNN was related to the gray value in the 

Figure 5. Boxplot showing the comparison of radiomics scores from the SVM classifier (A, D), C-R model (B, E), and 
C-R-R model (C, F) in the development (A-C) and validation (D-F) cohorts. C-R, clinical-radiological; C-R-R, clinical-
radiological-radiomics; SVM, support vector machine.
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image. The lower the value, the greater the 
similarity of the intensity value [38]. This indi-
cated that the finer the texture, the greater the 
heterogeneity within the tumor and the greater 
the variability of gray values, alongside the 

higher risk of EGFR mutations. These findings 
are consistent with those of a previous study 
[11]. Moreover, it also shows that these fea-
tures are closely related to radiological charac-
teristics. For example, in the development and 

Figure 6. Building and performance of the C-R-R model. (A) The nomogram developed based on the C-R-R model. (B, 
C) Calibration curves of different classifiers and models generated from the development (B) and validation (C) co-
horts. The goodness of fit of the predicted probability from different classifiers and models with the actual outcomes 
of EGFR mutations was evaluated. The x-axis represents the EGFR mutation probability calculated by different clas-
sifiers and models, and the y-axis represents the actual EGFR mutation probability. The diagonal line represents 
the ideal estimate of the ideal model. (D, E) Decision curves of different classifiers and models generated from the 
development (D) and validation (E) cohorts. The x-axis shows the threshold probability, and the y-axis measures the 
net income. C-R-R, clinical-radiological-radiomics.
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validation cohorts, pleural attachment was  
significantly correlated with features such as  
LLL_glszm_GLNN and LLL_firstorder_Kurtosis, 
pleural retraction was significantly correlated 
with features such as LLL_glszm_ZE and LLL_
glszm_GLV, bubbe-like was significantly corre-
lated with features such as LLL_glcm_SE and 
grad_gldm_DE, and smoking was significantly 
correlated with features such as exp_gldm_
SDE and fo_Skewness. The correlation be- 
tween these features indicated that although 
texture-based features are not observable to 
the naked eye, specific combinations of several 
texture features can to some extent be ex- 
plained by certain radiological features.

Medical images are routinely collected in the 
hospital during the diagnosis and treatment of 
patients with cancer, and the genotypes of 
tumors can be reflected to a certain extent by 
evaluating the characteristics of these images. 
For example, some studies have found that 
radiological features can predict the state of 
EGFR mutation status [10, 14, 15]; however, 
these studies have selected a large number of 
radiological features related to EGFR muta-
tions, which will undoubtedly increase the clini-
cal workload; and using a large number of fea-
tures is associated with an increased risk of 
error. In addition, some studies have investi-
gated the association between radiomics fea-
tures and tumor genotypes [11, 19-25]. How- 
ever, these studies usually have a small sample 
size or low diagnostic efficiency, and more 
importantly, some studies have lack validation, 
which is an important part of radiomics analy-
sis [18, 40]. Our study selected the indepen-
dent predictors most associated with EGFR 
mutation status through multivariate analysis 
of clinical and radiological features. The radio-
logical features included in the model were 
mainly because certain features were related 
to the EGFR mutation status. However, when 
manually delineating the tumor ROI, a small 
part of these radiological features, such as 
pleural depression and fine spiculation, were 
too small to be included in the ROI. Therefore, 
the omission of these features may lead to the 
reduction of feature information, which cannot 
fully reflect the heterogeneity of the entire 
tumor. Our research showed that the AUC of the 
model containing only the radiomics signature 
was 0.81, while the AUC of the model contain-
ing clinical variables and radiological features 
(C-R model) was only 0.776, and the AUC of the 
fusion model (C-R-R model) was increased to 

0.849. This demonstrated that the inclusion of 
clinical variables and radiological features in 
the model can improve the diagnostic perfor-
mance of the model. In addition, the diagnostic 
performance of the radiomics model was bet-
ter than that of the C-R model.

To our knowledge, this is the first report on pre-
diction of the EGFR mutation status using a 
relatively large data set based on CT radiomics 
signature combined with clinical and radiolo- 
gical features. Three different classifiers were 
applied to evaluate the performance of the 
radiomic model, and finally the SVM classifier 
with the highest diagnostic performance was 
selected. Yang et al. [11] have reported that a 
model based on the CT radiomics signature can 
be used to predict the EGFR mutation status of 
patients with lung adenocarcinoma, with an 
AUC of 0.826 in the training cohort and only 
0.779 in the validation cohort. Velazquez and 
colleagues [20] used the CT radiomics signa-
ture combined with clinical variables to predict 
the EGFR mutation status, and the AUC 
obtained only 0.75, and lack of verification, lim-
iting its clinical applicability. In this study, the 
proposed C-R-R model shows good prediction 
performance in the development cohort (AUC, 
0.849), and is well calibrated and stable (AUC, 
0.835) in the verification cohort. Moreover, the 
DCA confirmed the clinical usefulness of the 
C-R-R model.

TKI therapy can provide significant clinical ben-
efits to patients with EGFR mutations. Com- 
pared to treatment with platinum-based che-
motherapy alone, approximately 70% of pa- 
tients receiving TKI therapy experience symp-
tom alleviation, improved quality of life, and 
prolonged progression-free survival [3, 41, 42]. 
Therefore, determining the EGFR mutation sta-
tus is a prerequisite for receiving targeted ther-
apy. Although image analysis cannot replace 
histological examination, it can provide addi-
tional information and help identify high-risk 
patients with EGFR mutations [3, 10]. For 
example, when radiomics predicts a high pos-
sibility of EGFR mutation in patients with false-
negative histological results, the tumors should 
be re-sampled for biopsy; otherwise, these 
patients will not benefit from targeted therapy 
[10]. Similarly, in patients with multiple tumors, 
radiomics can be used to select the most suspi-
cious tumor for biopsy [43]. Therefore, when 
analysis based on histological examination is 
not feasible, imaging-based biomarkers can 
potentially be used in clinical practice.
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There are several limitations to this study. First, 
like any other retrospective study, the results of 
this study may be affected by selection bias, 
and we encourage researchers from more cen-
ters to use different CT scanners and parame-
ters to prospectively verify our findings. Se- 
cond, this study was limited to the analysis of 
lung adenocarcinoma and did not involve other 
pathological subtypes because most EGFR 
mutations are present in adenocarcinoma. 
Finally, the 3D delineation of all tumors in this 
study was performed manually by a radiologist; 
in future studies, tumors may be effectively 
segmented automatically.

In conclusion, preoperative prediction of the 
EGFR mutation status will help guide individual-
ized targeted therapy. On radiomics analysis, 
12 radiomic features were highly correlated 
with EGFR mutations, which was confirmed in 
the validation cohort. A C-R-R model was con-
structed based on CT radiomic features com-
bined with the clinical variables and radiologi-
cal features. The model showed excellent diag-
nostic performance and high sensitivity in pre-
dicting EGFR mutation status and could provide 
useful image-based biological information for 
patients eligible for targeted therapy.
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Supplementary Materials

Supplementary methods 

Radiomics feature extraction

In total, 1468 radiomics features were extracted from each volume of interest (VOI) of the CT images. 
All specific calculation formulas could be easily obtained in the open source software package 
PyRadiomics 2.2.0 or previous studies [1]. Here, we list the main feature categories. The details of the 
radiomics features were as follows:

    a) 12 shape features;
    b) 288 first-order features;
    c) 1168 texture features;
        i. 352 gray-level co-occurrence matrix (GLCM) features;
        ii. 224 gray-level dependence matrix (GLDM) features;
        iii. 256 gray-level run length matrix (GLRLM) features;
        iv. 256 gray-level size zone matrix (GLSZM) features;
        v. 80 neighbouring gray-tone difference matrix (NGTDM) features.

First-order features and texture features were extracted from original pictures as well as seven filters: 
wavelet filter, Laplacian of Gaussian (LoG) filter, square filter, square root filter, logarithm filter, gradient 
filter, and exponential filter. Shape features were extracted from original pictures.

Supplementary results 

The calculation formula for the radiomics nomogram was as follows: 

Radiomics nomogram score = -4.1136 - 1.2056 * smoking + 0.6129 * bubblelike -0.1568 * pleural 
attachment + 1.0802 * pleural retraction + 6.6927 * radiomic signature. 
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Figure S1. The flowchart of the inclusion and exclusion criteria. EGFR: epidermal growth factor receptor.

Table S1. The relationship between clinical variables and radiological features of patients in the de-
velopment and validation cohorts and EGFR mutation status

Characteristic All patients  
(n = 420)

Development  
cohort (n = 294)

Validation  
cohort (n = 126) P 

Age (years) 0.588
    Mean ± SD 57.43 ± 9.36 57.59 ± 9.27 57.05 ± 9.59
    Median (range) 56.5 (21-82) 57.0 (21-79) 56.0 (26-82)
Sex 0.430
    Male 219 (52.1%) 157 (53.4%) 62 (49.2%)
    Female 201 (47.9%) 137 (46.6%) 64 (50.8%)
Smoking history 0.841
    Yes 147 (35.0%) 102 (34.7%) 45 (35.7%)
    No 273 (65.0%) 192 (65.3%) 81 (64.3%)
CEA (μg/L) 0.543
    Normal 141 (33.6%) 96 (32.7%) 45 (35.7%)
    High 279 (66.4%) 198 (67.3%) 81 (64.3%)
EGFR status 0.932
    Mutant 212 (50.5%) 148 (50.3%) 64 (50.8%)
    Wild type 208 (49.5%) 146 (49.7%) 62 (49.2%)
Distribution 0.324
    Central 50 (11.9%) 38 (12.9%) 12 (9.5%)
    Peripheral 370 (88.1%) 256 (87.1%) 114 (90.5%)
Lobe location 0.219
    Right upper 139 (33.1) 88 (29.9%) 51 (40.5%)
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    Right middle 26 (6.2%) 17 (5.8%) 9 (7.1%)
    Right lower 99 (23.6%) 75 (25.5%) 24 (19.0%)
    Left upper 98 (23.3%) 73 (24.8%) 25 (19.8%)
    Left lower 58 (13.8%) 41 (13.9%) 17 (13.5%)
Long-axis diameter 3.53 ± 1.72 3.58 ± 1.80 3.37 ± 1.50 0.244
Short-axis diameter 2.70 ± 1.32 2.65 ± 1.38 2.58 ± 1.15 0.199
Spiculation 0.357
    Yes 319 (76.0%) 227 (77.2%) 92 (73.0%)
    No 101 (24.0%) 67 (22.8%) 34 (27.0%)
Air bronchogram 0.639
    Yes 204 (48.6%) 145 (49.3%) 59 (46.8%)
    No 216 (51.4%) 149 (50.7%) 67 (53.2%)
Bubblelike lucency 0.314
    Yes 231 (55.0%) 157 (53.4%) 74 (58.7%)
    No 189 (45.0%) 137 (46.6%) 52 (41.3%)
Calcification 0.367
    Yes 67 (16.0%) 50 (17.0%) 17 (13.5%)
    No 353 (84.0%) 244 (83.0%) 109 (86.5%)
Vascular convergence 0.593
    Yes 347 (82.6%) 241 (82.0%) 106 (84.1%)
    No 73 (17.4%) 53 (18.0%) 20 (15.9%)
Lymphadenopathy 0.828
    Yes 170 (40.5%) 118 (40.1%) 52 (41.3%)
    No 250 (59.5%) 176 (59.9%) 74 (58.7%)
Fissure attachment 0.604
    Yes 90 (21.4%) 65 (22.1%) 25 (19.8%)
    No 330 (78.6%) 229 (77.9%) 101 (80.2%)
Pleural attachment 0.472
    Yes 127 (30.2%) 92 (31.3%) 35 (27.8%)
    No 293 (69.8%) 202 (68.7%) 91 (72.2%)
Pleural retraction 0.215
    Yes 226 (53.8%) 164 (55.8%) 62 (49.2%)
    No 194 (46.2%) 130 (44.2%) 64 (50.8%)
TABD 0.535
    Yes 302 (71.9%) 215 (73.1%) 87 (69.0%)
    No 117 (27.9%) 78 (26.5%) 39 (31.0%)
Note: CEA, carcinoembryonic antigen; EGFR, epidermal growth factor receptor; SD, standard deviation; TABD, Thickened adja-
cent bronchovascular bundles.
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Figure S2. Radiomics feature selection process. A. The features were screened using the Wilcoxon rank-sum test, 
and the test level was 0.0000341 (0.05/1468). B, C. The least absolute shrinkage and selection operator (LASSO) 
was used to further filter the most relevant features.
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Figure S3. Related heat maps of development (A) and validation (B) cohorts. Dark red indicates a positive correlation, and dark blue indicates a negative correlation. 
The darker the color, the stronger the relationship.
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Table S2. The relationship between clinical variables, radiological features and EGFR mutation status 
in the development cohort

Characteristic EGFR mutant  
(n = 148)

EGFR wild-type  
(n = 146)

Univariate analysis Multivariate analysis
P value OR (95% CI) P value

Age (years)
    Mean ± SD 57.22 ± 8.92 57.96 ± 9.63 0.497 NA
    Median (range) 56.0 (21-75) 58.5 (26-79)
Sex 
    Male 62 (41.9%) 95 (65.1%) < 0.001 NA
    Female 86 (58.1%) 51 (34.9%)
Smoking history 
    Yes 32 (21.6%) 70 (47.9%) < 0.001 Reference
    No 116 (78.4%) 76 (52.1%) 0.373 (0.182-0.765) 0.007
CEA (μg/L)
    Normal 51 (34.5%) 45 (30.8%) 0.506 NA
    High 97 (65.5%) 101 (69.2%)
Distribution
    Central 13 (8.8%) 25 (17.1%) 0.033 NA
    Peripheral 135 (91.2%) 121 (82.9%)
Lobe location
    Right upper 44 (29.7%) 44 (30.1%) 0.831 NA
    Right middle 10 (6.8%) 7 (4.8%)
    Right lower 35 (23.6%) 40 (27.4%)
    Left upper 36 (24.3%) 37 (25.3%)
    Left lower 23 (15.5) 18 (12.3%)
Long-axis diameter 3.26 ± 1.65 3.90 ± 1.90 0.003 NA
Short-axis diameter 2.55 ± 1.30 2.97 ± 1.43 0.009 NA
Spiculation
    Yes 123 (83.1%) 104 (71.2%) 0.015 NA
    No 25 (16.9%) 42 (28.8%)
Air bronchogram
    Yes 83 (56.1%) 62 (42.5%) 0.020 NA
    No 65 (43.9%) 84 (57.5%)
Bubblelike lucency
    Yes 106 (71.6%) 51 (34.9%) < 0.001 3.669 (1.975-6.816) < 0.001
    No 42 (28.4%) 95 (65.1%) Reference
Calcification
    Yes 16 (10.8%) 34 (23.3%) 0.004 NA
    No 132 (89.2%) 112 (76.7%)
Vascular convergence
    Yes 124 (83.8%) 117 (80.1%) 0.416 NA
    No 24 (16.2) 29 (19.9%)
Lymphadenopathy
    Yes 53 (35.8%) 65 (44.5%) 0.128
    No 95 (64.2%) 81 (55.5%)
Fissure attachment
    Yes 34 (23.0%) 31 (21.2%) 0.719 NA
    No 114 (77.0%) 115 (78.8%)
Pleural attachment
    Yes 22 (14.9%) 70 (47.9%) < 0.001 Reference 0.001
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    No 126 (85.1%) 76 (52.1%) 0.296 (0.148-0.594)
Pleural retraction
    Yes 105 (70.9%) 59 (40.4%) < 0.001 2.207 (1.188-4.100) 0.012
    No 43 (29.1%) 87 (59.6%) Reference
TABD
    Yes 125 (84.5%) 91 (62.3%) < 0.001 NA
    No 23 (15.5%) 55 (37.7%)
Note: CEA, carcinoembryonic antigen; EGFR, epidermal growth factor receptor; NA, not applicable; SD, standard deviation; 
TABD, Thickened adjacent bronchovascular bundles.

Table S3. 12 Radiomics features and weights after LASSO regression analysis (Intercept = 
0.698640157)
Radiomics features Weighting coefficient
original_firstorder_Skewness 0.698640157
exponential_glrlm_Short Run Emphasis (SRE) 0.607884379
exponential_glrlm_Short Run High Gray Level Emphasis (SRHGLE) 0.004835766
exponential_gldm_Small Dependence Emphasis (SDE) -0.251139169
gradient_gldm_Dependence Entropy (DE) -0.145958541
wavelet.LLH_firstorder_90Percentile (90P) 0.007776720
wavelet.LLH_glcm_Sum Entropy (SE) -0.169675778
wavelet.LLL_firstorder_Kurtosis -1.393983530
wavelet.LLL_glcm_Cluster Prominence (CP) -0.093846236
wavelet.LLL_glszm_Gray Level Non-Uniformity Normalized (GLNN) 1.520449192
wavelet.LLL_glszm_Gray Level Variance (GLV) 0.467840524
wavelet.LLL_glszm_Zone Entropy (ZE) 0.687298097
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Figure S4. The Hosmer-Lemeshow test was performed in the development and validation cohorts. A. C-R model; B. 
SVM classifier; C. C-R-R model. C-R, clinical-radiological; C-R-R, clinical-radiological-radiomics; SVM, support vector 
machine.


