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Abstract: Genitourinary tumors are groups of tumors with high complexity and heterogeneity. For long-term moni-
toring, biomarkers that can be used in detection, grading and treatment response assessment are needed. With 
rapid development in imaging technology and cancer genomics, radiogenomics, the combination of “radiology” and 
“genomics”, has emerged as a powerful tool in oncology practice in recent years because imaging can provide some 
information that genomic test cannot as gene expression and mutation status are usually evaluated on a small por-
tion of the tumor and are usually not powerful enough to reflect tumor heterogeneity. Radiogenomics investigates 
the correlations between imaging features and gene expression of a disease, especially in oncologic diseases. It 
aims to detect the disease’s mutation status and supplement genomic analysis based on imaging analysis, provid-
ing additional findings for diagnosis, treatment decisions, evaluation of treatment response and prognosis predic-
tion of the disease. Recent years have seen an increase in the number of studies investigating the application of 
radiogenomics in genitourinary tumors. Many studies have shown promising results. However, there still exist limita-
tions and challenges. In this review, we will summarize recent applications of radiogenomics in genitourinary tumors 
and discuss limitiations, challenges and future directions of radiogenomics. 
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Introduction

Genitourinary tumor is a group of tumor with 
high complexity and heterogeneity. Considering 
these tumors’ biologically diversity, a careful 
long-term monitoring is required. Thus, non-
invasive biomarkers that have the potential to 
be applied in tumor description and diagnosis, 
stratification of risk, management decision, tre- 
atment monitoring and outcome prediction are 
of urgent need.

Traditionally, imaging tests have been used to 
get a primary diagnosis and clinical stage of the 
disease in genitourinary tumors. Recent prog-
ress in imaging modalities and Omics has con-
tributed to the establishment of new methods 
for a better tumor characterization and for de- 
tecting biomarkers that are useful in early diag-
nosis and prognosis [1, 2]. Radiomics, also 
known as computational imaging analysis, re- 

fers to the process of transforming convention-
al medical images into high-dimensional, mine-
able data [3-5]. It has emerged as a powerful 
tool in oncologic practice in recent years [3-5]. 

With the rapid development in radiomics and 
cancer genomics, radiogenomics has also ga- 
ined popularity recently. It is important to under-
stand that radiogenomics and radiomics are 
different. Radiogenomics investigates the asso-
ciations between imaging features and gene 
expression of a disease, especially in oncologic 
diseases [6, 7]. It aims to non-invasively detect 
mutation status of a disease and supplement 
genomic analysis based on imaging analysis, 
providing additional results for diagnosis pro-
cesses, evaluation of treatment response and 
prognosis prediction [8, 9]. Data that cannot be 
extracted from genomic test in turn may be 
mined by radiogenomics from images as gene 
expression and mutation status are evaluated 
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on a small portion of the tumor and are not 
powerful enough to reflect tumor heterogeneity 
[9, 10]. Through a deep characterization of tu- 
mor heterogeneity, we can get a better under-
standing of tumor development and progres-
sion. Finally, by applying radiogenomics, we can 
develop imaging biomarkers that have the 
potential to stratify risk and predict survival, 
thus enabling a better precision medicine [11]. 
In this review, we will summarize recent applica-
tions and development of radiogenomics in 
genitourinary tumors and discuss limitations, 
challenges and future directions. 

Radiogenomics in renal cell carcinoma

Recent years have seen a significant advance 
in the identification of multiple mutations as- 
sociated with renal cell carcinoma (RCC) [12-
17]. Von Hippel-Lindau (VHL) tumor suppressor 
gene is identified as the most common muta-
tion in clear cell renal cell carcinoma (ccRCC) 
[18]. However, no predictive or prognostic value 
of VHL gene mutation was detected in ccRCC 
patients [19]. Recently, genomics analysis of 
ccRCC has yielded alterations such as polybro-
mo-1 (PBRM1), BRCA1-associated protein 1 
(BAP1), SET domain containing 2 (SETD2) and 
lysine-specific demethylase 5C (KDM5C) [14, 
20-23]. Considering that biopsy-generated ge- 
netic data from tumor may be undermined by 
high intratumoral heterogeneity observed in 
RCC, radiogenomics has significant value as 
imaging can reflect genomic information of the 
tumor not covered by biopsy.

It has been reported that associations between 
imaging features and mutation status could be 
detected in ccRCC. Shinagare et al. discovered 
that BAP1 mutation was associated with ill-
defined margins and calcification while mucin 4 
(MUC4) mutation correlated with exophytic 
growth pattern of the tumor [24]. Mutation of 
BAP1 is detected in about 15% of ccRCC and is 
associated with high Fuhrman grade and poor 
overall survival (OS) [25]. This result helps to 
explain that ill-defined tumor margins in some 
ccRCC could predict a high tumor grade and 
poor OS. Studies have revealed that muta- 
tion of MUC4 correlated with an improved sur-
vival in ccRCC [26]. Combing the findings from 
Shinagare et al., it may explain why exophytic 
growth pattern could indicate an improved sur-
vival in patients with ccRCC. Associations 

between CT imaging features and mutation sta-
tus of VHL, PBRM1, SETD2, BAP1 and KDM5C 
in ccRCC were also investigated [27]. KDM5C 
and BAP1 mutations were significantly associ-
ated with renal vein invasion. Mutations of VHL 
were significantly associated with well-defined 
tumor margins, nodular tumor enhancement 
and intratumoral vascularity gross appearance 
on contrast-enhanced CT scan. While muta-
tions of VHL and PBRM1 were more commonly 
identified in solid ccRCC, SETD2, KDM5C and 
BAP1 mutations were undetectable in multicys-
tic ccRCC. Considering the prognostic informa-
tion of these gene mutations, these studies 
support the use of radiogenomics in aiding in 
management and decision-making of ccRCC. A 
simple overview of the mutated genes and their 
associated imaging features in ccRCC was 
shown in Figure 1. 

Ghosh et al. constructed CT-based model for 
predicting the BAP1 gene mutation status. The 
model achieved area under the receiver operat-
ing characteristic curve (AUC) values of 0.71, 
0.66, 0.62, 0.52 for the nephrographic, unen-
hanced, cortico-medullary and excretory CT 
images, respectively [16]. For predicting muta-
tion status of VHL, PBRM1 and BAP1, Chen et 
al. utilized different classifiers, constructing  
a multi-classifier radiogenomics model based  
on quantitative CT features [27]. The model 
achieved an AUC value of more than 0.85 for 
predicting these three genes. Compared with 
individual classifiers, the multi-classifier achiev- 
ed a better performance. Recently, Kocak et al. 
investigated the value of texture analysis based 
on unenhanced CT scan in predicting BAP1 
mutation status in ccRCC [21]. The texture 
analysis achieved a high specificity, sensitivity 
and precision in predicting BAP1 mutation sta-
tus in ccRCC. 

The tumor suppressor gene PBRM1 is the sec-
ond most frequently identified gene mutation in 
ccRCC. A mutated PBRM1 gene correlated with 
poor prognosis and advanced clinicopathologi-
cal features in ccRCC patients [28]. Recent 
studies revealed that mutational status of 
PBRM1 may affect the treatment response to 
VEGF-targeted therapy and immune checkpo- 
int inhibitors in advanced or metastatic ccRCC 
[29, 30]. Kocak et al. utlilized high-dimensional 
quantitative CT texture features to develop 
classifiers for prediction of PBRM1 mutation 
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[17]. The machine-learning artificial neural net-
work (ANN) algorithm achieved an accuracy of 
88.2% with an AUC of 0.925. The machine-
learning random forest (RF) algorithm outper-
formed the ANN algorithm with an accuracy of 
95.0% and an AUC of 0.987. 

Recently, microRNA (miRNA) is recognized to 
play an important role in ccRCC tumorigenesis 
[12, 31]. It also significantly correlated with 
patient outcome [32, 33]. In a study by Marig- 
liano et al., a promising association between 
miRNA and CT texture analysis has been identi-
fied in ccRCC [13]. Particularly, miR-21-5p, a 
pivotal miRNA involved in ccRCC tumorigenesis 

and entropy, a texture analysis parameter, 
showed good correlation in ccRCC. Texture an- 
alysis may have the potential to serve as a non-
invasive method for ccRCC evaluation. 

Due to an increase in imaging modalities per-
fomed in the last few years, lots of RCCs were 
first identified at pathological T1 (pT1) with a 
5-year survival rate of 97%, which means that 
most localized RCC can be surgically remov- 
ed [34]. However, RCCs could show different 
aggressiveness and diverse outcomes [35, 
36]. It is reported that about 30% of patients 
with localized RCC at the time of surgery finally 
recur and metastasize. These patients have an 

Figure 1. Overview of the mutated genes and their associated imaging features in ccRCC. Red arrow: associations 
identified by Karlo et al.; Blue arrow: associations identified by Shinagare et al. 
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unfavorable prognosis with a 5-year survival 
rate of 12% [34, 35]. Thus, the development of 
biomarkers to predict metastasis is of urgent 
need to select patients that are most likely to 
benefit from adjuvant therapy. Lee et al. found 
that four radiomics features extracted from the 
nephrographic phase of postcontrast CT could 
predict postoperative metastasis of pT1 RCC 
patients and these four radiomics features 
were correlated with heterogenous-trait-associ-
ated gene signatures [36]. The result of the 
study showed that radiogenomics could aid in 
enacting more effective adjuvant therapies for 
patients with pT1 RCC demonstrating postop-
erative metastasis. 

It is now widely acknowledged that combined 
analysis of several biomarkers is the most 
promising method that may have the potential 
to change clinical management [37, 38]. Utili- 
zing clinical data, genetic profiles and preoper-
ative contrast-enhanced CT images, Jamshidi 
et al. constructed a radiogenomic risk score 
(RRS) for ccRCC [38]. The result showed that 
both in the training and validation group, a 
lower disease-specific survival was detected  
in high RRS group regardless of stage, grade  
and performance status. Given the promising 
results of RRS in ccRCC, Jamshidi et al. evalu-
ated the value of RSS in stratifying radiological 
progression-free survival (rPFS) of patients with 
metastatic RCC treating with bevacizumab 
before surgery [39]. Based on pretreatment CT, 
the rPFS to bevacizumab could be successfully 
stratified by RRS with a median PFS of >25 ver-
sus 6 months and OS of >37 versus 25 months 
in the low and high RRS groups, respectively. 

Radiogenomics in bladder cancer

As a highly complex and heterogeneous tumor, 
a careful long-term monitoring plays a vital role 
in the management of bladder cancer (BCa). 
However, effective, non-invasive biomarkers for 
BCa management are still lacking. The clinical 
staging system fails to predict the prognosis of 
BCa accurately or aid in treatment decision 
[40]. Lin et al. developed an integrative nomo-
gram incorporating contrast-enhanced CT ra- 
diomics, RNA sequencing data and clinical data 
[41]. The nomogram showed an excellent ability 
for predicting progression-free interval in BCa 
patients. The radiomics signature developed in 
the study could reflect the angiogenesis sta- 
tus of BCa. 

Radiogenomics in prostate cancer

Genes like phosphatase and tensin homolog 
(PTEN) and vmyc avian myelocytomatosis viral 
oncogene homolog (MYC) have shown prognos-
tic value for outcome parameters like biochemi-
cal recurrence, metastasis and mortality in 
prostate cancer (PCa) [42]. Mutations or dele-
tions in tumor suppressor gene PTEN have 
been discovered in certain tumors [43]. Multi- 
parametric MRI (mp-MRI) is playing an vital role 
in PCa management. The associations between 
cancer aggressiveness and mp-MRI features 
have been investigated [44]. However, associa-
tions between MRI features and genomic mark-
ers are still lacking. McCann et al. investigated 
the associations between quantitative mp-MRI 
imaging features of the prostate and PTEN 
expression of peripheral zone PCa [45]. The 
result revealed that there existed a weak nega-
tive correlation between the quantitative fea-
ture Kep and PTEN expression. Hypoxia has 
been proved to correlate with local and distal 
failure in certain solid tumors treated with 
radiotherapy [46]. It is known that hypoxia 
exists in PCa. However, evaluation of hypoxia 
remains difficult as studies concerning in vivo 
hypoxia imaging in PCa is limited [47, 48]. Sun 
et al. tried to investigate correlation between 
imaging features of mp-MRI and hypoxia-relat-
ed gene expression in PCa [49]. 34 imaging 
features including 28 from T2 weighted (T2W) 
imaging-texture features and 6 from the mp-
MRI data were identified by correlation analy-
sis. Finally, 16 out of the 28 T2W texture fea-
tures were associated with hypoxia gene 
expressions. This finding could aid in hypoxia-
related treatment selection. 

Stoyanova et al. studied the association 
between imaging features of quantitative mp-
MRI and gene expression in PCa using mp-MRI-
directed prostate biopsies [50]. Gene expres-
sion data was generated using an Affimetrix 
platform. Radiomics parameters were extract-
ed from areas of biopsy regions and normal 
appearing tissues. There were significant cor-
relations between quantitative imaging fea-
tures and genes. There were also strong asso-
ciations between radiomics features and sig-
nificantly expressed genes. In recent years, 
mp-MRI and prostate specific membrane anti-
gen (PSMA)-positron emission tomography/
computed tomography (PSMA PET-CT) has 
gained popularity in radiological evaluation of 
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PCa. However, whether imaging-detected le- 
sions correlate with gene data of PCa remains 
unknown. Kesch et al. tried to define a genomic 
index lesion using chromosomal copy number 
alterations (CNAs) as markers for tumor aggres-
siveness in relation to imaging features of mp-
MRI and PSMA PET-CT [51]. The result revealed 
that there existed a strong correlation between 
imaging features and genomic index lesions. 
Radiogenomics may have potential to aid in dif-
ferentiating between indolent and aggressive 
PCa. 

Jamshidi et al. evaluated the prostate microen-
vironment using mp-MRI and DNA whole-exome 
sequencing in patients with prostate adenocar-
cinoma [52]. The results showed that whole-
exome radiogenomics analysis and mp-MRI 
imaging shows a continuum of mutations ac- 
ross regions that were found to be high grade 
and normal grade by histological assessment 
in patients with prostate adenocarcinoma. Wi- 
bmer et al. explored the associations between 
MRI imaging features and cell cycle genes ex- 
pression levels [53]. It turned out that patients 
with extracapsular extension (ECE) on MRI im- 
aging had a higher mean cell cycle risk scores, 
indicating that ECE may represent a more 
aggressive genomic profile of PCa. 

A precise prediction of pathological PCa stage 
would help clinicians better determine treat-
ment choices. Fischer et al. developed a radi-
ogenomics approach based on clinical, imaging 
and two genomic features [2]. The model has 
high potential to reveal the molecular mecha-
nisms underlying tumor aggressiveness and 
predict tumor pathological stage. Published 
studies on radiogenomics in genitourinary tu- 
mor is summarized in Table 1.

Challenges and future directions

Thus far, a number of radiogenomics studies 
have been carried out in genitourinary tumors, 
especially in RCC and PCa. Studies focusing on 
other tumors including BCa, testicular cancer, 
penis cancer and renal pelvic cancer are still 
lacking. Radiogenomics investigates the asso-
ciations of imaging data with genomic data, 
enabling a deeper understanding of underlying 
tumor biology. It may have the potential to be 
applied in other genitourinary tumors. 

There are several significant issues concerning 
radiogenomics that require our attention [54]. 

Radiogenomics aims to correlate imaging data 
with genomic data that have clinical signifi-
cance. However, some radiogenomics studies 
established relationships between genomic 
data and imaging features, some of which are 
not related to prognostic outcomes. Considering 
that mechanism of gene expression and signal-
ing pathways are complex, linking imaging fea-
tures to genomic data directly may cause bias. 
Additionally, radiogenomics studies are prone 
to statistically over-fitting issues as matching 
imaging data with huge amount of genomic 
data remains difficult. Commonly, individual 
genetic mutations would be grouped into gene 
traits before associating them with imaging 
data. However, it could undermine the ability of 
imaging in predicting outcomes. Additionally, 
inter-observer variation exists in qualitative 
imaging features, which means that sometimes 
evaluation of qualitative imaging features is 
needed. 

Although some radiogenomics studies have 
shown promising results, it should be acknowl-
edged that current studies are mainly per-
formed on small sample sizes. It may be diffi-
cult to select patients with both enough tumor 
samples for genomic analysis and images for 
image analysis [54]. Compared to imaging data, 
genetic data still remains limited and perform-
ing genetic tests prospectively is expensive. 
Public data resources like The Cancer Imaging 
Archive (TCIA) and The Cancer Genome Atlas 
(TCGA) may be potential solutions. The retro-
spective nature of the studies would also result 
in limitations. In the future, a well-designed 
multicenter prospective study with large data 
set should be carried out. Another important 
limitation is the issue of standardization. Im- 
aging acquisition, segmentation methods, and 
reconstruction protocols may differ significant-
ly among centers and scanners. The results of 
radiogenomics could be influenced. 

Genomic data in radiogenomic studies are 
mostly obtained from microarray data. Studies 
focusing on the role of microRNAs are lacking. 
As these RNAs have the potential to target 
large number of genes and regulate gene 
expression, studies correlating these RNAs 
with imaging data may be a new direction. 

In the future, with advances in artificial intelli-
gence (AI) techniques, high-throughput tech-
nologies and imaging technologies, we may 
enter the new era of “omics” research. With 
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Table 1. Published radiogenomics studies in genitourinary tumor
References Tumor Application Results
Shinagare et al. [24] ccRCC Association between imaging features 

and gene mutation 
BAP1 mutation was associated with ill-defined margins and calcification. MUC4 mutation correlated with exophytic growth pattern of 
the tumor

Karlo et al. [26] ccRCC Association between imaging features 
and gene mutation

KDM5C and BAP1 mutations were associated with renal vein invasion. Mutations of VHL were associated with well-defined tumor 
margins, nodular tumor enhancement and intratumoral vascularity gross appearance

Ghosh et al. [16] ccRCC Predicting BAP1 mutation status CT-based model achieved AUC values of 0.71, 0.66, 0.62, 0.52 for the nephrographic, unenhanced, cortico-medullary and excretory 
CT images, respectively

Chen et al. [27] ccRCC Predicting mutation status of VHL, 
PBRM1 and BAP1. 

The multi-classifier model achieved a AUC value of more than 0.85 in predicting these gene mutations

Kocal et al. [21] ccRCC Predicting BAP1 mutation status Texture analysis based on unenhanced CT achieved a high specificity, sensitivity and precision in predicting BAP1 mutation status

Kocal et al. [17] ccRCC Predicting PBRM1 mutation status The RF algorithm outperformed the ANN algorithm with an accuracy of 95.0% and an AUC of 0.987

Marigliano et al. [13] ccRCC Association between miRNAs and 
texture features

miR-21-5p and entropy showed good correlation in ccRCC

Lee et al. [36] RCC Predicting postoperative metastasis 
of RCC

Four radiomics features extracted from the nephrographic phase of postcontrast CT could predict postoperative metastasis of pT1 
RCC patients and these features were correlated with heterogenous-trait-associated gene signatures

Jamshidi et al. [38] ccRCC Predicting prognosis Radiogenomic risk score (RRS) could stratify radiological rPFS of patients with metastatic RCC treating with bevacizumab before 
surgery

Lin et al. [41] BCa Predicting prognosis The nomogram incorporating contrast-enhanced CT radiomics, RNA sequencing data and clinical data showed an excellent ability for 
predicting progression-free interval in BCa patients

McCann et al. [45] PCa Association between imaging features 
and gene expression

There existed a weak negative correlation between the quantitative mp-MRI imaging feature Kep and PTEN expression in PCa

Sun et al. [49] PCa Association between imaging features 
and gene expression

16 T2W texture features were associated with hypoxia gene expressions in PCa

Stoyanova et al. [50] PCa Association between imaging features 
and gene expression

There were significant correlations between quantitative imaging features and genes in PCa

Kesch et al. [51] PCa Predicting tumor aggressiveness A strong correlation between imaging features and genomic index lesions was detected

Jamshidi et al. [52] PCa Prostate microenvironment evaluation Whole-exome radiogenomics analysis and mp-MRI imaging shows a continuum of mutations across regions that were found to be 
high grade and normal grade by histological assessment.

Wibmer et al. [53] PCa Association between imaging features 
and gene expression

Patients with extracapsular extension (ECE) on MRI imaging had a higher mean cell cycle risk scores

Fischer et al. [2] PCa Prediction of pathological stage The radiogenomics model has high potential to reveal the molecular mechanisms underlying tumor aggressiveness and predict tumor 
pathological stage
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imaging data combing with genomic, transcrip-
tomic, proteomic and metabolomic data, multi-
dimensional studies could be carried out in 
genitourinary tumors, aiming at the ultimate 
goal of precision medicine. 
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