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Abstract: Numerous prostate cancer (PC) associated genes have been reported in previous genome-wide associa-
tion studies. Elucidation of prostate cancer pharmacogenomics have enhanced studies into the impact of germline 
genetic changes on treatment, in addition to evaluating related genomic alterations and biomarkers in prostate 
tumor tissues. Currently, Abiraterone (Abi) is used as one of the therapeutic options for PC. In this article, germline 
variants that have been associated with responses to Abi in patients with advanced PC are summarized. These 
include biomarker genes such as CYP17A1, AR-V7, HSD3B1, SLCO2B1, SULT1E1, and SRD5A2 that are involved in 
homologous recombination, as well as in gene expression mutations in important signaling pathways, such as WNT 
and Abi metabolic pathways.
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Introduction

Abiraterone (Abi), the prodrug Abi acetate (AA), 
when combined with prednisone and adminis-
tered orally, is an effective therapeutic option 
for metastatic castration-resistant prostate 
cancer (mCRPC) and metastatic castration-
sensitive prostate cancer (mCSPC) [1]. 

In April 2011, the FDA approved Abi, an andro-
gen synthesis inhibitor, in combination with 
low-dose prednisone for mCRPC patients th- 
at had previously received docetaxe containing 
chemotherapy. This approval was based on the 
findings of a phase 3, randomized, placebo-
controlled trial (COU-AA-301) in male mCRPC 
patients that were previously treated with 
docetaxel. This trial reported that median sur-
vival time was 15.8 months in the abiraterone 
group and 11.2 months in the placebo group 
(HR, 0.74; 95% CI, 0.64-0.86; P < 0.0001). 
Moreover, the radiologic progression time, PSA 

decrease and pain relief were also improved 
[2-4].

The FDA approved the combination of Abi and 
prednisone after docetaxel on December 10th, 
2012. This approval was based on a random-
ized phase 3 trial of COU-AA--302 in as- 
ymptomatic or minimally symptomatic mCRPC 
patients, with Abi and prednisone vs predni-
sone alone. After treatment, the primary end-
point of radiological progression free survival  
in the combination group increased from 8.3 
months to 16.5 months (HR, 0.53; P < 0.001). 
The median follow-up time was 49.2 months 
(34.7 months vs 30.3 months; HR, 0.81; 95% 
CI, 0.70-0.93; P = 0.003) [5].

In February 2018, the FDA approved the com- 
bination of Abi and prednisone as a thera- 
peutic option for metastatic prostate cancer. 
This approval was based on two randomized 
phase 3 clinical trials of abiraterone and low-
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dose prednisone combined with ADT. Com- 
pared to ADT alone, the combination group 
exhibited improved OS outcomes in newly  
diagnosed patients with metastatic prostate 
cancer or high-risk or lymph node positive dis-
ease (STAMPEDE and LATITUDE) [6, 7].

The adverse events of Abi and prednisone  
are higher, but generally lighter. These effects 
are mainly associated with mineralocorticoid 
excess, hormonal effects and hepatotoxicity. 
The most common adverse reactions (>5%) 
were: fatigue (39%); back or joint discomfort 
(28%-32%); peripheral edema (28%); diarrhea, 
nausea or constipation (22%); hypokalemia 
(17%); and hypophosphatemia (24%). The most 
common adverse drug reactions leading to 
drug withdrawal were elevated aspartate ami-
notransferase and/or alanine aminotransfer-
ase levels (11%-12%) and heart disease (19%, 
6%) [2, 3]. Patient reported outcomes impro- 
ved with abiraterone treatments, with improve-
ments in pain intensity progression, fatigue, 
decreased function, prostate cancer-related 
symptoms, and overall health-related QOL [6, 
7].

Despite the demonstrated benefits of Abi, only 
a small portion of CRPC male patients res- 
ponded to the therapy. Compared to standard 
treatment, median progression-free survival 
(mPFS) outcome from Abi therapy is minor, at 
less than 6 months. Moreover, nearly 30% of 
the patients that used Abi developed primary 
resistance [8]. Although the mechanisms of 
resistance to Abi have not been fully estab-
lished, it has been postulated that they are 
associated with upregulated systemic and 
intratumoral androgen biosynthesis [9]. This 
resistance could also be due to the synthesis  
of more dihydro-testosterone and testosterone 
from weak adrenal androgens (i.e., dehydroepi-
androsterone (DHEA) and dehydroepiandros-
terone sulfate (DHEAS)) by the CRPC cells, or 
make a new start from cholesterol, react to 
chronic exposure to an environment of low- 
testosterone [10, 11]. Recently, studies have 
focused on the effects of germline polymor-
phisms in androgen biosynthesis, transport, 
and metabolism-related genes that may influ-
ence Abi responses and survival. These poly-
morphisms include gene mutations of andro-
gen receptors (ARs) and amplification/overex- 
pression, AR splice variants, pathway changes 
that intersect with AR signals, glucocorticoid 

receptor overexpression, neuroendocrine dif-
ferentiation, immune system dysregulation and 
so on [8]. Studies are evaluating potential bio-
markers that can predict therapeutic effects to 
distinguish among different patients by eluci-
dating on the relationships between candidate 
gene polymorphisms and clinical outcomes 
during PC therapy. This could be important in 
informing individualized Abi treatment.

Many candidate genes involved in metabolism 
and androgen actions of Abi pathways have 
been summarized in several reviews. In 2015, 
Samanta Salvi et al. [12] provided a summary 
of studies in which the possible roles of gene- 
tic variants were clinically investigated based 
on their predictive significance in gene poly- 
morphisms, prognosis and pathogenesis of 
prostate tumors. With the elucidation of pros-
tate cancer pharmacogenomics, studies sh- 
ould focus on evaluating the impact of germ- 
line changes on therapy, in addition to evalu- 
ating related genomic alterations and biomark-
ers in prostate tumor tissues [13, 14]. Eric 
Johnson et al. [14] summarized the germ-line 
variants that are associated with therapeutic 
responses in advanced PC men. With increas-
ing clinical administration of Abi, efforts are 
aimed at optimizing drug sequencing with  
a focus on personalizing therapy. Therefore, 
there is a need to incorporate germline phar-
macogenomics into routine clinical use. Cur- 
rently, reviews on candidate genetic variants of 
Abi have not been published, however, due to 
the importance of Abi in PC treatment, such 
reviews are necessary. This review elucidates 
on the current status of candidate genes with  
a clinical impact (Table 1) and provides a refer-
ence for the rational clinical use of Abi.

Action mechanisms of Abi

Abi, an androgen receptor drug, blocks andro-
gen synthesis in various pathways, including in 
the testis, adrenal glands, peripheral tissues, 
and adrenal tumor cells. It selectively inhibits 
CYP450 17α-hydroxy/17,20-lyase (CYP17A1), 
an enzyme involved in androgen biosynthesis. 
Abi exhibits the same 3β-hydroxyl and δ 5- 
steroid structure as DHEA and other 3β-hydro- 
xysteroid dehydrogenase (3β-HSD) catalytic 
substrates. Therefore, it can be metabolized  
by 3β-HSD while still retaining its properties as 
a CYP17A1 inhibitor, and gains the ability re- 
quired for effective androgen biosynthesis to 
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Table 1. Gene polymorphism-related differences in the outcomes of abiraterone for prostate cancer

Gene SNP CHR Minor 
Allele MAF Sample Size 

Studied Population Effect on the Response Ref

HSD3B1 rs1047303 1 C 0.033 76 Caucasian Not predictive of response to first-line Abi [31]

1 C 0.033 102 Caucasian The HSD3B1 (1245C) variant allele is associated with A shorter PFS on ADT in patients with 
mHSPC

[28]

1 C - 99 Japanese Distinctly better response to Abi [25]

1 C - 30 NA Result in a protein variant with increased steady-state levels [32]

SLCO2B1 rs1077858 11 G 0.353 58 Caucasian A higher rate of pathologic minimal residual disease on prostatectomy [39]

11 G - 21 NA GG genotype showeded a shorter TTBP and PFS than SNP rs1077858 (AA or GA) allele [41]

11 G - 322 NA No significant associations between this SNP and outcomes in mCRPC patients (more line 
therapy)

[40]

rs12422149 11 A 0.118 59 Caucasian Increased abiraterone levels within prostate tissue (first-line mCRPC) [39]

11 A - 323 NA Significantly improved median PFS (first-line) [40]

rs1789693 11 T 0.372 59 Caucasian Increased abiraterone levels within prostate tissue [39]

11 T - 323 NA No differential association with response (first-line mCRPC) [40]

SULT1E1 rs3775777
rs4149534
rs10019305
rs3775770
rs4149527
rs3775768

4 G
C
G
T
T
T

0.298
0.296
0.289
0.274
0.278
0.271

68 Caucasian Significantly associated with increased time to treatment failure [48]

rs3775777
rs4149534
rs10019305

4 G
C
G

0.298
0.296
0.289

68 Caucasian Significantly associated with TTF on AA therapy [48]

rs10019305
rs4149534 
rs3775777

4 G
C
T

-
-
-

322 NA No significant associations between the evaluated SNP and outcomes in mCRPC patients 
(more line therapy)

[32]

CYP17A1 rs2486758 10 C 0.213 87 NA Diminished shorter time to biochemical progression and biochemical response [54]

10 C - 322 NA Significant association with TCR (more line therapy) [32]

rs10883782 10 G 0.160 109 French Associated with rPFS on AA therapy (mCRPC first-line, CRPC-rPFS on AA) [55]

rs743572
rs10883783
rs17115100
rs284849

10 G
A
T
T

0.394
0.298
0.102
0.177

64 Caucasian No significant associations between these polymorphisms and clinical outcome [56]

CYP17A1 copy number variations 10 - - 53 NA Associated with the prognosis of mCRPC patients treated with Abi [53]

AKR1C3 Over expression 10 - - 117 Chinese CRPC-Resistance to abiraterone acetate [73]

SRD5A2 rs523349 2 C 0.446 86 Japanese A worse prognosis in metastatic prostate cancer men for primary ADT [76]

rs2300700 2 A 0.459 322 Spanish No significant associations between the SNP and outcomes in mCRPC patients (more line 
therapy 66)

[32]

SRD5A1 rs3822430 5 G 0.379 322 Spanish Showed a significant association with OS [32]

rs3736316 5 A 0.399 322 Spanish Showed a significant association with OS [32]

GNRH2 rs6051545 20 T 0.417 80 Japanese Higher serum testosterone [78]
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AR [2105T>A (p.L702H)] X - - 37 Caucasian Resistance to abiraterone [78]

[2632A>G (p.T878A)] X - - 37 Caucasian Resistance to Abi [78]

AR-V7 X - - 31 Caucasian Positive patients had lower PSA response rates than negative [17]

AR-V9 X - - 12 NA ARV9 expression in metastases related to inital resistance to AA/P [110]

AR gene amplification X - - 12 NA AA drug resistance (shorter mPSA-PFS and mrPFS) [110]

SMAD3 upregulated 15 - - 18 NA Drug-resistant [108]

CCND1 signaling was enriched 11 - - 18 NA Drug-resistant [108]

DKK4, SFRP2, LRP6 - 8, 4, 12 - - 92 NA WNT pathway activation resistance in mCRPC [111]

SPOP/CHDI Mutations/loss 17 - - 89 N  A higher response rate to Abi [118]

FOLH1, KLK3, NPY negative 11/19/7 - - 50 NA Patients with biomarker-negative platelets had the best outcome. FOLH1 and NPY provided 
Independent predictive information in PFS. KLK2, KLK3, and FOLH1 were associated with 
short OS

[127]

TSPYL1 rs3828743 6 - A 87 NA Reduced abiraterone concentrations and increased cell proliferation [120]

UGT1A4 - 2 - - 5 MA GLucuronide derivatives are detected at variable levels in circulation of treated prostate 
cancer patients

[121]

SNP: single-nucleotide polymorphism; CHR: chromosome; MAF: minor allele frequency in Caucasian population. Available online: NCBI (http://www.ncbi.nlm.nih.gov/snp) ; NA: not available.
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act as an AR antagonist and inhibitors of oth- 
ers enzyme. In the past few years, Abi associ-
ated metabolites such as 5α-Abi and D4-Abi 
(D4A), which exhibit significant pharmacologi-
cal activities, have been shown to be formed  
by steroidogenic enzymes [15]. 3β-HSD con-
verts Abi to D4A first, which antagonizes the  
AR while Abi blocks CYP17A1 and steroid-5α-
reductase (Figure 1) [16]. Then, D4A is irre- 
versibly converted to 3-keto-5β-Abi or 3-keto-
5α-Abi. Both metabolites are then converted  
to their 3β-OH and 3α-OH derivatives. In total, 
six downstream D4A metabolites are formed 
(Figure 2). 5α-Abi is directly metabolized to 
D4A, with both acting as androgen receptor 
agonists. However, the 5β-Abi metabolite is not 
active [15].

Genetic testing

A series of genomic and other molecular analy-
ses have been performed on tumor samples to 
inform therapeutic decisions by identifying 
known predictive markers for improving the 
diagnosis and treatment of PC. To elucidate on 
the molecular pathological mechanisms in 
tumor tissues, invasive procedures are often 
required, which are not always feasible, and 
continuous monitoring of tumor genotypes is 
not possible. Currently, cfDNA and CTCs are 
used to evaluate genetic and epigenetic chang-
es using the NGS of complete exome DNA to 
establish the transcribed coding and non-cod-
ing RNA profiles [17-19]. Matti Annala et al. [19] 
reported the relative influence of frequent cir-

Figure 1. Schematic of the mechanisms of signaling pathways of Abi. Declined synthesis of the androgens in pros-
tate cancer adrenal glands, and related tissue because of inhibiting the enzymes CYP17, 20 lyase and 17α hy-
droxylase irreversibly by ABI. ABI: abiraterone; CYP17A1: CYP450 17α-hydroxy/17,20-lyase; AR: androgen receptor; 
TSPYL: testis-specific-encoding-like; DHT: Dihydrotestosterone; AKR1C3: Aldo-Keto Reductase Family 1 Member C3.
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culating tumor DNA modifications on patient 
responses to the most extensively used thera-
peutic options (such as enzalutamide and Abi) 
for advanced prostate cancer. They used se- 
rum samples obtained from a phase II trial,  
set up genomic drivers of resistance to first  
line AR treatment in mCRPC and evaluated the 
possible minimally invasive biomarkers. Stud- 
ies have reported the potential prognostic val-
ues of CTC and AR markers [20-23]. Therefore, 
development of non-invasive liquid biopsy 
markers to elucidate on tissue-based informa-
tion is still a priority, and CTC-based AR-V7 
expression is the first such marker that can 
accurately predict ARSI responses in mCRPC 
individuals [17]. 

Polymorphisms associated with abi responses

HSD3B1

The enzyme 3β-HSD1, which catalyzes adrenal 
androgen precursors into dihydrotestosterone 
(DHT) is encoded by the HSD3B1 gene. How- 

ever, due to an amino acid change (p.367T>N) 
or a missense SNP (rs1047303, NM_0008- 
62.3:c.1100C>A) in exon 4 of the HSD3B1 
gene, the 3β-HSD1 protein is resistant to ubiq-
uitination and degradation. This results in the 
accumulation of enzymes, increased intracel-
lular conversion of DHT precursors to DHT and 
associated progression to CRPC [24]. DHT  
synthesis is enhanced by variant HSD3B1 
(1245C) alleles which predict metastatic dis-
ease resistance to ADT and biochemical re- 
currence after prostate cancer resection. 
Patients with HSD3B1 (1245C) allele muta-
tions have significantly worse prognostic out-
comes after ADT than those without [25], indi-
cating that the HSD3B1 variant status is cor- 
related with shortened ADT response time.

Neeraj Agarwal et al. [26] reported that 10%  
of males with homozygous HSD3B1 (1245C) 
mutant alleles have suboptimal responses to 
ADT alone. These patients may benefit more 
from a prior therapy of docetaxel or from par-

Figure 2. Genesis of 5α- and 5β-reduced Abi metabolites in patients treated with Abi. The structurally similar con-
version from abiraterone to D4A results in the reduction of D4A5α- and 5β at C5, with a total of six additional abi-
raterone metabolites. D4A: Δ4-abiraterone; 3βHSD: 3β-hydroxysteroid dehydrogenase; 3αHSD: 3α-hydroxysteroid 
dehydrogenase.
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ticipating in prior deeper androgen blockade tri-
als using novel androgen signaling inhibitors. 
This could have occurred because of the ability 
of Abi metabolites to act as androgen signaling 
agonists (3-keto-5α-Abi) and antagonists (D4A) 
at the same time [27]. Formerly, inheritance of 
the HSD3B1 variant had been associated with 
extended responses of non-steroidal drugs to 
CYP17A1 inhibition, further implying increased 
tumor dependence on external androgens in 
males with HSD3B1 mutation [28].

A study [29] involving 76 mCRPC men treated 
with AA tested the hypothesis that the HSD3- 
B1 (1245C) variant forecasts clinical respon- 
ses to treatment and can inform on individual-
ized therapy for patients with advanced PC. It 
was found that the HSD3B1 (1245C) variant 
did not predict the response of patients using 
Abi as initial treatment. This outcome could be 
because Abi metabolites can act as agonists 
(3-keto-5α-Abi) and at the same time, as an- 
tagonists (D4A) during androgen signaling. 
HSD3B1 (1245C) synthesis predicts faster  
clinical resistance and sensitivity to extra- 
adrenal androgen synthesis inhibition [30]. 
Therefore, HSD3B1 (1245C) looks like to limit  
a subfraction of patients who benefit from 
blocking androgens of extragonadal. 

Masaki Shiota et al. [25] evaluated the rela- 
tionships between HSD3B1 genotypes, clinical 
consequences and clinic-pathological parame-
ters such as PFS, tFFS, OS and PSA responses 
in 203 Japanese men. A total of 104 men were 
allocated to the primary ADT cohort, while 99 
men were allocated to the Abi group, with most 
patients in each cohort having metastatic dis-
ease. They reported that the prognosis of 
HSD3B1 mutation carriers was worse in the 
ADT group, involving 104 mHSPC patients. 
However, the 99 mCRPC patients with the 
HSD3B1 variant showed better clinical res- 
ponses to Abi therapy. Therefore, the HSD3B1 
genotype is a potential biomarker for ADT and 
Abi. It is recommended to apply Abi and ADT in 
advanced mHSPC patients. 

In contrast, a study [31] involving mCRPC pa- 
tients receiving Abi as first-, second- or third-
line therapeutic options showed that there 
were no significant associations between 
HSD3B1 (rs1047303) and clinical outcomes. 
Therefore, they determined whether the inheri-
tance of HSD3B1 (1245C) is associated with 

increased 3-keto-5α-Abi synthesis [32]. They 
found that individuals who inherited 0, 1, 2  
copies of HSD3B1 (1245C) have a gradual 
increase in normalized 3-keto-5α-Abi. These 
patients were more likely to benefit by inhibit- 
ing CYP17A1, however, Abi benefits were par-
tially offset by elevated 3-keto-5α-Abi levels.

Even Although the HSD3B1 (1245C) allele 
increases the rate by which adrenal androgen 
precursors are converted to DHT, AR antago-
nists compete with intratumoral androgens  
and may weaken the effect of the mutant  
allele. Therefore, the high exposure rate to ear- 
ly ADT and the frequent use of AR antagonists 
during ADT rescue treatments may change the 
genotypic effect on composite TTP and OS.

Recently, large individual differences in the 
metabolic ratios of Δ4A/Abi (CV = 140%) when 
3β-HSD1 transforms Abi into Δ4A have been 
reported [33]. An increase in the Abi to Δ4A 
ratio may predict the heterozygous or homozy-
gous variant of the patient (1245C), and is also 
associate with individual differences. In addi-
tion, inheritance of HSD3B1 (1245C) variants  
is associated with elevated AR agonist 5-α-Abi 
levels. These results suggest that plasma ex- 
posure to Abi affects pharmacodynamic activi-
ties in mCRPC patients treated with Abi than 
with Δ4A. Furthermore, Δ4A level or ratio may 
be a substitute of endogenous 3β-HSD1 activi-
ty, which partly depends on HSD3B1 genotype 
inherit [34].

There are divergent opinions on whether 
HSD3B1 gene polymorphisms can be used as 
biomarkers for AA to treat prostate cancer. 
Some studies [25, 26] have confirmed that 
therapeutic outcomes are predictive when AA 
is used as a first-line therapeutic option for 
CSPC. However, for men exposed to ADT from 
non-steroidal androgen drugs, HSD3B1 cannot 
predict clinical outcomes, possibly because 
HSD3B1 may have been affected by previous 
ADT treatments [27]. Therefore, further studies 
are needed to evaluate the impact of this gene 
in patients with different stages of prostate 
cancer.

SLCO2B1

Solute carrier organic anion transporter family 
member 2B1 (SLCO2B1) is involved in the 
transport of hormones such as testosterone 
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and dehydroepiandrosterone sulfate (DHEAS) 
as well as drugs such as AA [35]. Therefore, 
germline variations in SLCO2B1 can alter  
therapeutic responses to therapies targeting 
the androgen axis. This outcome has been 
observed in multiple studies [36-38] in which 
SLCO2B1 SNPs have been associated with 
resistance to ADT. The organic anion-trans- 
porting polypeptides (OATPs) transport a vari-
ety of compounds, including adrenal andro-
gens, which are encoded by SLCO genes. 

Elahe A Mostaghel et al. [39] reported that 
SLCO2B1, rs12422149 and rs1789693 SNPs 
are associated with elevated Abi levels within 
the prostate tissue and a higher rate of patho-
logic minimal residual disease on prostatec- 
tomy.

A study [40] evaluated the predictive value of 
SLCO2B1 germline variants (rs1789693 and 
rs12422149) on PFS in mCRPC men adminis-
tered with first-line Abi. Men heterozygous for 
the rs12422149 variant allele had a signifi-
cantly improved median PFS compared to 
those homozygous for wild-type rs12422149 
allele. There were no differential associations 
in responses to treatment with Abi for patients 
with the rs1789693 genotype. Germline vari-
ant alleles of SLCO2B1 (rs12422149) are fre-
quent and are potential predictors for improved 
responses to first-line Abi in mCRPC male 
patients.

Silvana Giacinti et al. [41] hypothesized that 
germline variants of the androgen transporter 
gene (SLCO2B1) may influence responses to 
Abi in mCRPC male patients by altering the 
stock ability of adrenal precursors to prostate 
cancer cells. Three single nucleotide polymor-
phisms (SNPs), intronic SNPs (rs1789693 and 
rs1077858) and an exonic SNP (rs12422149), 
were genotyped in 21 mCRPC male patients 
who had been treated with Abi. Patients carry-
ing the SLCO2B1 rs1077858 risk genotype 
(GG) showed a shorter PFS and TTBP than 
patients with the primary AA or GA allele. 
Therefore, SLCO2B1 genetic variants may be 
pharmacogenomic determinants of resistance 
to Abi in mCRPC. This phenomenon has been 
elucidated [42]. It was reported that there are 
clear differences in SLCO expression between 
Gleason score 4 and 3 tumors, ADT-treated  
and untreated tissues as well as between PCa 
and NP samples. Although the study involved  

a small sample, these results showed that ste-
roid ADT uptake and response may be influ-
enced by baseline and changes in ADT-induced 
PCa OATP expression. as well as uptake and 
response of drugs transport by OATP-mediated 
such as Abi and docetaxel, which are now com-
monly used in combination with ADT in mCSPC 
patients.

Costantine Albany et al. [43] reported that 
SLCO2B1, KIF3C CYP19A, and ESR1 polymor-
phisms are significantly associated with PFS 
during Abi therapy (P≤0.025; q-value < 0.69). 
This result showed the importance of gene 
polymorphisms in individualized treatment with 
Abi. There is a need to determine whether cor-
relations of more than one polymorphism with 
longer TTP and PFS is a predictor for better 
responses to treatment.

SULT1E1

Estrogen sulfotransferase (SULT1E1) belongs 
to the cytosolic sulfotransferase superfamily, 
which are Phase II drug-metabolizing enzymes. 
They mediate sulfate conjugation that is impor-
tant in xenobiotic detoxification and regulate 
multiple signaling molecules [44]. In the human 
reproductive tissue, SULT1E1 catalyzes the sul-
fation of estrogenic compounds [45]. Estrogen 
has a key role in PC pathogenesis and out-
comes [46]. AA inhibition of DHEA sulfonation 
has been confirmed in enzymatic cultures con-
taining human liver or intestine tissue cytosol 
or recombinant human SULT2A1, SULT2B1b or 
SULT1E1 enzymes [47].

A study [48] evaluated the correlation bet- 
ween time to treatment failure with Abi and 
832 SNPs in 61 candidate androgen pathway 
genes from 68 mCRPC patients. After correct-
ing for multiple testing and controlling for other 
clinical variables, 6 SNPs (rs3775777, rs41- 
49534, rs10019305, rs3775770, rs4149527, 
and rs3775768) in one gene, SULT1E1, were 
significantly correlated with increased time of 
treatment failure. Another study [49] arrived at 
a similar conclusion, where estrogen sulfo-
transferase genes, rs3775777, rs4149534 in 
SULT1E1 were significantly correlated with TTF 
in Abi treatment and may act as prognostic 
markers for efficacy upon treatment with Abi in 
Caucasian mCRPC male patients. These SNPs 
are potential predictive markers for Abi and 
should be validated in a larger cohort.
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CYP17A1

The human CYP17A1 gene is localized on chro-
mosome 10q24.3, spans 6.6 kb and contains 
eight exons and seven introns. In adrenals and 
gonads, an identical 2.1 kb mRNA is transcrib- 
ed from this gene [50]. In the adrenals, the 
expression levels of CYP17A1 are regulated by 
the adrenocorticotropic hormone (ACTH), and 
by gonadotropic hormone in the testes and  
ovaries. Due to its activity on 17-hydroxylase 
and 17,20-lyase, which play vital roles in hor-
monal production pathways, the CYP17A1 gene 
is very important in the production of andro-
gens and glucocorticoids [51].

As a CYP17A1 inhibitor, alterations in CYP17A1 
have been implicated in resistance to Abi [52]. 
A study [53] showed that CYP17A1 copy num-
ber variations affects the prognosis of mCRPC 
patients treated with Abi.

Moritz Binder et al. [54] evaluated the asso- 
ciations between four CYP17A1 tag SNPs and 
responses to Abi in 87 male mCRPC patients. 
Four SNPs (rs743572, rs4919685, rs24867- 
58, and rs17115100) provided a 100% cover-
age of CYP17A1 common genetic variants 
(minor allele frequency 0.05). A single SNP 
(rs2486758) was confirmed to be associated 
with diminished shorter time to biochemical 
progression and biochemical responses.

Nine SNPs of 6 candidate genes have been  
previously analyzed [32]. They include CYP- 
17A1 (rs2486758), SRD5A1 (rs3822430 and 
rs3736316), SRD5A2 (rs2300700), SCLO2B1 
(rs1077858), SULT1E1 (rs10019305, rs3775- 
777 and rs4149rs104) and HSD3B1 (rs104- 
7303). A single SNP of CYP17A1 (rs2486758) 
was significantly correlated with TCR (time to 
castration resistance). There were no signifi-
cant associations between most of the evalu-
ated SNPs and outcomes in Abi treated mCR- 
PC male patients. Unlike other studies, pati- 
ents involved in this study received Abi as the 
first-, second- or third-line therapeutic option.

The ABIGENE study [55], a multicentric pro-
spective non-randomized pharmacogenetic 
study, evaluated mCRPC patients treated with 
AA+prednisone as first-line therapy. Based  
on the PCWG2 criteria, they found that the 
association between 13 SNPs in genes (CYP- 
17A1, SLCO2B1 and SLCO2B3) are associated 

with Abi pharmacology and radiographic pro-
gression-free survival (rPFS). During Abi treat-
ment, SNP CYP17A1 (rs10883782) was asso- 
ciated with rPFS. Statistical analyses did not 
reveal significant associations between rs10- 
883783, rs743572, rs284849 and rs171151- 
00 polymorphisms in CYP17A1 and prognosis. 
However, patients with the TT genotype of rs- 
10883783 exhibited longer PFS than patients 
with the AA or TA genotype by 3-months [56].

In summary, single SNP (rs2486758) in CYP17- 
A1 was significantly correlated with poor clini-
cal outcomes and resistance to Abi treatment. 
More studies will transform these conclusions 
into decision-making indicators for clinical 
treatment.

AKR1C3

Aldo-Keto Reductase Family 1 Member C3 
(AKR1C3) is a protein-coding gene. The diseas-
es associated with AKR1C3 include prostate 
disease and endometrial cancer. Annotations 
in Gene Ontology (GO) related to this gene in- 
clude the activity of oxidoreductase and aldo-
keto reductase (NADP). AKR1C3 plays a key 
role in all DHT pathways, including catalysis of 
conversions from Δ4-androstene-3,17-dione 
(Δ4-AD) to T, 5-Adione to DHT, and DHEA to 
5-Adiol [57].

Overall gene expression analyses revealed that 
the steroid biosynthetic pathway is activated in 
prostate cancer cells resistant to Abi [58]. One 
of the key steroid-like gene enzymes, AKR1C3, 
has been found to be significantly elevated in 
Abi-resistant cells. In addition, AKR1C3 is high-
ly expressed in metastatic and recurrent pros-
tate cancer. Moreover, compared to parental 
cells, androgen precursors, such as cholester-
ol, dehydroepiandrosterone and progesterone, 
as well as androgens, are highly upregulated in 
Abi-resistant prostate cancer cells. The overex-
pression of AKR1C3 confers resistance to Abi. 
AKR1C3 expression has been observed in 
prostate cancer cell samples grown in andro-
gen-depleted media [59], in xenografts from 
castrate mice [60-62], in tumor samples of 
patients with soft-tissue metastases [10] and 
in nine clinical studies [10, 18, 59, 63-67]. 
These results suggest that AKR1C3 activation 
is a critical resistance mechanism associated 
with Abi resistance.
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AKR1C3 is also associated with the backdoor 
pathway, where it converts androsterone to 
3α-diol [67-69]. AKR1C3 expression is up-regu-
lated by ADT and is inhibited by androgens,  
and its overexpression is part of the mecha-
nisms associated with Abi resistance [61]. The 
TMPRSS2-ERG fusion protein binds the AKR- 
1C3 promoter to enhance the expression of 
AKR1C3. The pre-pass mechanism has been 
proposed, in which, when the tumor starts to 
synthesize more T and DHT, TMPRSS2-ERG 
expression is elevated, which replaces the  
AR in the AKR1C3 promoter, thereby enhan- 
cing intratumoral androgen biosynthesis [66]. 
Tamae D. et al. [70] reported that one of the 
mechanisms involved in Abi resistance is that 
DHEA-SO4 residues and AKR1C3 overexpres-
sion after CYP17 inhibition form a storm for AA 
drug resistance.

Some studies [71, 72] have reported that 
AKR1C3 detection of prostate re-Bx in mCRPC 
tissue is associated with early Abi resistance. 
That is, AKR1C3 significantly shortens mPSA 
PFS and mrPFS. The expression of AKR1C3 is 
not correlated with PSA response and OS. 
These findings inform clinical decisions on the 
best personalized treatment for mCRPC pati- 
ents, and help clinicians predict Abi effective-
ness, therefore, it is recommended to routinely 
describe it in the pathology report.

Studies [73, 74] have also evaluated the eff- 
ects of AKR1C3 on the therapeutic effect of 
corticosteroid conversion in predicting mCRPC 
patients receiving Abi treatment. One study 
showed that AKR1C3 expression by mCRPC in 
prostate re Bx tissue is associated with the 
shortening of PSA-PFS caused by the conver-
sion of glucocorticoid from prednisone to dexa-
methasone. These conclusions have a certain 
reference value for mCRPC patients, especially 
for the individualized choice of corticosteroid 
conversion therapy.

In summary, activation of AKR1C3 enhances 
androgen secretion, which is a key mechan- 
ism for Abi resistance. Therefore, targeting 
AKR1C3 activation is a potential treatment 
strategy for patients with metastatic prostate 
cancer who are resistant to Abi and corticoste-
roid conversion therapies.

SRD5A

Genetic variations in genes associated with 
androgen production pathways such as GN- 

RH2 (rs6051545) and SRD5A2 (rs523349) are 
related to serum testosterone levels and prog-
nosis during ADT [75-77]. In addition, SRD5A2 
gene polymorphism is correlated with the prog-
nosis of metastatic PC after primary ADT. 
SRD5A2 encodes 5α-reductase 2, which can 
convert testosterone to 10 times stronger DHT 
[75]. M Shiota et al. determined whether se- 
rum testosterone concentration or body mass 
index (BMI) in patients with metastatic PC and 
primary ADT is correlated with prognosis. In 
addition, the association between serum tes-
tosterone levels and SRD5A2 polymorphism 
was examined during ADT. The CC SRD5A2 
(RS523349) allele encodes a less active 5-α- 
reductase, which is associated with decreased 
serum testosterone levels in the course of ADT. 
These findings suggest that significant inhibi-
tion of SERUM testosterone by ADT is correlat-
ed with SRD5A2 polymorphism [75].

It has been reported [76] that a greater active 
5α-reductase variant encoded by the GG allele 
of SRD5A2 (rs5233499) is associated with 
poor clinical outcomes in patients with meta-
static PC treated with essential ADT. Moreover, 
patients with the CC allele, which encodes the 
less active 5α-reductase, have lower plasma 
testosterone concentrations and better clinical 
outcomes upon ADT therapy. It is advised that 
distinction of blood testosterone levels during 
ADT treatment might also mediate the prog- 
nostic impact of SRD5A2 polymorphism. It has 
not been established whether plasma testos-
terone concentrations in the course of ADT 
therapy is an independent prognostic for 
SRD5A2. 

GNRH2

Gonadotrophin-releasing hormone (GnRH) is a 
decapeptide that is synthesized by the hypo-
thalamus. Two subtypes of GnRH, GnRH1 and 
GNRH2, are expressed in the trophoblast and 
syncytial trophoblast of human placenta, res- 
pectively. The GNRH2 gene is located on chro-
mosome 20p13 and has 70% homology with 
the GnRH1 gene, and consists of 4 exons [77].

A Japanese study [78] measured serum test- 
osterone levels of 80 mCRPC patients on ADT 
treatment. Compared to the CC allele, the CT/
TT and CT alleles in the GNRH2 gene (rs60- 
51545) were associated with elevated plasma 
testosterone concentrations. During ADT treat-
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ment, CT alleles were associated with a high 
progression risk after adjusting for age and 
plasma testosterone. Therefore, it is conclud- 
ed that the rs6051545 (GNRH2) gene muta- 
tion may lead to insufficient serum testoster-
one suppression during ADT, leading to the 
missing effect of androgen deprivation therapy 
in mCRPC male patients.

Androgen receptor (AR) gene mutations and 
amplifications

Abnormal AR gene mutations are rare. How- 
ever, in rapid autopsy diagnosed metastatic 
tumors before hormonal therapy, up to 60% of 
patients were found to have these mutations 
[79]. Two AR point mutations, 2632A>G and 
2105T>A, are associated with Abi resistance 
and are activated by progesterone or predni-
sone former, respectively [80-83]. Findings 
from related biomarker studies revealed that 
the AR gene status in plasma DNA is correlated 
with poor prognosis of CRPC patients on Abi. 

Androgen-receptor splice variant (ARV)

The ARV level is associated with PC process, 
and there is a significant elevation in ARV 
expression during ADT [81-87]. This may be 
attributed to the activation of AR in the ligand 
resulting in the absence of an AR clipping vari-
ant of the ligand binding domain (LBD) as a 
transcription factor to maintain continuous ac- 
tivity in a ligand non-dependent manner [88]. 
ARV-7 and ARV-567 are the most commonly 
expressed variants that are associated with PC 
progression during ADT [89]. Abi therapy is cor-
related with an increased truncated variant 
expression, and ARV expression can mediate 
resistance to treatments targeting FL AR and 
mCRPC cell line in CRPC xenografts [90].

AR-V7: AR-V7, a special AR-V, develops from 
contiguous splicing of AR exons 1, 2, and 3 and 
cryptic exon 3 [91]. Due to selective splicing of 
30 terminal cryptic exons, AR-Vs lacks the full-
length AR COOH terminal LBD [92]. These 30 
terminal cryptic exons encode short carboxy-
terminal extensions. The expression levels of 
exon CE3 as the 30-terminal exon of AR-V7 has 
been used for RT-PCR, in RNA sequencing 
(RNA-seq) and in in situ hybridization (ISH) to 
detect the mRNA expression levels of AR-V7 in 
all kinds of biological samples from CRPC 
patients [93-102]. Positivity of AR-V7 expres-

sion in CTCs is correlated with resistance to 
Abi, but not to taxane therapy [17, 94]. AR-V7 is 
associated with CRPC pathogenesis, and its 
prognostic value in CRPC should be further elu-
cidated. In CRPC patients treated with andro-
gen receptor signaling (ARS) inhibitors, AR-V7 
positive is associated with poor PSA response 
and PFS prognosis. However, it does not have 
an effect on the OS of chemotherapy patients. 
Even though AR-V7 detection based on cir- 
culating tumor cells (CTC) has been shown to 
predict patient’s responses to second-genera-
tion androgen receptor therapy, AR-V7 is rarely 
expressed in mCRPC patients, suggesting that 
other factors mediate resistance.

A study [103] reported that PSA response  
rates of AR-V7-positive patients to androgen 
receptor signal suppression therapy was sig- 
nificantly lower than that of AR-V7-negative 
patients. The OR of PSA response in AR-V7-
positive patients has been found to be 0.07 
(95% CI, 0.02-0.35; P = 0.0010) in patients 
treated with Abi. In global case series or in  
male patients allocated into three groups 
based on basic PSA levels, when CTC negative 
to CTC positive/AR-V7 negative to CTC posi- 
tive/AR-V7 positive, all approved treatment 
results deteriorated. Pierangela Sepe et al. 
[104] reported that when individualized bio-
marker-driven therapy is extended to all pati- 
ents, priority should be given to combining the 
predictive effect of CTC status with AR-V7 
detection.

A study [17] involving Abi-treated CRPC pati- 
ents reported that AR-V7 was positive in CTCs 
in 31 patients, and that these patients had low 
PSA response rates than patients without 
AR-V7 expression. The median clinical or radio-
graphic PFS in patients without AR-V7 expres-
sion was longer than in the AR-V7-positive 
group in men with Abi. In addition, 9-15% of 
mCRPC patients were positive for AR-V7 ex- 
pression at initial treatment, and AR-V7 exhib-
ited an increasing trend during Abi treatment, 
supporting the hypothesis that AR-V7 is as- 
sociated with both intrinsic and acquired resis-
tance of patients to Abi [105, 106].

These studies imply that AR-V7 is a potential 
predictive biomarker in precision therapy. Inhi- 
biting the transcriptional activity of AR-V7 and 
reducing the recruitment of AR-V7 to PSA pro-
moters can be a vital therapeutic strategy, and 
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may also be an advantageous way for over- 
coming Abi resistance [107].

Sumanta Kumar Pal et al. [108] reported con-
trasting findings to those of previous CRPC 
studies. They did not report significant differ-
ences in AR-V7 levels between drug resistan- 
ce and drug sensitive patients and neither did 
they report that high AR-V7 baseline levels 
imply a weak response to Abi. All four patients 
with elevated AR-V7 baseline levels initially re- 
sponded to Abi, even though they progressed 
to resistance within one year of initial Abi.

Even though evidence suggests that AR-V7 
expression levels cannot be used as predictive 
markers for targeted AR therapy, studies [109, 
110] have reported that this is not always  
exact and individuals with positive AR-V7 
expression may still benefit from Abi. In addi-
tion, this suggests that other mechanisms 
other than AR splicing variant expression may 
lead to resistance to these drugs.

AR-V9: Abi acetate can be used as a target for 
transcriptional reactivation of AR in some pa- 
tients, and in most cases, the transcriptional 
activity of AR persists [110]. These two AR  
variants, AR-V9 and AR-V7, have a common 
30-terminal recessive exon, which predispos- 
es AR-V9 to experimental manipulations that 
were previously thought to be AR-V7 specific. 
Since AR-V9 promotes the growth of prostate 
cancer cells that do not rely on ligands, elevat-
ed mRNA expression levels of AR-V9 in CRPC 
metastases is a predictor of initial resistance  
to Abi. Therefore, AR-V9 may be an important 
part of CRPC resistance. A study [110] assess-
ing mCRPC individuals begin with pre-chemo-
therapy Abi+P accepted biopsies of metastatic 
site before and after 12 weeks-therapy. Com- 
pound progression included PSA, RECIST, bone 
scan and symptoms (by PCWG2), which were 
evaluated at 12 weeks (primary endpoint). The 
associations between resistance at 12 weeks 
of Abi therapy and these parameters, includ- 
ing mRNA expression of pre-AA/P ARFL (full-
length AR), AR-V3, AR-V7, AR-V9, AR-V23, AR- 
V45, four cell cycle division genes, PSA/testos-
terone levels at initial diagnosis, chromogranin-
A (CHGA) along with Gleason score (GS), tumor 
volume and time from start of hormonal thera-
py to mCRPC stage were evaluated by logistic 
regression models. It was found that elevated 
AR-V9 mRNA expression levels in metastases 

is correlated with early resistance to AA+ 
prednisone. This finding should be validated in 
similar studies.

Androgen receptor amplifications

Even though findings from AR amplification 
testing were not superior to standard prognos-
tic biomarkers, the LBD truncated AR gene is 
rearranged in patients with primary drug resis-
tance. These studies confirmed the driver 
genes for resistance to first-line AR treatment 
in patients of mCRPC, and identified the poten-
tial biomarkers for minimally invasive testing 
[19].

Signaling pathway

TGFβ/SMAD3 and CCND1

From the RNA-seq findings of CTCs, classic 
mutations correlated with CRPC and new mu- 
tations were identified, including in AR ligand 
binding domains that help escape AR target- 
ed drugs. Pathway evaluations of differentially 
regulated genes [111] revealed that cyclin D1 
(CCND1) and transforming growth factor β 
(TGFβ) signaling pathways are substantially 
upregulated in drug resistance. These findings 
indicate that Abi-sensitive and Abi-resistant 
states represented by RNA-seq of CTCs are 
potential resistant mechanisms. Moreover, CC- 
ND1 signaling and TGFβ/SMAD family member 
3 (SMAD3) play key roles in driving oncogenic 
conversion after AR-targeted therapy.

Wnt pathway

The WNT pathway is associated with mCRPC 
drug resistance [112], and can induce tumor 
transformation from epithelial to mesenchy- 
mal states. Mesenchymal transformed cancer 
cells stimulate the invasion of adjacent epithe-
lial cancer cells by secreting WNT5B [113].

Manish Kohli et al. [111] reported that activa-
tion of the Wnt/catenin pathway is associated 
with primary AA/P resistance. They also found 
that Wnt/β-catenin pathway associated genes 
often have mutations, and the negative regula-
tors of the Wnt pathway (SFRP2, LRP6 and 
DKK4) are often deleted in non-responders. 
Gene expression analysis showed that expres-
sion levels of cell cycle regulation genes in  
non-responders increased significantly, and at 
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the same time, the expression levels of the 
Wnt/catenin pathway inhibitors decreased sig-
nificantly. This discovery provides the possibili-
ty for establishing predictive biomarkers to 
regulate target pathways to overcome molecu-
lar resistance to Abi.

Some studies have reported that the expres-
sion of Wnt transcripts, such as WNT5A and 
WNT7B, and genes related to classical Wnt sig-
naling, including LEF1 and FZD4 in resistant 
samples are significantly elevated [96, 108, 
112]. However, they did not observe elevated 
expression levels of non-canonical Wnt path-
ways such as target “cell division control pro-
tein 42 homolog” (CDC42), RAC, or RHOA. 
Moreover, these non-classical pathways have 
not yet been shown to be enriched in drug-
resistant samples. Therefore, the activation 
levels and clinical relevance of Wnt pathway in 
drug-resistant prostate cancer should be fur-
ther elucidated.

Genome-wide analysis of patients with initial 
Abi resistance revealed that there is a frequen-
cy of variation in the WNT pathway. Therefore, 
the value of WNT pathway in Abi resistance 
should be further evaluated in studies.

SPOP

Tumor genome-wide and exome sequencing 
studies have shown that SPOP is the most  
commonly mutated gene in primary prostate 
cancer. It is a substrate of cullin-3 (CUL3) ring 
box 1 (RBX1) E3 ubiquitin ligase (CRL) complex 
object recognition subunit [114]. In prostate 
cancer, SPOP mutations are associated with a 
structurally labeled substrate binding region 
known as the region of methyldopa and tumor 
necrosis factor receptor-related factor (TRAF) 
homology (MATH) [115-117]. These findings 
suggest that the pathophysiology originating 
from SPOP mutations may be mediated by 
impaired substrate ubiquitination. 

SPOP mutations and CHD1 deletions frequent- 
ly occur in prostate cancer, with lower frequen-
cies reported in CRPC. A study [118] evaluated 
the key molecular characteristics of mCRPC for 
CHD1 deficiency/SPOP mutations, and showed 
that they are associated with a high probability 
of benefit from Abi therapy. CHD1 deficiency is 
significantly correlated with SPOP mutations, 
while ERG re-scheduling is negatively associat-

ed with SPOP mutations and CHD1 deficiency, 
suggesting that these genomic bits have se- 
lective roles in prostate cancer progression.

Studies have determined that SPOP mutations 
appear in the early stages of prostate tumors 
and are associated with the loss of CHD1, thus 
defining a subclass of the disease. It has been 
reported that SPOP mutations are associated 
with increased androgen receptor (AR) signal-
ing pathways. Therefore, it has been hypothe-
sized that SPOP-mutated prostate cancer is 
highly sensitive to AR blockade during Abi treat-
ment. It has been reported [119] that this sub-
class of prostate cancer is very sensitive to 
Abi’s AR signal blockade, and that most tumors 
with SPOP mutations/CHD1 deletion respond 
to it.

A study [119] reported that most of the PTEN in 
the wild-type background of CHD1 and SPOP in 
mCRPC of localized prostate cancer was miss-
ing, and two patients with both CHD1 and PT- 
EN missing at the same time were reported, 
indicating that the combination of these two 
proteins’ basic relationships are not universal. 
Moreover, this study reported several SPOP 
mutations including R121P, G148E, E50K, 
S105F, Q120R, and A187T that were not re- 
ported in previous systematic prostate cancer 
studies.

Other metabolic pathways

TSPYL

The testis-specific y-encoding-like protein (TS- 
PYL) gene family includes TSPYL1 to TSPYL6. 
Among them, TSPYL1, 2 and 4 regulate the 
expression of many CYP genes, such as CYP3- 
A4 and CYP17A1, which encode enzymes that 
catalyze Abi metabolism and key enzymes for 
androgen biosynthesis, respectively. In addi-
tion, a common SNP of TSPYL1, rs3828743 
(G/a) (Pro62Ser), suppresses the ability of 
TSPYL1 to inhibit the expression of CYP3A4, 
resulting in a decrease in Abi concentration 
and an increase in cell proliferation. SNP geno-
type A is significantly associated with adverse 
reactions. A prospective clinical trial of 87 
mCRPC men administered with Abi acetate/
prednisone revealed a significant correlation 
between poor clinical responses and short  
PFS. Therefore, as a new CYP gene transcrip-
tion regulator, the TSPYLs gene affects re- 
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sponses to drug therapy because genetic 
changes significantly regulate CYP450 gene 
transcription [120].

UGT1A4

A study [121] showed that Abi and its metabo-
lites undergo glucuronidation in the liver, and 
different levels of glucuronic acid derivatives 
are detected in the blood of PC men. UDP-
glucuronosyltransferase (UGT)1A4 is a key 
enzyme. Mutations of this enzyme were shown 
to affect this metabolic pathway in vitro, sug-
gesting that it may affect the metabolism and 
function of Abi in patients. These drug com-
pounds inhibit the effects of drugs and steroi-
dal glucuronic acid, and may affect the UGT-
related agent metabolism system and the 
pre-receptor control of androgen metabolism in 
patients.

CYP450

Abi can be extensively metabolized through a 
variety of pathways, but mainly through the 
transformation of SULT2A1 to Abi sulfate  
(M45), and to N-oxide Abi sulfate (M31) by 
SULT2A1 and CYP3A4 [122, 123]. M31 and 
M45 are the major metabolites that are not 
active, and they account for 40% of Abi in  
blood serum [123]. In vitro studies indicated 
that Abi is a strong inhibitor of CYP1A2 and 
CYP2D6 as well as a moderate inhibitor of 
CYP2C9, CYP2C19, and CYP3A4 [124]. In vitro, 
Abi sulfate and N-oxide Abi sulfate inhibit- 
ed OATP1B1, the hepatic uptake transporter 
[125], which indicates potential interactions 
between drugs and OATP substrates. However, 
currently, there is no evidence of drug interac-
tions due to transporter induction or inhibition 
[125].

FASN overexpression

Abnormal regulation of lipid metabolism cau- 
sed by overexpression of fatty acid synthase 
(FASN) is an important sign of prostate cancer 
progression. FASN is a key enzyme for restart-
ing fatty acid synthesis. FASN and AR-FL have 
been detected in 87% of mCRPC metastases, 
with AR-V7 being found in 39% of bone metas-
tases, and they were always co-expressed with 
FASN. FASN/AR-V7 double-positive metastases 
have been reported in 77% of Abi treatment 
cases. These findings provide compelling rea-
sons for the use FASN inhibitors in mCRPC, 
including in those who overexpress AR-V7 
[126].

KLK3, FOLH1, and NPY

Results [127] from the Abi-treated cohort re- 
vealed that detectable biomarkers (FOLH1, 
KLK3 and NPY) are associated with short PFS. 
Patients with negative platelet biomarkers  
have the best clinical outcomes. FOLH1 and 
NPY as biomarkers have been shown to have 
independent predictive values in the multivari-
ate analysis of PFS. Three biomarkers (KLK2, 
KLK3 and FOLH1) are associated with a short 
OS. Introducing the three biomarkers of KLK3, 
FOLH1 and NPY in one panel at the same time 
can predict long-term and short-term respond-
ers with a sensitivity of 87% and a specificity  
of 82%.

Conclusions

Approval of Abi for mCRPC has greatly enrich- 
ed the treatment strategy for PC. However, 
many germline variants have been shown to 
affect clinical responses in men with advan- 
ced PC to systemic treatment. Associations 
between germline variants such as HSD3B1, 
SLCO2B1, SULT1E1, CYP17A1, SRD5A2, AR-V7 
and clinical responses to ADT in CSPC have 
been extensively validated in independent co- 
horts, but gene mutations in the WNT signaling 
pathway, SPOP, KLK3, FOLH1, NPY and meta-
bolic pathways are worthy of attention.

Since genetic polymorphisms have been sh- 
own to exhibit contradictory effects on the  
clinical outcomes of Abi in the treatment of PC, 
larger-scale studies should be performed to 
evaluate genetic polymorphisms of Abi as bio-
markers in clinical practice. The correlation 
between SNPs and treatment outcomes can  
be used as prognostic and predictive biomark-
ers for patient stratification and to distinguish 
between individualized therapy and follow-up 
plans. Therefore, studies should aim at estab-
lishing a corresponding model to determine  
the influence of the clinical outcomes of genes 
that can be applied for clinical, individualized 
treatment.
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