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Abstract: Liver sinusoidal endothelial cells (LSECs) are the gatekeeper cells in the liver, contributing critical roles in 
liver physiological and pathological changes. Factors such as dietary macronutrients, toxins, and aging impact LSEC 
fenestration. Defenestration of LSECs changes their phenotype and function. Under liver injury, capillarized LSECs 
promote hepatic stellate cells (HSCs) activation and fibrogenesis, while decapillarized LSECs protect the activation 
of HSCs and liver injury. The expression of chemokines, such as CXCL9 and CXCL16, changes and impacts the 
infiltration of immune cells in the liver during disease progression, including hepatocellular carcinoma (HCC). As 
the largest solid organ, liver is one of the most favorable organs into where tumor cells metastasize. The increased 
interaction and adhesion of circulating tumor cells (CTCs) with LSECs in the local microenvironment and LSEC-
induced tolerance of immunity promote cancer liver metastasis. Several strategies can be applied to target LSEC to 
modulate their function to prevent cancer liver metastasis, including gut microbiota modulation, microRNA therapy, 
and medical treatment. Delivery of different treatment agents with nanoparticles may promote precise target treat-
ment. Overall, targeting LSECs is a potential strategy for treatment of early liver diseases and prevention of cancer 
liver metastasis. 
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Introduction

Liver sinusoidal endothelial cells (LSECs) line in 
hepatic sinusoids and play critical roles in liver 
physiological homeostasis and pathogenesis 
[1, 2]. As the gatekeeper cells, LSECs interact 
with circulating blood macromolecules, patho-
gens, and toxic agents [3, 4]. They are fenes-
trated endothelial cells featured by the pres-
ence of transcellular pores [5, 6]. The fenes- 
trated LSECs inhibit hepatic fibrogenesis by 
maintaining hepatic stellate cells (HSCs) qu- 
iescence (Figure 1A), whereas capillarized/
defenestrated LSECs precede liver fibrosis [7, 
8]. Besides, fenestrated LSECs can reverse the 
activated HSCs to the quiescent stage by the 
production of nitric oxide (NO) with the stimu- 
lation of vascular endothelial growth factor 
(VEGF) [9]. Moreover, LSECs can protect the 
liver from damage [10] and are primary media-
tors for hepatic immune tolerance [11], which is 
mediated by the products such as programmed 
death-ligand 1 (PD-L1) [12, 13]. 

Cancer metastasis accounts for a large propor-
tion of cancer deaths [14], at least for solid 
tumors [15]. Liver is the largest solid organ in 
human body, and it is one of the most sites 
where other cancers metastasize (Figure 1B), 
such as colorectal cancer [16], pancreatic can-
cer [17], breast cancer [18], renal cell carcino-
ma [19], and lung cancer [20]. The colonization 
of circulating tumor cells (CTCs) in the liver 
leads to cancer liver metastasis [21, 22]. LSEC 
capillarization plays a pivotal role in liver cancer 
development and cancer liver metastasis. For 
example, the phenotype and function of micro-
vascular endothelial cells from human liver can-
cer tissue (HLCECs) are different from LSECs  
in healthy human liver [23]. The expression of 
intercellular-adhesion molecule 1 (ICAM-1) was 
decreased in HLCECs compared with LSECs, 
while productions of tumor necrosis factor 
receptor (TNFR) p75, αvβ3 and αvβ5 integrins 
were increased. Those changes increased hu- 
man hepatocellular carcinoma BEL-7402 cell 
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adherence on HLCECs than LSECs, but decr- 
eased leukocyte adherence on HLCECs com-
pared to LSECs, resulting in cancer develop- 
ment. 

In this review, the phenotype switching of LS- 
ECs under different microenvironments is firstly 

introduced. Then, the roles of LSECs in liver 
inflammation, fibrosis, and regeneration are re- 
viewed. The LSEC-derived important factors 
that mediate cancer liver metastasis are high-
lighted. Finally, potential treatment options tar-
geted on LSECs to prevent cancer liver metas-
tasis are discussed. 

Figure 1. LSECs play critical roles in liver diseases and cancer liver metastasis. A. The function of liver sinusoidal 
endothelial cells (LSECs) in liver diseases. Fenestrated LSECs inhibit liver inflammation and HSC activation, promote 
liver repair and hepatocyte proliferation, and have antioxidant activity. In contrast, capillarized or defenestrated 
LSECs caused by factors such as CCl4, can induce liver inflammation and promote HSC activation and tumor growth, 
and have low antioxidant activity. Furthermore, LSEC death can promote liver inflammation, fibrosis, cirrhosis, and 
final liver cancer. B. The different tumors with liver metastasis. Liver is the largest solid organ in the body, which is 
one of the most common places different cancers metastasize into, such as breast cancer, pancreatic cancer, lung 
cancer, colorectal cancer, renal cell carcinoma, and melanoma. LSECs are the liver gatekeeper cells and first inter-
act with circulating tumor cells (CTCs) in the liver site. Therefore, LSECs play critical roles in cancer liver metastasis 
via interacting with CTCs and creating a microenvironment for cancer cell growth.
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Phenotype switching

Many factors, including aging [24], diet [25], 
drugs and toxins [26], can lead to the change of 
LSEC fenestration, which is accompanied by 
the progression of chronic liver disease (Figure 
1). Alteration of LSEC phenotype results in 
defenestration or capillarization and formation 
of the basement membrane, which promotes 
HSC activation and results in liver fibrosis  
[27]. In the progression of carbon tetrachloride 
(CCl4)-induced fibrotic liver, Notch signaling was 
activated to induce LSEC dedifferentiation, evi-
denced by the loss of transcellular pores and 
buildup of basement membrane [28]. Mean- 
while, Notch activation attenuated the secre-
tion of hepatocyte mitogens in LSECs such as 
hepatocyte growth factor (HGF), resulting in the 
impaired proliferation of hepatocytes and liver 
regeneration. Another study showed that DLL4, 
a ligand of the Notch signaling pathway, was 
also overexpressed in the LSECs of human and 
CCl4-induced murine fibrotic livers, while in vivo 
silencing DLL4 ameliorated LSEC capillariza-
tion and CCl4-induced murine liver fibrosis [29]. 

Liver X receptor alpha (LXRα) also plays a cru-
cial role in LSEC capillarization. LSEC capillar-
ization was exacerbated in LXRα-deficient mice 
with the treatment of CCl4, as evidenced by the 
overexpression of CD34, loss of fenestrae, and 
formation of continuous basement membrane 
[30]. In addition, CCl4-induced inflammation 
and collagen deposition were markedly aggra-
vated in LXRα-deficient mice. In contrast, LXR 
agonist maintained freshly isolated LSECs fen-
estration at in vitro culture for 3 days. The me- 
chanistic study showed that the function of 
LXRα on LSEC fenestration is mediated by 
Hedgehog-regulated gene signaling. 

Pathogens such as viruses and bacteria also 
impact LSEC phenotype change. In the setting 
of hepatitis C virus (HCV) infection, LSEC un- 
derwent a morphological change that is corre-
lated with hepatic damage and liver fibrogene-
sis [5]. However, the expression of phenotype 
markers of LSEC was maintained in HCV-in- 
fected liver, such as CD32, CD31, and caveo-
lin-1. Endotoxin (lipopolysaccharide, LPS) and 
pyocyanin from Gram-negative bacterium Pseu- 
domonas aeruginosa can induce loss of LSEC 
porosity and cause subsequent immune toler-

ance to bacterial toxins, which is a factor caus-
ing hyperlipidemia of sepsis [31]. 

Role of LSECs in liver homeostasis and patho-
genesis

LSECs in inflammation

A proinflammatory phenotype of LSEC is shown 
in mouse NAFLD progression. The expression 
of ICAM-1, E-selection, platelet endothelial cell 
adhesion molecule-1 (PECAM-1 or CD31) was 
increased in the early stage of high-fat diet 
(HFD)-induced NAFLD, and the expression of 
prostaglandin-endoperoxide synthase 2 or cy- 
clooxygenase-2 (COX-2), interleukin-6 (IL-6), NA- 
DPH oxidase 2 (Nox2), and release of prosta-
glandins (PGE2 and PGF2α) was elevated in the 
late stage of NAFLD [32]. In CCl4 or partial infe-
rior vena cava ligation induced murine liver 
fibrosis model, increased expression C-C mo- 
tif chemokine ligand 2 (CCL2) was shown in 
injured LSECs, causing the accumulation of 
recruited macrophages that was reduced in 
LSEC-specific p300-deficiency mice [33]. Mo- 
lecular mechanism study showed that p300 
interacts with nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) and bro-
modomain-containing protein 4 (BRD4) to in- 
crease CCL2 expression in LSECs. Treatment 
with long-chain fatty acids palmitic acid (PA) 
and oleic acid (OA) downregulated expression 
of chemokines (e.g., CCL2) in primary mouse 
LSECs and LSEC cell line TSEC cells, in a mito-
gen-activated protein kinase (MAPK)-depen- 
dent pathway [34]. Meanwhile, this treatment 
inhibited the TSEC-mediated migration of CD- 
11b+Ly6Chigh monocytes. Feeding an ethanol-
containing diet for 4 weeks induced more 
severe hepatic injury in endothelial cell-speci- 
fic STAT3 knockout mice than wild-type control 
groups [35], accompanying a large amount of 
apoptotic sinusoidal endothelial cells (SECs).

Viral infection can modulate the expression of 
proinflammatory cytokines in LSECs. Infection 
of mouse hepatitis virus type 3 (MHV3) virulent 
strains increased LSECs to release proinflam-
matory cytokines (e.g., TNF-α) and reduced 
anti-inflammatory genes (e.g., IL-10) by acti- 
vating TLR2 compared to infection induced by 
attenuated strains [36], resulting in more se- 
vere hepatitis.
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LSECs in liver fibrosis

Freshly isolated LSECs (decapillarized form) 
from healthy rat livers can protect HSC activa-
tion as evidenced by reduced alpha-smooth 
muscle actin (α-SMA) production, whereas cap-
illarized LSECs isolated from rats with thioacet-
amide-induced cirrhotic livers showed an oppo-
site effect on HSC activation [9]. The paracrine 
production of VEGF from hepatocytes and HSCs 
mediated the fenestration of LSECs via stimu-
lating NO production [37]. Therefore, co-cultur-
ing with LSECs plus VEGF can revert the acti-
vated HSCs to the quiescent stage through 
VEGF-stimulated NO production. 

Some important genes modulate LSEC function 
during liver fibrosis. For example, Gata4 defi-
ciency in LSECs (Gata4LSEC-KO) of adult mice 
resulted in perisinusoidal liver fibrosis through 
modulating Myc-mediated production of HSC 
activating cytokine PDGFB (platelet-derived gr- 
owth factor subunit B) [38]. Gata4LSEC-KO mice 
also showed increased perisinusoidal liver fi- 
brosis compared to wild-type mice. Moreover, 
GATA4-positive LSECs were decreased in hu- 
man cirrhotic liver. Another study showed that 
Gata4 was significantly downregulated in Bmp9 
gene knockout (Bmp9-KO) mice compared with 
wild-type mice, accompanying the development 
of liver perisinusoidal fibrosis and LSEC de- 
fenestration [39]. The expression of Delta-like 
ligand 4 (DLL4) in the Notch signaling pathway 
was upregulated in LSECs from fibrotic livers of 
CCl4-treated mice and human patients [29]. In 
addition, DLL4-targeting siRNA treatment pre-
vented LSEC capillarization and ameliorated 
CCl4-induced liver fibrosis in mice.

LSEC autophagy also plays a critical role in 
NASH and liver fibrosis. Autophagy was defec-
tive in LSECs from NASH patients compared to 
LSECs from non-NASH or steatosis patients 
[40]. Also, LSEC autophagy deficiency promot-
ed liver inflammation, cell apoptosis, and perisi-
nusoidal fibrosis in mice when fed a HFD.

Manipulation of LSEC function and differentia-
tion can alter the severity of liver fibrosis. In the 
CCl4-induced mouse fibrotic liver, LSEC dys-
function-induced hepatic sinusoidal angiogen-
esis is associated with liver fibrosis. Treatment 
with curcumol can inhibit LSEC-mediated an- 
giogenesis via regulating the Hedgehog signal-
ing pathway and production of hypoxia-induc-

ible factor-1α (HIF-1α) to ameliorate liver fibro-
sis [41]. Restoration of LSEC differentiated 
phenotype in high fat glucose-fructose diet 
(HFGFD)-fed rat post-statin treatment was as- 
sociated with regression of HSC activation, 
decrease of portal hypertension, improvement 
of NASH features [42]. 

LSECs in metabolism

LSECs play a critical role in nutrient transport, 
including lipids and lipoproteins. In chronic liver 
disease, such as nonalcoholic fatty liver dis-
ease (NAFLD), LSEC injury can cause accumula-
tion of lipids in the liver [43]. Moreover, lipid 
metabolites impact LSEC phenotype and func-
tion. A combined lipid supplement or oleic acid 
(OA) alone plus VEGF-containing medium en- 
hanced the viability and proliferation of cul-
tured primary rat LSECs and maintained their 
differentiation over 3 days [44]. The important 
signaling pathway implicated in lipid or OA func-
tion is early protein kinase B (PKB/Akt) signal-
ing followed by extracellular signal-regulated 
kinase (ERK) signaling.

Sphingosine 1-phosphate (S1P) as a bioactive 
sphingolipid metabolite can enhance tumor 
growth, resistance to chemotherapy, and me- 
tastasis. It also modulates anticancer immu- 
ne response, inflammation, and angiogenesis 
[45]. S1P can promote LSEC proliferation by 
activating Akt and extracellular signal-related 
kinase pathways, and inhibited LSEC apoptosis 
by modulating cell death signaling genes, such 
as Bcl-2, Bax, and cleaved caspase-3 [46]. S1P 
is an important regulator for endothelial integ-
rity and immune response. It induces IL-6 and 
VEGF production in LSECs [46]. The serum  
concentration of S1P was markedly reduced in 
patients with advanced stages of liver disease 
[47], functioning as an indicator of organ failure 
and early mortality.

LSECs in liver regeneration

Revascularization is of critical importance in 
liver regeneration [48]. LSEC proliferation was 
shown in the rest of liver tissue of mice post-
partial hepatectomy compared to sham-operat-
ed mice [49], as evidenced by the increased 
expression of lymphatic vessel endothelial hya- 
luronan receptor 1 (LYVE1). The expression of 
Prospero homeobox protein 1 (PROX1) was 
also detected an increase in liver sections. On 
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day 7 post-partial hepatectomy, co-localization 
of LYVE1 and PROX1 was shown in LSECs. 
Another study showed that LSEC proliferation 
was significantly attenuated in RBP-J knockout 
mice after partial hepatectomy, as evidenced 
by reduced VEGFR2-positive cells [50], which 
resulted in decreased proliferation and incre- 
ased apoptosis of hepatocytes. The producti- 
on of angiopoietin-2 (Ang2) in LSECs changed 
dynamically at different stages of liver regener-
ation [51]. In the early stage, the expression of 
Ang2 in LSECs was decreased post-partial hep-
atectomy together with a decrease of trans-
forming growth factor-β1 (TGF-β1) expression, 
resulting in hepatocyte proliferation. In the la- 
ter phase, the production of Ang2 activated 
angiogenesis via enhancing the expression of 
vascular endothelial growth factor receptor 2 
(VEGFR2) in LSECs [51].

HGF expressed in LSEC progenitor cells pro-
motes liver regeneration, but mature LSECs 
lose their ability to express HGF. After partial 
hepatectomy in rats, except liver LSEC pro- 
genitor cells, bone marrow (BM)-derived LSEC 
progenitor cells can migrate to the liver and 
become fenestrated LSECs [52]. These BM-de- 
rived LSEC progenitor cells express a higher 
amount of HGF than liver resident LSEC pro- 
genitors to stimulate liver regeneration. Liver-
specific HGF deficiency in LSECs can result in 
necrotic damage and delay of liver regeneration 
post partial hepatectomy. The molecular mech-
anistic study showed that Hgf/c-Met mediates 
downregulation of Deptor in hepatocytes, which 
controls hepatocyte proliferation and sensitivi-
ty to hepatectomy-induced necrosis [53]. 

Other functions

LSECs not only can promote the proliferation 
and differentiation of hematopoietic stem cells, 
but support in vitro survival, self-renewal, un- 
differentiated growth, and differentiation of 
murine embryonic stem cell line CGR8 cells 
[54]. Furthermore, LSECs play a critical role in 
hepatic immunity with the ability to clear pa- 
thogens. For example, rat LSECs can uptake 
GFP-labelled Enterobacteria phage T4 and effec- 
tively degrade it in the lysosomal compartment 
[55]. In contrast, other hepatic cells such as 
liver resident Kupffer cells can protect the dam-
age of LSECs from injury [12].

LSECs in HCC and cancer liver metastasis 

The role of LSEC in HCC

Tumor cell adherence on vessel cells of the 
metastatic site is the first step of metastasis.  
In ischemia condition, the adhesion of platelets 
to LSECs is markedly increased, which facili-
tates the adhesion of tumor cells with LSECs, 
resulting in tumor metastasis [56]. The in vivo 
adhesion of platelets to LSECs is dramatically 
increased in mice after partial hepatectomy 
compared to sham-operated mice [57]. Further- 
more, the interaction between platelets and 
LSECs induces IL-6 secretion in LSECs to sti- 
mulate HGF secretion in HSCs, resulting in the 
proliferation of hepatocytes.

Co-culture of human colorectal cancer cell line 
HT-29 cells with primary isolated mouse LSECs 
markedly increased the expression of adherent 
genes in adherent HT-29 cells [58], such as 
DGCR8 (DiGeorge Syndrome Critical Region 
Gene 8) and EFEMP1 (EGF containing fibulin 
extracellular matrix protein 1), whereas some 
anti-adherent genes were overexpressed in 
nonadherent HT-29 cells, including ITPKC (In- 
ositol-Trisphosphate 3-Kinase C).

LSEC transdifferentiation is a major pathogenic 
phenomenon in HCC progression. For instan- 
ce, LSEC marker proteins stabilin-1, stabilin-2, 
LYVE-1, and CD32b were lost in the murine and 
human HCC tumor tissues [59]. Besides, loss  
in expression of stabilin-2 in peri-tumor liver tis-
sue of human HCC patients was significantly 
predictive of a longer survival [59].

Oncogenic yes-associated protein (YAP) is also 
accompanied by the development and progres-
sion of liver cancer. LSECs were gradually re- 
placed by continuous endothelial cells in the 
liver vascular niche during the development of 
YAPS127A mutation-induced tumor via the Hgf/
c-Met signaling pathway [60]. 

LSECs in immune tolerance and surveillance 

The secreted IL-10 in LSECs or Kupffer cells in 
response to LPS in portal vein blood, can sup-
press the expression of MHC class II and co-
stimulatory molecules CD80 and CD86 on LS- 
ECs, as well as mannose receptor activity to 
inhibit LSEC-mediated T cell activation [61, 62]. 
Unlike conventional antigen-presenting cell 
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(APC) dendritic cells (DCs), non-conventional 
APC LSECs can inhibit interferon-γ (IFN-γ) and 
IL-17 secretion from Th1 and Th17 effector 
CD4+ T cells, mediated by IL-10 and PD-L1 [63]. 
Furthermore, LSECs are the major cells that 
mediate TGF-β-dependent conversion of Foxp3- 
cells into Foxp3+ Tregs in the liver, and those 
Tregs are functional suppressor cells in vitro 
and in vivo [13]. LSECs function as APCs can 
cross-present MHC class I molecules from 
HSCs to CD8+ T cells to play an important role  
in immune surveillance during viral infection 
[64]. In addition, recruitment of immune cells  
is importantly crucial in immune surveillance 
during liver diseases. For example, in the con-
canavalin A-induced hepatitis murine model, 
the expression of chemokines CXCL9 and 
CXCL10 in LSECs mediated hepatic accumula-
tion of CXCR3+ CD4+ T cells during liver inflam-
mation [65]. Besides, LSECs can transfer inter-
nalized chemokines perivascularly to enhance 
T cell migration. CXCL16, the ligand of CXCR6, 
is expressed on LSECs [66]. Gut microbiota-me- 
diated alteration of bile acid components can 
impact the CXCL16 expression in LSECs, whi- 
ch results in the accumulation of CXCR6+ NKT 
cells to inhibit tumor growth [67]. Moreover, 

LSEC-derived extra domain A of fibronectin 
(EDA) can promote the metastatic ability of 
colorectal cancer (CRC) cells via inducing an 
epithelial-mesenchymal transition (EMT) [68]. 
The tumor cell-activated LSECs increased the 
expression of Mannose receptor (ManR) and 
increased prometastatic factors including IL-1, 
ICAM-1, and cyclooxygenase-2. Those LSECs 
had an immunosuppressive effect on hepatic 
sinusoidal lymphocytes to decrease their anti-
tumor effect [69]. Finally, LSECs can also 
secrete other angiogenic factors such as plate-
let-derived growth factor (PDGF) except the 
above-mentioned angiopoietins, resulting in 
activation of angiogenic phenotype of HSCs 
and growth of sinusoidal vascular structure 
[70]. Those molecular functions in LSECs are 
summarized in Figure 2.

Important molecules in LSECs during cancer 
liver metastasis

CXCL12: The CXC chemokine receptor (CXCR) 4 
expressed on tumor cells has been shown to  
be implicated in cancer metastasis [71-73], 
with the interaction of its ligand CXCL12 that is 
frequently expressed at the site of metastasis. 

Figure 2. LSECs orchestrate the immune microenvironment during cancer liver metastasis. Normal LSECs (nLSECs) 
can cross-present antigens to CD8+ T cells to inhibit viral infection, which may induce liver cancer development. In 
addition, nLSECs can also secrete CXCL9, CXCL10, and CXCL16 to chemoattract CXCR3+ T cells and CXCR6+ NKT 
cells to prevent tumor development. Injury LSECs or cancer-activated LSECs (cLSECs) can secrete TGF-β to enhance 
the proliferation of Treg cells, which can inhibit the effector T cell function and result in cancer development. LSEC-
derived extra domain A (EDA) of fibronectin promotes cancer cell liver colonization via inducing epithelial-mesen-
chymal transition (EMT). Moreover, sLSECs express angiogenic factors such as vascular endothelial growth factor 
(VEGF) and platelet-derived growth factor-B (PDGF) to promote angiogenesis. The secretion of LSECtin and other 
pro-metastatic cytokine and chemokines help to induce migration of tumor cells and cause cancer liver metastasis.
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This metastatic effect was inhibited with the 
treatment of anti-CXCL12 antibody. In the liver, 
the metastasis of CXCR4-expressed murine 
melanoma B16 cells was associated with an 
increased expression of CXCL12 in LSEC micro-
environments [74]. Furthermore, treatment of 
CXCR4-B16 cells with CXCL12 increased their 
proliferation, migration, and adhesion to LS- 
ECs, while treatment CXCR4 receptor antago-
nist AMD3100 (Plerixafor) inhibited the migrat-
ing effect induced by CXCL12.

ICAM-1: Coculture of colorectal cancer cell line 
C26 cells and LSECs increased ICAM-1 secre-
tion compared to each monoculture. ICAM-1 
blockade in the LSECs decreased the adhesion 
of cancer cells and their transmigration through 
LSEC monolayers in vitro and in vivo. In vitro, 
pre-stimulated tumor cells with soluble ICAM-1 
increased 35% of the liver colonization area 
than metastatic area induced by untreated 
tumor cells. Meanwhile, blockade of the ligand 
of ICAM-1, the β2 integrin lymphocyte function-
associated antigen (LFA)-1, reduced tumor bur-
den and antigenicity, evidenced by a reduction 
of CD31+ cells. These results suggest that 
ICAM-1 in LSECs mediates CRC liver metasta-
sis and is a potential target for preventing 
colorectal cancer liver metastasis [75]. Anti-
ICAM1 antibody treatment significantly inhibit-
ed tumor cell adhesion to hepatic endothelial 
cells (HEC) in wild-type mice, which was medi-
ated by Notch signaling [76]. In addition, C-type 
lectins produced by LSECs (LSECtin) can en- 
hance the liver metastasis of colon cancer cell 
line LS174T and LoVo cells, as well as primary 
colon cancer cells in mice (Figure 2), as reduc-
tion of cancer liver metastasis was shown in 
LSECtin knockdown mice [77].

TLRs: LSECs respond to different TLR ligands, 
including producing TNF-α in response to TLR1 
to -4, -6, -8, and -9 ligands, producing IL-6 in 
response to TLR3 and TLR4 ligands, and pro-
ducing IFN-β in response to TLR3 ligand [78]. 
Activating TLR4 modulates angiogenesis in 
murine liver fibrosis models induced by CCL4  
or bile duct ligation (BDL), and myeloid differen-
tiation protein 88 (MyD88) signaling is involv- 
ed in this function [79]. In vitro stimulation of 
LSECs with TLR1/2 ligand (palmitoyl-3-cyste-
ine-serine-lysine-4; P3C) activated virus-specif-
ic CD8+ T cells partially through IL-12 produc-
tion, but not TLR3 ligand poly (I:C) or TLR4 

ligand LPS [80]. Therefore, TLR-mediated func-
tional change of LSECs can impact cancer liver 
metastasis. 

KLF5: Overexpression of Krüppel-like factor 5 
(KLF5) is shown in many different cancers, 
including non-small cell lung cancer (NSCLC) 
[81], CRC [82], breast cancer [83], and pancre-
atic cancer [84], which predicts a poor progno-
sis for cancer patients. High KLF5 expression is 
also associated with CRC liver metastasis [82]. 
At these studies, molecular investigation shows 
that KLF5 plays a pivotal role in the control of 
the cell cycle by modulating genes such as 
E2F1 and cyclin D1. Another study demon-
strates that KLF5 can not only modulate cell 
proliferation of laryngeal cancer human epithe-
lial type 2 (Hep-2) cells, but also can impact 
their migration, invasion, and epithelial-mesen-
chymal transition (EMT) via inhibiting NF-κB pa- 
thway [85]. The expression of KLF5 has a posi-
tive correlation with the progression of cervical 
squamous cell carcinoma by activating the 
expression of tumor necrosis factor receptor 
superfamily member 11a (TNFRSF11a) [86]. 
Meanwhile, altering KLF5 expression is posi-
tively associated with the change of TNFRSF- 
11a expression. Moreover, an in vivo study 
showed that functional deplete of TNFRSF11a 
suppresses tumor genesis and liver metasta-
sis. TNFAIP2, a tumor necrosis factor-α (TNFα)-
induced gene, is another direct KLF5 targeting 
gene, which regulates breast cancer cell prolif-
eration, migration, and invasion through two 
small GTPases Rac1 and Cdc42 [87].

microRNAs: The expression of microRNAs also 
impacts cancer development. With the analysis 
of microRNAs from LSECs either isolated from 
livers with colorectal cancer metastasis or he- 
althy controls, microRNA-20a was downregu-
lated in tumor-activated LSECs compared to 
control LSECs [88]. Additionally, its targeted 
proteins, such as E2F1 and Rho GTPase-ac- 
tivating protein 1 (ARHGAP1), were also down-
regulated. Moreover, transfection of exogen- 
ous microRNA-20a can prevent tumor-activat-
ed LSEC migration.

CYP1B1: Deficiency of cytochrome P450 1B1 
(Cyp1b1-/-) LSECs showed limited fenestration 
and decreased levels of VEGF and BMP6,  
and they were significantly more apoptotic, pro-
liferated at a faster rate, and were less ad- 
herent and more migratory [89]. Furthermore, 
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Cyp1b1-/- LSEC expressed lower levels of inflam-
matory mediators such as monocyte chemoat-
tractant protein-1 (MCP-1/CCL2) and TNF-α, 
impacting anticancer immune response in liver 
microenvironment. 

PD-L1: Programmed cell death protein (PD-1)/
PD-L1 axis plays a vital role in cancer immuno-
therapy [90]. Cancer cells express PD-L1 or 
PD-L2 that binds with its ligand PD-1 on T cells 
to induce immune tolerance, causing reduction 
of antitumor effect of T cells in the tumor micro-
environment. PD-L1 expressed by LSECs plays 
a pivotal role in maintaining liver immune toler-
ance by interacting PD-1 on T cells [91, 92]. 
Injection of circulating carcinoembryonic anti-
gen (CEA) from CRC cells resulted in CEA-spe- 
cific CD8+ T cells mediated LSECs in a PD-L1 
dependent manner, but those antigen-specific 
CD8+ T cells lost the tumoricidal effect on CEA-
expressing cancer cells [93]. In addition to 
PD-L1, LSECs also express other inhibitory or 
immunoregulatory molecules such as Fas li- 
gand, LSECtin, and IL-10 to regulate the func-
tion of T cells [94]. Overexpression of PD-L1 in 
LSECs interferes with the tumor cytotoxic T cell 
function.

STAT3: Activating STAT3 in murine endothelial 
MS-1 cells in vitro with tumor cell-conditioned 
media increased the expression of cell adhe-
sion molecules, including E-selectin and P-se- 
lectin, which was also shown in pre-metastatic 
lungs of tumor-bearing mice in vivo [95]. STAT3-
knockdown in endothelial cells reduced the 
metastasis of Lewis lung carcinoma (LLC) cells 
in experimental and spontaneous metastasis 
murine models in vivo (Table 1). Hence, inhibi-
tion of STAT3 LSEC expression might reduce 
the potential cancer liver metastasis.

Therapeutic approaches for targeting LSEC in 
liver cancer

Liver is one the most cites where other cancers 
metastasize (Figure 1B). As discussed above, 
LSECs play critical roles in cancer liver metas-
tasis. Many different strategies can be appli- 
ed to modulate LSEC phenotype or function to 
inhibit cancer liver metastasis (Figure 3) as dis-
cussed below.

Gut microbiota-mediated therapy

Gut microbiota has been shown to play impor-
tant roles in various diseases [96, 97], includ-

ing liver disease. In the gut-liver axis, LSECs  
are first exposed to gut microbiota-derived 
metabolites and products. Macronutrient in- 
take impacts the fenestration of LSECs [98]. 
For instance, dietary fat intake impacts the 
number of pores (fenestration), and protein and 
carbohydrate intake influence the size of pores 
(fenestration diameter) [98]. Synbiotic supple-
mentation can modulate ethanol-induced gut 
dysbiosis to attenuate hepatocyte injury and 
improve liver endothelial barrier integrity to pro-
tect against LSEC damage [99]. Manipulation 
of gut microbiota can reduce LSEC injury and 
decrease the change of primary cancer devel-
opment and cancer liver metastasis. 

MicroRNAs-mediated therapy

Chronic alcohol consumption induced higher 
mRNA expression of endothelin-1 (ET-1), HIF-
1α, and inflammatory cytochemokines in LSECs 
compared with LSECs from control rats, result-
ing in liver inflammation and cirrhosis [100]. 
With the analysis of miRNAs involved in etha-
nol-mediated gene expression, both miR-135 
and miR-199 were shown to impact HIF-1α 
mRNA expression in rat and human LSECs, 
while only miR-199 affected ET-1 mRNA expres-
sion in rat LSECs. In human endothelial cells 
(HMEC-1), miR-199 mediated HIF-1α and ET-1 
mRNA expression. Sinusoidal obstruction syn-
drome (SOS) is a liver injury associated with 
clinical chemotherapy-induced damage LSECs. 
Serum miRNAs were increased within a day 
when the damage of LSECs in male Sprague-
Dawley rats induced by oral treatment of mo- 
nocrotaline. Among them, miR-21-5p and miR-
511-3p in serum increased in response to LSEC 
damage, which may serve as an early diag- 
nostic biomarker for SOS [101]. Studies have 
shown that treatment with microRNA-20a de- 
livered by nanoparticles to LSECs significantly 
decreases colon cancer liver metastasis in 
mice, and inhibits activated LSEC migration 
into a metastatic site [88]. 

Nanoparticles

Liver as an immunologic tolerance organ is a 
common site for cancer metastasis through 
blood circulation [102]. LSECs play an essential 
role in liver immunologic tolerance [103, 104]. 
Treatment with melittin nanoparticles (α-me- 
littin-NPs) suppressed the metastasis of in- 
jected tumor cells (murine melanoma cell line 
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Table 1. The role of LSEC in primary and metastatic liver cancer
Cancer Target Function References 
Melanoma and colorectal carcinoma Notch signaling Anti-ICAM1 antibody treatment significantly inhibited tumor cell adhesion to hepatic 

endothelial cells (HEC) in wild-type mice, which was associated with Notch signaling
[76]

Melanoma CXCR4/CXCL12 axis The metastasis of CXCR4-expressed murine melanoma B16 cells was associated 
with an increased expression of CXCL12 in LSEC microenvironments

[74]

Colon cancer CXCR4/CXCL12 axis The CXCR4/CXCL12 axis was involved in the formation of intrasplenic injection of 
colon cancer cells induced hepatic metastasis in nude Balb/c mice

[108]

Liver cancer CXCR6/CXCL16 axis Gut microbiota-mediated alteration of bile acid components can impact the CXCL16 
expression in LSECs, resulted in the accumulation of CXCR6+ NKT cells to inhibit 
tumor growth

[67]

Colorectal cancer (CRC) Intercellular Adhesion 
Molecule 1 (ICAM-1)

ICAM-1 blockade in the LSECs decreased the adhesion of cancer cells and their 
transmigration through LSEC monolayers in vitro and in vivo. In vitro, pre-stimulated 
tumor cells with soluble ICAM-1 increased 35% of liver colonization area than meta-
static area induced by the untreated tumor cells

[75]

Colorectal cancer (CRC) MicroRNA-20a The microRNA-20a and its targeted proteins, such as E2F1 and Rho GTPase-activat-
ing protein 1 (ARHGAP1), were downregulated in LSECs from the liver with colorectal 
cancer metastasis compared to that in LSECs from a healthy liver

[88]

Colorectal carcinoma (CRC) PD-L1 Injection of circulating carcinoembryonic antigen (CEA) from colorectal carcinoma 
(CRC) cells resulted in CEA-specific CD8 T cells mediated LSECs in a PD-L1 depen-
dent manner, but those antigen-specific CD8 T cells lost the tumoricidal effect on 
CEA-expressing cancer cells

[93]

Lewis lung carcinoma (LLC) STAT3 Activating STAT3 in murine endothelial MS-1 cells in vitro with tumor cell-conditioned 
media increased the expression of cell adhesion molecules, including E-selectin and 
P-selectin, which was also shown in pre-metastatic lungs of tumor-bearing mice in 
vivo. STAT3-knockdown in endothelial cells (ECs) reduced the metastasis of LLC cells 
in experimental and spontaneous metastasis murine models in vivo

[95]
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B16F10 in C57BL/6 mice, mammary carcino-
ma cell line 4T-1, and colon carcinoma cell line 
CT26 cells in BALB/c mice) from the spleen into 
the liver, prolonging the survival time of tumor-
bearing mice [105]. A functional study showed 
that α-melittin-NP increases the expression lev-
els of cytokines and chemokines, such as IL-1α, 
CXCL9 (MIG), CXCL10 (IP-10), CXCL13 (BLC), 
CCL3 (MIP-1α), CXCL1 (KC), CCL4 (MIP-1β), and 
CCL5 (RANTES) than the control treatment.

Drugs

Some medicines such as beraprost sodium 
(BPS) can suppress monocrotaline (MCT)-in- 
duced sinusoidal obstruction syndrome in mice 
[106]. BPS treatment significantly reduced the 
number of extravasated platelet aggregation 
and the expression of plasminogen activator 
inhibitor but increased the expression of endo-
thelial nitric oxide synthase (eNOS), which can 
reduce the chance of cancer cell liver resi-
dence. A similar effect was also shown in the 
intraperitoneal administration of recombinant 
human soluble thrombomodulin [107]. As ab- 
ove-described, the axis of CXCR4/CXCL12 in 
cancer liver metastasis, treatment with low-
molecular-weight heparin (LMWH), a common 
drug for venous thromboembolism, inhibited 
the CXCL12-stimulated proliferation, adhesion, 
and colony formation of CXCR4-expressed hu- 
man colon cancer HCT-116 cells [108]. In addi-
tion, LMWH significantly inhibited the develop-

ment of metastatic liver cancer induced by 
intrasplenic injection of colon cancer cells in 
nude Balb/c mice and downregulated CXCL12 
expression in LSECs.

Furthermore, LSEC fenestration is markedly re- 
duced with increasing age in mice. Treatment 
with different pharmaceutical agents including 
cytochalasin 7-ketocholesterol, sildenafil, amlo-
dipine, simvastatin, 2, 5-dimethoxy-4-iodoam-
phetamine (DOI), bosentan, TNF-related apop-
tosis-inducing ligand (TRAIL), or nicotinamide 
mononucleotide (NMN), showed that fenestra-
tion is regulated in both NO-dependent and 
independent pathways, and age-induced de- 
fenestration can be reversed pharmacological-
ly [109].

Summary

LSECs have critical defense roles in the de- 
velopment and progression of liver diseases, 
including liver inflammation, fibrosis, cirrhosis, 
and liver cancer. The morphological and pheno-
typic changes impact the function of LSECs in 
liver disease, including immune surveillance 
against pathogens and tumor growth. Resto- 
ration of fenestration of LSEC protects liver 
inflammation and injury, which could be a strat-
egy for liver fibrosis treatment. LSEC express- 
ed molecules such as ICAM-1 and KLF5 are 
involved in cancer liver metastasis. Targeting 
these molecules via gut microbiota, microR-

Figure 3. The therapeutic strategies of targeting LSECs to prevent cancer liver metastasis. Gut microbiota, microR-
NAs, and therapeutic medicines plus nanoparticle delivery are potential treatment options for targeting LSECs to 
prevent cancer liver metastasis or to cure secondary liver cancer.
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NAs, and nanoparticles mediated therapies or 
other medicines are future therapeutic options. 
Preclinical and clinical studies are waited to 
explore the key genes involved in LSEC and 
cancer cell interaction.
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