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Abstract: Although the classic molecular subtype of breast cancer (BRCA) has been widely used in clinical diagnosis, 
as a highly heterogeneous malignant tumor, the classic scheme is not enough to accurately predict the prognosis 
of breast cancer patients. Immune cells in the tumor microenvironment (TME) are thought to play a paramount role 
in tumor development and driving poor prognosis. In this study, we aimed to develop a TME-associated, immune-
related signature to improve prognosis prediction of BRCA. BRCA_OURS enriched transcriptomic RNA sequencing 
(RNA-seq) of tumor tissue was acquired from 43 breast cancer patients before any treatment. On the immune 
gene profiles of 43 patients from BRCA_OURS and 932 BRCA patients from The Cancer Genome Atlas (TCGA), we 
identified a robust immune-related signature including one positive coefficients gene (IL-10) and other 9 genes 
(C14orf79, C1orf168, C1orf226, CELSR2, FABP7, FGFBP1, KLRB1, PLEKHO1, and RAC2), of which the negative 
coefficients suggesting higher expression were correlated with better prognosis. Based on the expression of these 
genes, patients were grouped into the high- and low-risk group with significant overall survival (OS) (P<0.0001). The 
high-risk group was likely to have inferior outcomes related to several important cancer-associated pathways, includ-
ing mobilizing more Golgi vesicle-mediated transport and intensive DNA double-strand breaking, which are closely 
related to the infiltration of immune cells and holds the key for further growing and metastasizing. Collectively, our 
results highlight that the immunological value within BRCA is an essential determinant of prognostic factor. Our 
signature may provide an effective risk stratification tool for clinical prognosis assessment of patients with BRCA.
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Introduction

The incidence of BRCA has been ranked the 
first female malignant tumors. In China, BRCA 
is estimated to occupy 15% of all new cancer 
cases in women, and the principal consider-
ation of cancer death in women under the age 
of 45 [1]. Likewise, as far as January 1, 2019, 
the number of new cases of invasive BRCA 
diagnosed reached about 3.8 million in the 
United States, with 150,000 women following 
metastasizing [2]. BRCA is a kind of heteroge-
nous disease with various biological pheno-
types, divergent treatment regimens, and prog-
nosis. The clinicopathological characteristics 
such as age, molecular subtype, and AJCC 
stage are associated with prognosis and sub-
sequent treatment regimen [3, 4]. Although 

classic molecular subtypes based on the status 
of estrogen receptor (ER), progesterone recep-
tor (PR) and human epidermal growth factor 
receptor 2 (HER2) or other supplementary sub-
types, such as MammaPrint [5], Oncotype DX 
[6], Endopredict [7] and PAM50 [8], have been 
widely used in clinical diagnosis and become 
important indicators to guide the choice of 
treatment options, those studies mostly always 
tend to focus on the tumor characteristics with-
out considering the impact of immune cells in 
TME. For individualized and precise treatment, 
it requires a better understanding of the BRCA-
specific immune microenvironment.

Recent studies on the molecular biology of can-
cer have put forward that beyond cancer cells, 
the immune cell within TME plays a pivotal role 
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in tumorigenesis and progression biology, me- 
anwhile it also significantly influences thera-
peutic response and clinical outcome [9-12]. 
Therefore, it is remarkably crucial to quantify 
the characteristics of the immune response at 
the tumor site and improve the understanding 
of the biological interaction between tumor-
host immune microenvironment.

In this study, we aim to investigate the tran-
scriptome of tumor tissue to evaluate the 
immune status of BRCA patients. According to 
the supervised clustering of specific immune 
cells by marker gene expression profiles, sam-
ples were divided into two distinct immune infil-
tration groups. Using the Lasso-Cox algorithm, 
we identified a robust 10-gene immune-related 
signature and made further replication of this 
signature in external cohorts. Our results sh- 
owed immune-related signature was related  
to clinical outcomes and provided a valuable 
stratification tool for clinical prognosis assess-
ment of BRCA patients.

Material and methods

Patients and sample collection of BRCA_OURS

Sample collection relied on the Cancer Hospital 
of the Chinese Academy of Medical Sciences 
(Beijing, China). Breast tissue samples (n=43) 

were collected from patients who had not 
received any treatment before and underwent 
surgical resection, of the molecular subtypes 
across Luminal A, Luminal B, Her2 enrichment, 
and basal-like cancers. As well, the use of 
patient specimens in the present study was 
approved by the Ethics Committee of the 
Cancer Hospital, Chinese Academy of Medical 
Sciences. Patients had signed informed con-
sents after fully aware of the research purpose. 
The raw data of BRCA_OURS has been lodged 
in the Genome Sequence Archive (GSA) for 
human (accession no. HRA000272). The rele-
vant patient characteristics were listed in Table 
1.

Fresh surgical specimens were frozen at -80°C 
before RNA preliminaries. Tumor tissue was 
ground into pieces, digested in TRIzol, and to- 
tal RNA was further extracted. The integrity and 
concentration of RNA were detected by Agilent 
2100 Bioanalyzer and ND-1000 (NanoDrop 
Technologies). Samples of RNA integrity num-
ber (RIN) greater than 7.0 were used for subse-
quent sequencing.

Transcriptome sequencing and data analysis

Illumina NovaSeq6000 platform was used for 
transcriptome sequencing, and 150 bp paired-
end readings were generated. The quality con-
trol of data was achieved by removing low-qual-
ity reads, PCR primers, adaptors, duplicates, 
and other contaminants. HISAT2 v2.0.5 was 
used to construct the index of the reference 
genome by using human genome build 19 
(hg19) as the reference genome, as well as 
compare clean reads to it. Feature Counts were 
used to calculating the readings mapped of 
each gene. Transcripts per million reads (TPM) 
were calculated for the estimation of transcript 
abundance. 

BRCA public datasets

The cbioportal for Cancer Genomics (https://
www.cbioportal.org/datasets) was where we 
downloaded RNA-sequencing data directly, in- 
cluding TCGA and Molecular Taxonomy of Bre- 
ast Cancer International Consortium (META- 
BRIC) datasets. The BRCA samples in TCGA_
BRCA were used as a training series, while the 
METABRIC samples were analyzed as an exter-
nal validation series. Clinical information of  
corresponding patients was also downloaded 

Table 1. Characteristics of patients in BRCA_
OURS
Characteristics MM
Sex (male/female) (0/43)
Age 47 (29-67)
Molecular Subtype
    Luminal A 14
    Luminal B 18
    Her2 enrichment 4
    Basal Like 7
ER status
    ER+ 32
    ER- 11
Stage
    0 1
    I 9
    II 21
    III 11
    NA 1
Characteristics of patients in BRCA_OURS (n=43).
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availably from the public cbioportal database. 
The samples without survival information were 
eliminated and a total of 2715 BRCA patients 
were used to analyze in the present study, with 
932 patients from TCGA as training series, 
1559 from METABRIC, and 224 patients from 
GEO, including 107 patients from GSE58812 
and 117 patients from GSE88770, as the vali-
dation series. The gene expression data of the 
two GEO datasets were generated by the 
Affymetrix Human Genome U133 Plus 2.0 Array 
platform. 

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was per-
formed to find the specific pathways associat- 
ed with the relative risk group based on the 
immune-related signature on the JAVA version 
(http://software.broadinstitute.org/gsea/down- 
loads.jsp).

Pathway enrichment was detected using GSEA 
with default parameters of 1000 random sam-
ple permutations. Those pathways with FDR< 
0.25 & p-value <0.01 were considered to be 
significantly associated [13].

Single sample gene set enrichment analysis 

Single sample gene set enrichment analysis 
(ssGSEA) was an extension of GSEA and carri- 
ed out using an R package named ‘GSVA’ [14]. 
Utilizing ssGSEA, we got the gene set enrich-
ment score and evaluated immune cell infiltra-
tion of each sample according to the immune 
cell marker signatures [15] of 24 diverse resi-
dent immune cells. This approach quantifies 
the status of immune infiltration by the relative 
expression of specific marker genes, without 
isolation, preservation, and specific reagent of 
labeling immune cells. In this way, we obtained 
the immune infiltration of each sample based 
on the immune-specific gene expression profil-
ing. All samples were divided into two groups 
according to the level of immune infiltration by 
the agglomeration dependent on Euclidean dis-
tance and method “ward.D2”.

Statistical analysis

All statistical analyses were implemented in the 
R version 3.6.2. Two groups of variables were 
performed by non-parameter test Wilcoxon test 

to assess statistical significance, as Kruskal-
Wallis test was used in three groups and above. 
Generally, the results were considered statisti-
cally significant if p-value <0.05. The R packa- 
ge named ‘limma’ was used to find differential 
expression genes (DEGs) between two immune 
groups and significant DEGs were identified by 
the t-student test with P<0.05 and log2[FC]>1 
as the cut-off. Lasso penalized Cox regression 
analysis was implemented by the R package of 
‘glmnet’, combined least absolute shrinkage 
and selection operator (LASSO) and cox propor-
tion hazard regression [16, 17]. In the process 
of establishing the λ value of the Lasso-Cox 
model, lambda.1se is adopted, which contrib-
uted to the heaviest punishment and the most 
concise model. That exploited to reduce the 
dimensionality and select the most significant 
overall survival (OS)-associated immune-relat-
ed genes to construct a prognostic signature. 
According to the cut-off value of the median 
10-gene signature score, patients were divided 
into low- and high-risk groups. we performed 
Kaplan-Meier estimator, log-rank tests, and 
multivariable Cox regression using R packages 
of ‘survival’ and ‘survminer’. Kaplan-Meier (KM) 
analysis was used to assess survival outcom- 
es. The median was used as the cut-off value to 
visualize the KM curves, and statistical signifi-
cance was evaluated by the log-rank test. 
Univariate and multivariate analyses were per-
formed by the Cox proportional hazard regres-
sion model. The Concordance index (C-index) is 
widely used in evaluating the prediction ability 
of the Cox regression model, especially the 
tumor prognosis model. A C-index lower than 
0.70 was considered to be low accuracy, 
between 0.70 and 0.90 to be superior, and 
higher than 0.90 to be idealized accuracy. 
Nomogram construction and validation trans-
formed the complex regression into a readable 
visual, which made the prediction model more 
readable and convenient for the evaluation of 
patients. And then bootstrapped calibration 
curves were plotted to the nomogram-based 
prediction model. We performed receiver oper-
ating characteristic (ROC) curve and time-de- 
pendent ROC analysis to visualize the survival 
prediction availability based on the immune-
related signature risk score, AJCC stage, and 
subtype, while the area under the ROC curve 
(AUC) was used as the evaluation standard.
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Results

Immune groups reflect global immune infiltra-
tion of breast cancer

To systematically assess the composition of 
the tumor immune microenvironment, the mar- 
ker gene sets of 24 distinct leukocyte subsets 
were used as input, and the immune infiltration 
within the tumor was quantified by ssGSEA. In 
this way, we divided all samples of BRCA_OURS 
into two groups according to the immune infil-
tration of TME. The division represented global 
immune infiltration within tumor tissue (Figure 
1A), including the high-infiltration and low-infil-
tration groups with significant differences in 
immune cells. The proportion of various im- 
mune cells in each sample based on immune 
infiltration score was visualized in Figure S1A, 
with T cells and related cells accounted heavily. 
Interestingly, we found patients in the high-
immune infiltration group were with a signifi-
cantly higher level of most lymphocytes and 
myeloid cells compared to the low-immune 
group (Figure 1B), especially in relative T cells, 
such as CD8 T cells, cytotoxic cells, and Treg 
(Figure S2). However, there was no obvious law 
of consistency between the immune infiltration 
and pathological stage (Figure S1B). Moreover, 
we observed a certain correlation between cla- 
ssic molecular subtypes of breast cancer with 
immune infiltration through an R package nam- 
ed ’estimate’, and the immune score of basal-
like was higher than other subtypes but not sta-
tistically significant (Figure 1C). Immune signa-
ture gene sets from MSigDB were used to figure 
out the key immunologic signature. As Figure 
1D showed, the high-immune infiltration group 
was endowed with a higher ration in naïve B 
cells/plasma cells, resting/activated CD4 T ce- 
lls, and immature/mature neuron cell lines, 
suggesting the immune system tended to be 
immature and its’ anti-tumor ability decreased. 
Similarly, immune grouping was also perform- 
ed in the BRCA_TCGA cohort (Figure S3A) and 
the immune cell proportion was acquired by 
immune cells profile in GSVA (Figure S3B). 
Consistent with BRCA_OURS cohort, almost all 
the immune cells in the high-immune group 
were significantly higher than the low (Figure 
S4). Most immune cells in the high-infiltration 
group of BRCA_TCGA were activated either im- 
mune promotive or immunosuppressive. The- 
se results suggested that there seemly was 

immune-hot but highly immunosuppressive in- 
filtration of the high-immune group, and yet the 
low-immune group showed a relatively modest 
immune microenvironment.

Identification of prognostic immune-related 
gene from the training series

DEGs between the high- and low-immune infil-
tration groups were identified. 3444 genes  
in BRCA_OURS and 3414 genes TCGA_BRCA 
were identified as DEGs at optimum cutoff val-
ues of P<0.05 (Figure 2A, 2B). Conducting the 
intersection of two datasets of DEGs, there 
were 932 common immune-related genes af- 
ter overlapping the identified candidate genes 
(Figure 2C). After subjecting the common can- 
didates of the TCGA dataset to Lasso-Cox 
regression analysis, a set of 10 genes was 
identified (Figure 3A, 3B). This prognostic im- 
mune-related signature was composed of Inter- 
leukin-10 (IL-10), one positive coefficient gene, 
and other 9 genes (C14orf79, C1orf168, 
C1orf226, CELSR2, FABP7, FGFBP1, KLRB1, 
PLEKHO1, and RAC2), of which the negative 
coefficients suggesting that their higher levels 
were correlated with longer survival. The spe-
cific risk-score formula was adopted based on 
the corresponding parameters of these 10 
genes for OS prediction, as below: Risk score = 
(-0.114731735 * Expression of C14orf79) + 
(-0.019429183 * Expression of C1orf168) + 
(-0.049258060 * Expression of C1orf226) + 
(-0.055863001 * Expression of CELSR2) + 
(-0.028295228 * Expression of FABP7) + 
(-0.008174118 * Expression of FGFBP1) + 
(0.020753075 * Expression of IL-10) + 
(-0.121245004 * Expression of KLRB1) + 
(-0.049187024 * Expression of PLEKHO1) + 
(-0.003657534 * Expression of RAC2). After- 
ward, we calculated, ranked, and visualized the 
risk score of our immune-related signature for 
individual samples in TCGA_BRCA cohorts 
(Figure 3C-E). 

The patients’ survival of the immune-related 
signature in the training series

According to the risk score of 10-gene immu- 
ne-related signature, samples with higher risk 
scores than the median were assigned to the 
high-risk group (n=466), as less than the medi-
an considered to be the low-risk group (n= 
466). Compared to the low-risk group, patients 
in the high-risk group had significantly shorter 
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Figure 1. Immune infiltration in BRCA_OURS cohort. The Gene expression was profiled in 43 patients of BRCA_OURS (A). Boxplots of the cell compositions within 
TME in different immune infiltration group (B). Statistical analysis of Immune score with breast cancer molecular subtypes (C). Twenty enrichments of immunologic 
signature and their hazard ratios in terms of activation and inhibition of the immune function (D).



An immune-related signature for breast cancer

1272 Am J Cancer Res 2021;11(4):1267-1285

median OS, disease free survival (DFS), and 
progression free survival (PFS), respectively 
(log-rank test P<0.001, P=0.013, P=0.00016, 
respectively) (Figure 4A-C). We applied the uni-
variable and multivariable analyses to deter-
mine whether the risk score derived from the 
immune-related signature was an independent 
prognostic factor in BRCA. Our result showed 
that the association of the risk score of the 
10-gene immune-related signature was signifi-
cant with OS and was an independent prognos-
tic factor for BRCA patients (Figure 5A).

Validation of the immune-related signature in 
other independent datasets

We further validated our 10-gene immune-
related signature in another independent BRCA 
dataset from METABRIC. Similar to the training 
cohort, we classified patients into high-risk 
(n=793) and low-risk (n=766) using the median 
score serving as the cutoff point. Consistent 
with the training cohorts, patients in the two 
groups predicted different prognosis (log-rank 
test P<0.0001) (Figure 4D), with high-risk 
group accompanied shorter overall survival. 
Besides, in the multivariable Cox regression 

model, as a continuous variable, the risk score 
from the immune-related signature was signifi-
cantly correlated with OS as well (Figure 5B). 
C-index was used to evaluate the prediction 
ability of the Cox regression model in GEO data-
sets. The C-index of GSE58812 and GSE88770 
were 0.74 and 0.70 respectively, indicating a 
preferable accuracy in the Cox model.

Construction of nomogram based on 10-gene 
immune-related signature

In compliance with clinical practice, we con-
structed a nomogram of 3- and 5-year survival 
probability in TCGA_BRCA that integrated dif-
ferent clinical characteristics, such as age, tu- 
mor AJCC stage, and risk score from immune-
related signature (Figure 6A). Meanwhile, the 
corresponding line-segment of the calibration 
plot was much closer to 45° line, suggesting 
better prediction and credibility of this nomo-
gram (Figure 6B). Additionally, we compared 
the sensitivity and specificity of the immune 
signature risk score, AJCC stage, and subtype 
in predicting prognosis by ROC analysis and 
used AUC as an indicator to assess the pre- 
dictive reliability among the three prognostic 

Figure 2. Differential expression gene high- and low-
immune group. Volcano plot of BRCA_OURS (A) and 
BRCA_TCGA (B) test series. The black dots delimit up- 
and down. Red plots represent significant up genes 
using fold-change values and corrected p-values and 
blue dots represent significant down genes. A venn 
diagram was used to intersect the common genes 
between the two test series (C).
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Figure 3. The identity of 10 immune genes and risk score analysis of TCGA_BRCA test series. The tuning parameter (λ) selection in the LASSO model used 10-fold 
cross-validation via minimum criteria. The black solid vertical line represents the partial likelihood deviance± standard error (SE), The two vertical dotted lines are 
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factors. The AUCs of time-dependent ROC 
curves for 1-, 3- and 5-year overall survival pre-
dictions for the immune signature were 0.757, 
0.803, and 0.751, respectively (Figure 6C), 
indicating that the risk score had a strong pre-
dictive ability. As shown in Figure 6D, 6E, the 
combination of signature risk score with the 
AJCC stage has better efficiency than the risk 
score or AJCC stage alone in 3 years (0.826 
versus 0.803, 0.713) or 5 years (0.784 versus 
0.751, 0.686). Furthermore, the 10-gene im- 
mune-related signature risk score was obvious-
ly better than that of subtype (0.803 versus 
0.544 and 0.751 versus 0.554 respectively in 
3- and 5-years). In short, it was the risk score 
that has a strong predictive ability than the 
AJCC stage or subtype alone. However, the risk 
score combined with the AJCC stage might be 
the more powerful predictor in the ROC an- 
alysis.

Identification of the related biological process 
and signaling pathways 

Based on the risk score of 10-gene immune-
related signature, we conducted the GSEA 
analysis to identify the relevant biological pro-
cess and signaling pathways and found a seri- 
es of specific functions in the high-risk group 
(Figure 7). Gene ontology enrichment suggest-
ing, the Golgi apparatus was specifically acti-
vated in the high-risk group, involving the trans-
port and retrograde of Golgi to the endoplasmic 
reticulum. Perhaps, abundant Golgi apparatus 
activations meant providing more energy for 
tumor cell proliferation and metastasis. Mean- 
while, in hepatocellular carcinoma (HCC), it was 
reported that Golgi-related protein regulates 
various signal transduction of EGFR/RTK to 
promote tumor cell growth and metastasis 
[18], suggesting that the activity of Golgi-re- 
lated protein could promote tumor metastasis 
through receptor-ligand binding. In addition, 
there were more DNA double-strand breaking 
(DSB) and chromosome segregation in the 
high-risk group. Mis-repair of DSB, a critical 
DNA lesion, could lead to severe mutation, 

such as deletion or translocation of the chro-
mosome [19]. As one of ten hallmarks of can-
cer, chromosomal instability is a genetic confu-
sion caused by persistent errors in chromo-
some segregation during mitosis. An interest-
ing study pointed out that chromosome insta-
bility can lead to DNA leakage from the nucle- 
us of cancer cells, accompanied by a chronic 
inflammatory response, and eventually tumor 
cells spread to distant organs [20]. In addition, 
according to the biological processes annotat-
ed by hallmark gene sets annotation, the relat-
ed pathways of the high-risk group were also 
enriched (Figure S5). Kinds of complements  
were activated, interferon-mediated inflamma-
tory response was enhanced, and STAT-related 
signal pathways were activated in the high-risk 
group.

In order to further explore the relationship 
between these possible molecular mechanis- 
ms with immune infiltration in BRCA, we esti-
mated the correlation between risk score and 
immune cell infiltration. The top-3 infiltrating 
components, respectively, with signatures for 
CD8 T cells, T cells, and cytotoxic cells (Figure 
8). The most relevant component of immune 
cells, CD8 T cells, the amount of that was con-
sidered as a powerful determinant of clinical 
outcome and treatment response in breast 
cancer patients [21, 22], was highly correlated 
with immune-related signature (r=-0.57, P< 
0.01), suggesting high-risk group with less CD8 
T cells infiltrating and worse outcomes. The 
densities of cytotoxic cells in situ were signifi-
cantly related to 5-year DFS and OS in patients 
with colorectal cancer, lower densities accom-
panied with worse prognosis [23], which coin-
cided with our results that cytotoxic cells ne- 
gatively correlated with risk score (r=-0.50, 
P<0.01). In the high-risk group, unique immune 
infiltration might be associated with poor prog-
nosis of BRCA. These data suggest that the 
increased risk of a poor prognosis of patients  
in the high-risk group were likely due to their 
unique immune infiltration and several impor-
tant cancer-associated pathways, which jointly 

drawn at the minimum criteria and 1-SE criteria (A). LASSO coefficient profiles of the 932common immune-related 
genes (B). (C-E) Risk factor correlation diagram. Signature risk score distribution (C). Patients’ overall survival status 
and time (D). Heatmap of the immune signature expression (E). Rows represent genes, and columns represent 
patients. The black vertical dotted lines represent the median risk score cutoff dividing patients into low-risk and 
high-risk groups.
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Figure 4. Kaplan-Meier estimates of the overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS) of TCGA_BRCA patients using the im-
mune signature. The Kaplan-Meier plots were used to visualize the survival probabilities for the low-risk versus a high-risk group of patients based on the cut-off 
of the median risk score. Kaplan-Meier curves of OS for TCGA_BRCA test series patients (A). Kaplan-Meier curves of DFS for TCGA_BRCA test series patients (B). 
Kaplan-Meier curves of PFS for TCGA_BRCA test series patients (C). Kaplan Meier curves of OS for METABRIC_BRCA validation series patients (D). The trick marks 
on the Kaplan-Meier curves represent the censored subjects. The differences between the two curves were determined by the log-rank test.
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Figure 5. Comparison of the score with prognostic clinical covariates. Multivariable Cox proportional hazards regression, analyses incorporating the risk score and 
known clinical characteristics, including age at diagnosis, AJCC stage, and intrinsic subtype. Multivariable analysis was performed using Cox proportional hazards 
regression analysis in patients of TCGA_BRCA training series (A). Multivariable analysis was performed using Cox proportional hazards regression analysis in pa-
tients of METABRIC_BRCA validation series (B).
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Figure 6. The immune signature is an independent prognostic factor in BRCA. (A, B) Nomogram construction, and validation of TCGA_BRCA series. The nomogram 
for predicting the probability of breast cancer patients with 3- and 5-year OS (A). The calibration curve analysis of nomogram predicting survival at 3-years (B). 
Nomogram-predicted OS is distributed on the x-axis; observed survival probability is distributed on the y-axis. (C-E) Receiver operating characteristic (ROC) analysis 
was used to analyze the sensitivity and specificity of predicting overall survival. P-values were from the comparison of the area under the ROC (AUROC) of the im-
mune signature. ROC curve of TCGA_BRCA cohort among 1-, 3- and 5-year (C). 3-year correlation ROC curve in the TCGA_BRCA cohort for comparing the 10-gene 
immune-related signature risk score and clinical characteristics (D). 5-year correlation ROC curve in the TCGA_BRCA cohort for the comparison of the classification 
of the 10-gene immune-related signature risk score and clinical characteristics (E).
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drove tumor towards more malignant charac- 
teristics.

Discussion

Current progress in RNA sequencing has ex- 
panded the understanding of the molecular 
pathogenesis of various tumors [24, 25]. Tr- 
anscriptome analysis patterns reveal the func-
tional state of the cell and cellular behavior 
associated with genomic and environmental 
changes [26, 27]. Increasing evidence shows 
that TME acts a critical role in breast cancer 
pathogenesis [28]. Given that, our study fo- 
cused on exploring TME using transcriptome, 
and further identified an immune-related sig- 
nature for predicting prognosis. The signature 
assessment would contribute to individualized 
treatment for BRCA patients.

First, taking advantage of ssGSEA, we inferred 
the expression and composition of leukocytes 
in the tumor from the expression profiles of 24 
kinds of immune cells and classified them in- 
to high- and low-infiltration group. There was 
prominent significance in lymphocytes and 
myelocytes infiltration between the high- and 
low-infiltration group, especially in T cells. Se- 
condly, we identified the common DEGs bet- 
ween BRCA_OURs and TCGA_BRCA and mod-
eled an immune-related signature, including 10 
prognostic genes by the Lasso-Cox algorithm. 
Additionally, we further validated our 10-gene 
immune-related signature in another indepen-
dent BRCA dataset from METABRIC. Finally, we 
constructed a nomogram for clinical practice 
and ROC analysis was used to explore the sen-
sitivity and specificity of our signature for sur-
vival prediction. Indeed, our study proclaimed 

Figure 7. Gene set enrichment analysis depicted biological process correlated with the high-risk group.
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several favorable prognostic markers. For ex- 
ample, as a surface marker, KLRB1 (CD161) 
specifically expressed in some T cell subsets, 
including CD8+, CD4+, and TCR γδ Τ cells, 
reflecting the innate immunity of organisms 
[29]. Future studies will help to define novel 
immune-associated potential implications for 
these signature genes.

Among the 10-gene immune-related signature, 
to some extent, IL-10/KLRBL/RAC2/PLEKHO1 
were directly associated with tumor immunity, 
reflecting the characteristics of various immune 
cells, such as Dendritic cells (DCs) and Treg 
cells. For example, as an anti-inflammatory cy- 
tokine, IL-10 was broadly expressed in many 
immune cells and plays a vital role in the pre-
vention and autoimmune disease [30]. On one 
hand, IL-10 exerted an anti-inflammatory effect 
by inhibiting different types of specialized anti-
gen-presenting cells (APCs). On the other hand, 

IL-10 stimulation enhanced the proliferation 
and toxicity of CD8+ T cells [31]. The expres-
sion of IL-10 was related to several cancers, 
such as glioma [32], gastric carcinoma [33], 
and non-small cell lung cancer [34]. A related 
study revealed that IL-10 was expressed only in 
breast tumor tissue, not adjacent normal tis-
sue, and had a significant correlation with lo- 
cally advanced disease [35]. In our study, IL-10 
was highly expressed in BRCA high-risk group 
and was found to be associated with shorter 
survival, which is agreed with the previous stu- 
dy [36]. Thus, we assumed that IL-10 might act 
positively in breast cancer progression and ne- 
gatively regulate tumor immune microenviron-
ment by various immune cells, such as DC and 
Treg. The expression of Killer Cell Lectin Like 
Receptor B1 (KLRB1) always is associated with 
superior outcome and indicates the state of 
some subsets of T cells and NK cells to some 

Figure 8. Correlation between risk score and immune cell infiltration in TME. P-value greater than 0.05 is marked 
with an ‘X’.
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extent [37]. For example, KLRB was expressed 
in a variety of circulating lymphocytes various 
circulating lymphocytes, indicating its ability to 
produce IL-17 [38]. Recently, a study revealed 
the pro-inflammatory functions of KLRB+ NK 
cells [39]. KLRB1 was a prognostic indicator  
of human Esophageal Squamous Carcinoma 
(ESCC), with the growth of KLRB1-knockdown 
human ESCC cells inhibited [40]. In our study, 
KLRB1 was highly expressed in the low-risk 
group and a significant predictor of favorable 
survival in breast cancer. Another candidate, 
Rac2 Family Small GTPase (RAC2) is one of the 
RAC family members, restricting to be expre- 
ssed in the hematopoietic system and its muta-
tion affects the lymphocytes in different ways, 
including activating mutations to result in a 
combined immunodeficiency (CID) like phono-
type or negative mutations limited to the granu-
locyte subsets [41]. RAC2 was also required for 
macrophage activation [42, 43] and CCl4 treat-
ed Rac2 knockout mice confirmed that Rac2 
deficiency could reduce pro-inflammatory cyto-
kine and chemokines and inhibit fibrosis-relat-
ed signals [44]. Except for immunological func-
tion, RAC2 was reported to be upregulated in 
NSCLC and promote quiescent cell to re-entry 
cell cycle [45]. In breast cancer (BC), the expres-
sion of Rac2 was significantly correlated with 
the survival, referring to the lower Rac2, the 
worse survival the patients would be [46], 
which was consent with our study that showed 
RAC2 was highly expressed in the low-risk 
group and regarded as a favorable survival pr- 
ognostic genes. Thus, we suggested that RAC2 
may play a vital role in immune cells within 
microenvironment communication. Pleckstrin 
Homology Domain Containing Family O mem-
bership 1 (PLEKHO1), also called CKIP-1, 
encodes a protein that specifically interacts 
with the CK2α subunit. A study revealed that 
CKIP-1 in regulating Mesenchymal stem cells 
(MSCs)-mediated immunomodulation, showing 
enhanced immunosuppressive capacity with 
CKIP-1 knockdown [47]. A previous study re- 
vealed that overexpression of PLEKHO1 in 
osteoblasts accelerated the development of 
inflammation in inflammatory arthritis mice 
[48]. PLEKHO1 promoted the growth of RCC 
cells maybe through Hippo and MAPK/JNK 
pathways [49]. In array CGH analysis, deletion 
of PLEKHO may be associated with the worse 
conditions of the BRCA1 patients [50]. Except 
for the aforementioned genes, others may re- 

flect characteristics of tumor in the different 
microenvironment, involving proliferation and 
metabolism of tumor. Cordero A et al. suggest-
ed Fatty Acid Binding Proteins (FABP7) was 
essential for the growth of HER2+ breast cells 
and a potential target for the treatment of 
HER2+ breast cancer brain metastasis [51] 
and another study found that FABP7 played the 
oncogene role in colon cancer via MEK/ERK 
transduction pathway [52]. Further investiga-
tions demonstrated that FABP7 had a signifi-
cantly longer breast cancer-specific survival in 
comparison with FABP7- basal-like breast can-
cer [53]. In our study, the low expression of 
FABP7 in the high-risk group indicates a poor 
prognosis of BRCA. Therefore, we agreed that 
FABP7 might be a critical factor that the im- 
mune microenvironment indirectly regulating 
tumor growth and maybe a latent target for the 
treatment of BRCA. The expression of Cadhe- 
rin EGF LAG Seven-Pass G-Type Receptor 2 
(CELSR2) protein in HCC tissue was associat- 
ed with poor prognosis [54]. However, another 
study found that the expression of CELSR2 was 
not consistent in breast cancer, that is, there 
were strong membrane staining in benign bre- 
ast epithelial cells and most lines, while a few 
showed a significant decrease or deletion of 
CELSR2 reactivity [55]. This encourages us to 
study the specific function of CELSR2 in BRCA 
in the future. 

Among the 10-gene immune-related signature, 
some were widely studied and yet the following 
genes were either rarely reported or never have 
been investigated. For instance, C14orf79 was 
identified as a novel susceptibility locus for hip-
pocampal volume near MTSU1 [56]. FYN Bind- 
ing Protein2 (FYB2/C1orf79) was only found 
over-represented in cattle breeds [57]. C1orf- 
226 has never been reported in any study. The 
functions of these genes in BRCA and other  
diseases are still unknown, and our findings  
lay a foundation for further evaluation of these 
genes in breast cancer and beyond.

The occurrence and development of solid tu- 
mors depend not only on the tumor cell but  
also closely related to the tumor microenviron-
ment. In recent years, tumor immunity has 
been of great interest to researchers, especial-
ly the tumor immune microenvironment, which 
is mainly composed of various infiltrating im- 
mune cells and other stromal cells and cyto- 
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kines secreted from them. The cells within TME 
are characterized by a high plasticity, rapid dif-
ferentiation, and constantly changing. The tu- 
mor-infiltrating lymphocytes (TILs) are the main 
immune cells in the center of the tumor and is 
related to the adaptive immune response ac- 
ross cancer progression. Among these, CD8+ 
TILs can induce tumor cell death while Treg 
cells tend to inactivate CD8+ TILs. However, 
there was no significant correlation with prog-
nosis both in CD8+ and Foxp3+ TILs, which 
maybe keep related to the subtype of breast 
cancer [58]. The accumulation of CD49a+ NK 
cells was related to poor prognosis as thought 
to be an inhibitory receptor [59]. The immune 
microenvironment is a key factor that contrib-
utes to improve or reduce survival. Surprisingly, 
several studies suggested that high densities 
of CD8+ T cells are associated with short PFS  
and OS [60-62]. Likewise, macrophages are 
the main component of immune cells within 
TME, and M2 phenotype is the majority, con-
tributing to the growth and development of the 
invasive tumor. The density of macrophages 
was closely related to the prognosis of patients 
in many tumors, such as breast cancer, ovarian 
and gastric cancer [63]. Taken together, the 
characteristics of various immune cells within 
the immune microenvironment can predict the 
clinical outcome to different degrees. Thus, by 
revealing the TME, screening key immune sig-
nature gene is conducive to obtaining potential 
prognostic related genes. 

Our study presented an immune-related signa-
ture reveals through our experimental data and 
currently available common tumor database 
across the transcriptome. This novel immune-
related signature may be conducive to a more 
personalized prognosis prediction of BRCA 
patients and could be used as potential bio-
markers and therapeutic targets. Our analysis 
suggested that this signature may involve 
tumor energy metabolism and chromosome 
replication to support the metastasis of the 
tumor. Further validation will be required on 
functional experiments and clinical trials. We 
believe that these genes will contribute to the 
clinical prediction of BRCA.

Inevitably, our study had several limitations 
worth noting. First, our data BRCA_OURS in- 
volved in this study were rich in sequencing 
data but without the prognosis information of 
patients. Despite this weakness, the significant 

and consistent correlation of the immune- 
related signature with survival in TCGA and 
METABRIC had proved the power of our prog-
nostic signature for BRCA. Second, specific to 
each gene, we do not have any experimental 
data, nor do we study the underlying mecha-
nism. That entails functional experiments on 
these valuable genes to provide further infor-
mation in BRCA.

Data availability

The BRCA_OURS raw data for RNAseq has 
been lodged in the Genome Sequence Archive 
(GSA) for human, as accession number with 
HRA000272.
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Figure S1. Tumor Microenvironment of BRCA_OURS patients. Stacked scale histogram of the score distribution of different immune cells in each sample (A). Boxplot 
of different immune cells grouped by tumor pathological grade (B).
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Figure S2. Immune score of 24 immune cells in BRCA_OURS between high-immune infiltration group and the low-
immune group.
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Figure S3. Immune infiltration in BRCA_TCGA cohort. A. Gene expression was measured in 932 patients of BRCA_OURS. B. Stacked scale histogram of the score 
distribution of different immune cells in each sample.
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Figure S4. Immune score of 24 immune cells in BRCA_TCGA between high-immune infiltration group and the low-
immune group.
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Figure S5. Gene set enrichment analysis based on hallmark gene sets.


