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Abstract: Extrachromosomal DNA (ecDNA) is a small, circular structure of DNA found outside chromosomes, in the 
cytoplasm and outside cells. Since the discovery of ecDNA in 1964, more studies have verified the significant pros-
pect and application potential of its use in oncology. The presence of ecDNA is associated with a series of tumor 
activities such as the increasing or decreasing of oncogene copies, carcinogenic transmission, and activation of 
related signaling pathways. This review focuses on discussing the structure of ecDNA and its relevance in carcino-
genesis, angiogenesis, drug resistance and metastasis.
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Introduction

Malignant cancer is a significant factor that 
leads to death and affects human health glob-
ally. The acquisition of these malignant charac-
teristics in cells is closely related to genes and 
environmental elements. Changes to chromo-
somes at the microscopically level are currently 
recognized as one of the leading causes of  
cell malignancy [1, 2]. Extrachromosomal DNA 
(ecDNA, such abbreviations in main text are 
listed in Table 1) that was first detected as cir-
cular DNA structure by Yasuo Hoota and his col-
leagues in 1964 [3, 4], plays a specific role in 
tumorigenesis in mammal cancer cells [2, 5, 6]. 
In 1988, Susan M. Carroll and her colleagues 
confirmed that ecDNA is a component of exo-
somes [7]. Two subtypes of interest are the 
large extrachromosomal DNA circles which are 
referred to as double minutes (DMs, there are 
overlaps and differences between the con-
cepts of DMS and ecDNA while ecDNA was first 
discovered as paired small chromatin bodies in 
neuroblastoma cells called DMs) [8-10], can 
autonomously replicate extrachromosomal 
genetic elements of genomic origin, and reinte-

grate themselves into chromosomes; and the 
small extrachromosomal DNA circle also called 
extrachromosomal circular DNA (eccDNA) [4, 8, 
11, 12]. EccDNA contains Small polydispersed 
circular DNA (spcDNA), telomeric circles, 
microDNA and ecDNA [8]. EcDNA, which is gen-
erally 1-3 Mb in size, 100-1,000 times larger in 
kilobase compared to other circular DNA found 
in normal human tissues [6, 13-15], demon-
strated to be provided oncogene amplification 
and drug resistance when it was studied in the 
developing fetus as well as in the noninvasive 
diagnosis and management of tumors [6, 12]. 
SpcDNA, about 100 bp to 10 kb in size, could 
enhance genomic instability [16]. Telomeric cir-
cles (738 bp) is involved in the alternative-
lengthening of telomeres (ALT) pathway in ALT+ 
tumors [17]. MicroDNA (100-400 bp) can medi-
ate the biogenesis of microRNA [18]. While the 
rest of the eccDNA has not shown significant 
transcription function [13]. Consequently, the 
ecDNA discussed in this article generally refers 
to the DMs and functional eccDNA. AmpliconArchi- 
tect, a new gene technology, is often used  
to study nucleic acid structure and function. 
Other functions include integration of ultra-
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Table 1. English abbreviation
Abbreviation Full Name
ALT alternative-lengthening of telomeres
DHFR dihydrofolate reductase
DMs double minutes
eccDNA extrachromosomal circular DNA
ecDNA extrachromosomal DNA
EGFR epidermal growth factor receptor
EVs extracellular vesicles
FOXE1 forkhead box E1
HR hormone receptor
HSR homogeneously staining region
IR initiation region
JAK-STAT Janus kinase-Signal Transducer and Activator of Transcription
MAR matrix attachment region
MDM2 murine double minute 2
MDR1 multidrug resistance 1
MET mesenchymal-epithelial transition factor
miRNA microRNA
MTX methotrexate
MVs membrane microvesicles
NMIIA non-myosin heavy chain IIA
PDGFRA platelet derived growth factor receptor
P-gp P-glycolprotein
PTC papillary nodal cancer
SOCS5 suppressor of cytokine signaling 5
THFA tetrahydrofolic acid
TKIs tyrosine kinase inhibitors

structural imaging, long-range optical mapping, 
computational analysis of whole-genome se- 
quencing, circular chromosome conformation 
capture combined with high-throughput sequ- 
encing (4C-seq), fluorescence in situ hybridisa-
tion (FISH) and high-throughput sequencing on 
extrachromosomal cellular DNA [2, 4, 5, 19]. 

Over the past 4 decades, ecDNA as intermedi-
ary of gene amplification has been studied 
extensively [6, 20]. Oncogene amplification on 
ecDNA is considered a frequent event in cancer 
cells which gives them selective growth advan-
tages by overexpressing oncogenes and pivotal 
functional elements [6]. Oncogene amplifica-
tion on ecDNA provides a mechanism by which 
cancer cellules promptly adapt to changes in 
tumor microenvironment [20]. EcDNA has an 
effect on the pathogenesis, metastasis and 
drug resistance of tumor cellules in the last 
thirty years [2, 5, 13, 15]. This article aims to 
review the role of ecDNA in tumorigenesis and 

[24] (Figure 1C). In addition to that, the forma-
tion of ecDNA can be mediated by small cir- 
cular extrachromosomal molecules (“Episome” 
model) [7, 8] (Figure 1D), Wahl and his col-
leagues disclosed that episomes are produced 
by a recombination of adjacent genes and then 
episomes can enlarge to form ecDNA.

EcDNA closely relates to chromosome and exo-
somal micronucleus. Micronucleus is a chro-
mosomal reactive element of cell cancelation 
[25]. Micronucleus is considered a novel bio-
marker and its’ appearance can aid in identify-
ing cancer patients [19, 26]. At present, micro-
nucleus is thought to be filled with abundant 
ecDNA. Shimizu’s research confirmed that 
microscopically, ecDNA is generated by the 
recombination between microscopically invisi-
ble episomes [27]. This formation of ecDNA 
may also be related to the inaccurate trans- 
cription and replication of nuclear DNA [2, 5, 
11, 13, 15]. 

drug resistance through exi- 
sting literature. 

The structure and genetics 
of ecDNA

The mechanism of how 
ecDNA is generated is poorly 
understood. It is widely rec-
ognized that ecDNA is a 
structurally circular DNA for- 
med through the non-homol-
ogous recombination among 
chromosomal or DNA seg-
ments due to genomic insta-
bility (Chromothripsis model) 
[5, 6, 8, 21, 22] (Figure 1A).  
There are also hypotheses 
that considered ecDNA ori- 
ginated in breakage-fusion-
bridge (BFB) cycle or translo-
cation-deletion-amplification 
model. BFB cycle involved in-  
telomere loss, replication, fu- 
sion, breakage and looping 
out of oncogene [8, 23] 
(Figure 1B) while the translo-
cation-deletion-amplification 
model made by oncogene 
near the chromosome trans- 
location breakpoints which 
amplified, retained or delet-
ed and therefore form ecDNA 
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Cytogenetically, ecDNA in tumor cells can be 
assigned to daughter cells stochastically. How- 
ever, the specific form of ecDNA transmission 
and proliferation in cancer cells is still unclear 
[28]. The genetic behavior of ecDNA is closely 
related to chromosomes. Noriaki Shimizu’s 
research group identified that after ecDNAs 
replicate in the early S phase, they migrate into 
the nucleus and participate in the mitotic pro-
cess [29]. Lamin-B-rich micronucleus are abun-
dant in the S phase of cell cycle [29-31]. 
Furthermore, evidence has demonstrated that 
the expression of ecDNA type micronuclei 
relates to lamin-B binding protein, which sug-
gested that the expression of ecDNA in the cell 
micronucleus changes with in different phases 
of cell cycle [32]. EcDNA is thought to be inher-
ited by the random distribution and uneven 
segregation between two daughter cells at the 
end of mitosis [2, 28, 33]. While Kanda’s and 
Tsubasa Tanaka’s confirmed that, coreless 
ecDNA are steadily separated into daughter 
cells by binding to chromosomes during mitosis 
[34, 35] (Figure 2). 

The existence of ecDNA extends beyond the 
non-chromosomal DNA structure, which is 
widely present in tumors and can effectively 
promote the amplification of oncogenes [5]. 
This hypothesis is supported by the distribu- 
tion of ecDNA. Kristen M Turner’s team found-

several differences between those two DNA 
structures. EcDNA contains highly activated 
chromatin, with less compression of structure 
and greater transcriptional activity than nucle-
ar DNA [5]. EcDNA also has the same complete 
domain as chromatin, although it lacks the 
higher-order compression state of chromo-
somes, thus enhancing chromatin accessibility. 
Generally, chromosomes are high-order sub-
structures formed by high-order compression 
of chromatin [37, 38], this limits DNA accessi-
bility and thus regulates the level of gene tran-
scription. So, there are significant changes to 
the ecDNA structure occur in the tumor cells 
[39, 40]. As a result, ecDNA formation becomes 
one of the way oncogenes increase their malig-
nant copies [41]. 

EcDNA is highly autonomous in the expression 
of oncogenes and has RNA polymerase acti- 
vity, suggesting that genes in ecDNA may be 
expressed automatically [42]. And Koh-ichi 
Utani and colleagues established that highly 
amplified genes in cancer are mainly located  
in DMs homogeneously staining region (HSR) 
[32] which testified to the phenotypical effect 
micronucleus and ecDNA has on tumor cells. 
The ability of the micronucleus to persist in the 
cytoplasm, in turn, suggests their ability to sig-
nificantly disrupt the cellular phenotype when 
expressed differently from that of their nuclear 

Figure 1. The probable production of ecDNA. The main production models 
of ecDNA in tumor cells. A. The oncogenic instability causes chromosomal 
breakage in cell nucleus and thus creates fractured DNA segments. The 
DNA segments travels through the nuclear membrane and form circular DNA 
structures through non-homologous recombination in the cytoplasm. B. The 
breakage-fusion-bridge (BFB) cycle model of ecDNA including the fusion of 
duplicated gene and the same repeats of the cycle. C. The translocation-
deletion-amplification model of ecDNA which involves translocation, rupture 
and recombination of multiple oncogenes. D. The Episome model of ecDNA 
based on the enlargement of episome.

ed that ecDNA is rarely pres-
ent in normal human cells [2]. 
However, Teressa Paulsen’s 
team research achievement 
also demonstrated that ec- 
DNA (mainly non-functional 
eccDNA) is widely found in the 
normal cells of various organ-
isms from yeast to human 
[36], and their overlap is con-
sistent with the generation of 
tumor formation and drug 
resistance cells. The authen-
tic distribution of ecDNA in 
nature needs further investi- 
gate.

While ecDNA contains activat-
ed histone markers and is 
associated suppressed his-
tones, the basic base compo-
nents of ecDNA and nuclear 
DNA are the similar [5]. But at 
the same time, there are also 
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copy. Therefore, the tumorous transcription 
activity of micronucleus DMs are higher com-
pared to intracellular chromosome because 
gene amplification in DMs can be regulated by 
micronucleus affecting the phenotype of tumor 
cells [32]. 

The function of ecDNA

EcDNA is a significant mediator of oncogene 
amplification and concertation. Sihan Wu and 
colleagues noted that ecDNA may be the con-
ceptual equivalent similar to bacterial plas-
mids, which presumably has an impact on 
tumor pathogenesis and drug resistance [5]. 
The potential of tumor cells is stimulated by 
ecDNA. Sihan Wu described that ecDNA exists 
“ultra-long-range chromatin contacts” with 
transcriptional active chromatin [5]. They also 
considered ecDNA as a plasmid in the eukary-
otic nucleus. Close to the plasmid, ecDNA is 
extremely malleable. Noriaki Shimizu’s team 
has shown that plasmids containing mammali-
an replication initiation region (IR) and nuclear 
matrix attachment region (MAR) can effectively 
initiate gene amplification in mammalian cells 
and generate structures in primary cancer cells 
that are hard to distinguish from DMs or HSR 
[27] which may partly explain the effect of 
ecDNA. Other explorations have also confirmed 
that plasmids can incorporate both a mamma-
lian replication origin and a nuclear MAR into 
DMs to enhance the expression level [27]. 

While the function of ecDNA in normal cells is 
poorly understood, ecDNA is known to contain 
a large number of known exon oncogenes in 
malignant cell which has a direct impact on 
tumorigenesis. Traces of ecDNA activity and 

mutation can be found in a variety of tumor 
cells, including thyroid cancer, ovarian cancer, 
hepatic carcinoma, gastric carcinoma, neuro-
blastoma, neuroepithelioma, colon cancer and 
prostate carcinoma [41, 43-47]. In a sort of 
sense, ecDNA remodels the epigenomic land-
scape phenotype of chromosomal genome and 
affects chromosomal gene expression and 
tumorigenesis [9, 20, 48]. Oncogenes on 
ecDNA include epidermal growth factor recep-
tor (EGFR), MYC, c-MYC, HER2, platelet derived 
growth factor receptor (PDGFRA), mesenchy-
mal-epithelial transition factor (MET), MECOM/
PIK3CA/SOX2 gene cluster and CDK4/Murine 
Double Minute 2 (MDM2) gene cluster [5, 9, 49, 
50] (Table 2). The improved chromatin ac- 
cessibility of ecDNA brings a higher amplifica-
tion level to oncogenes. And the presence of 
these oncogenes creates the necessary condi-
tions for malignant progression. For instance, 
EGFR signal pathway can activate the RAS/
MAPK/ERK, PI3K/AKT, p38 and STATS path-
ways to promote tumorigenesis [51, 52]. Fur- 
thermore, the over-expression of MYC can 
affect many cells functions including cell cycle, 
self-renewal, survival, growth, metabolism, pro-
tein and ribosomal biogenesis, differentiation 
and canceration [53-55]. Tumorigenesis, tu- 
mor progression and cancer immunosuppres-
sion in various carcinoma types can be pro- 
moted by an over-activation of the MET axis 
[55-57]. The highly expressive nature of onco-
genes encoded in ecDNA are also identified  
by the relative high copies of oncogenes on 
ecDNA compared to any other gene expression 
[5]. As shown in Figure 3A, taking EGFR/p38 
pathway as example, the presence of ecDNA 
structure drove the amplification of oncogenes 

Figure 2. The activity of ecDNA in cell cycle. After ecDNA completes self-replication in S phase, some of them enters 
the nucleus and binds to chromosomes, which move towards the poles during G2 phase. While the remaining ecD-
NAs were randomly distributed between the two progeny cells.
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and thus to elevate the tumorigenesis tran-
scription level directly [2, 49].

Moreover, there are many functional cis-acting 
elements in ecDNA that can mediate oncogenic 
activity indirectly. For instance, confirmation of 
the extrachromosomal origin and fine structure 
of the forkhead box E1 [FOXE1, and thyroid 
transcription factors (TTF)]-containing hybrid 
amplicon via AmpliconArchitect reconstruction 
[58]. FOXE1 modulates thyroid cell migration 
which suggests a role in epithelial-to-mesen-
chymal transition (EMT) [59]. Current studies 
on FOXE1 transcription factors have found its 
significant value in oncology. FOXE1 gene has 
increased expression level in papillary nodal 
cancer (PTC) cells, which significantly corre-
lates with extra-capsular invasion of tumor 
cells, lymph node metastasis and tumor stage, 
and serve as a potential biomarker for progno-

anticancer role in PTC and other tumors. In 
addition, Ding Zheng showed that FOXE1 can 
inhibit the proliferation, migration and invasion 
of PTC by negatively regulating the expression 
of target gene PDGFA [65]. The regulation of 
FOXE1 in tumorigenesis is considered bidirec-
tional. FOXE1 may inhibit the growth, invasion 
and migration of certain tumor (PTC, e.g.) [65], 
but further investigations are needed to con-
firm this suppression. Similarly, ecDNA express-
es functional small regulatory RNA including 
microRNA and novel siRNA which have various 
functions including indirect modulation of gene 
expression [36].

The expression difference of ecDNA between 
normal mammalian cell and tumor cells and 
the various factors mentioned above that 
ecDNA is directly or indirectly involved in tumor 
growth all indicate that it plays a significant role 

Table 2. The roles of known ecDNA oncogenes in tumorigenesis
Oncogenes in ecDNA The role in tumorigenesis via ecDNA Reference
EGFR activate the RAS/MAPK/ERK, PI3K/AKT, p38 and STATS pathways in cancer pathogenesis and progression [51, 52]

MYC affect cell cycle, cellular energy metabolism and protein metabolism [53, 54]

c-MYC induce carcinoma genomic instability and inhibit apoptosis [100]

HER2 activate EGFR family to regulate cellular proliferation and induce cell transformation [9, 50, 101]

PDGFRA activate mutations in the KIT receptor tyrosine kinase and promote the cancer angiogenesis [75, 102]

MET encode receptor tyrosine kinase and thus trigger cell migration, proliferation, and angiogenesis [55-57]

MDM2 negative regulation of p53 [103]

Figure 3. The effects of ecDNA in tumorigenesis. A. The direct effects of 
ecDNA to encode tumorigenesis through the amplification of multiple ecDNA 
oncogenes elements, such as oncogene EGFR and EGFR/EGF/p38 signal 
pathways; B. The indirect effect of ecDNA in tumorigenesis which carries cis-
acting elements (FOXE1, e.g.) to impact the activity of other signal pathways 
like Wnt/β-catenin pathways to activate tumorigenesis. 

sis as well as a new therapeu-
tic target [60, 61]. FOXE1 can 
promote PTC proliferation, mi- 
gration, and invasion by acti-
vating the Wnt/β-catenin pa- 
thway [62] (Figure 3B). Ano- 
ther cancer suppressor, mir-
524-5P, targets multiple ge- 
nes approved in several types 
of cancer cells. It effectively 
inhibits the activity, migration 
and invasion of PTC cells and 
promote the apoptosis of tu- 
mor cells by inhabiting FOXE1 
[63]. Recently, FOXE1 has 
been found to be highly expre- 
ssed in pericytes of burn 
eschar, Alexander Evdokiou 
has demonstrated that angio-
genesis can be promoted by 
FOXE1 transcription factor 
[64]. Regardless, it is worth 
mentioning that the high ex- 
pression of FOXE1 plays an 
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in tumor behaviors. We will describe the role of 
ecDNA in different views detailly.

EcDNA in tumorigenesis

Gene amplification in ecDNA participates in 
tumorigenesis. Gene amplification is consid-
ered one of the major mechanisms of onco- 
gene activation and cells with amplified onco-
genes may gain a growth advantage through 
the overproduction of protein products [11]. As 
described previously, a large number of onco-
genes are carried by ecDNA which can be seen 
as a hotbed of oncogene amplification. In par-
ticular, ecDNA is found to carry a double ampli-
fication of the N-MYC oncogene in neuroblas-
toma [49]. Malignant gliomas also have large 
amounts of ecDNA with oncogenic activity via 
[2]. Investigations have also shown that the 
deletion of MYC oncogene amplified on DMs in 
human tumor cells can reverse the malignant 
phenotype of cells and induce cell differentia-
tion [66-68]. Since gene amplification is re- 
sponsible for the malignant transformation of 
some cancer cells, the reduction of the ampli-
fied gene copy leads to the reversal of tumor 
cell phenotypes [68]. This amplification mecha-
nism of ecDNA oncogene leads to increased 
consistency and variability in tumors [2]. More 
precise, ecDNA amplification increases onco-
gene copy number and intratumoral heteroge-
neity much more effectively than chromosome 
amplification [2]. Also, the ecDNA contained in 
the micronucleus has transcriptional activity 
that may alter the phenotype of cancer cells 
[32]. 

Besides, oncogenesis may be also influenced 
by genetic mutations in the ecDNA. Florence  
Le Page and his colleagues testified that G-T 
transcriptional mutations can be present in 
ecDNA to mediate spontaneous tumorigenesis 
[69]. There is transcript fusion phenomenon in 
ecDNA in malignant cell. The clonal selection of 
malignant glioma cells with competitive advan-
tage in xenograft experiment can produce the 
CAPZA-MET fusion gene and transcript, thus 
increasing the tumor variability and promoting 
tumor progression [49]. Taken together, the 
results obtained from current studies suggest 
that ecDNA plays a crucial role in tumor pro-
gression [5, 6, 32]. 

EcDNA in tumor angiogenesis

The main regulation form of angiogenesis in 
tumor relies on paracrine signaling. ecDNA has 
been shown to play a specific role in this pro-

cess [5, 70, 71]. EcDNA, in the form of in- 
tercellular vesicles are stored in extracellular 
vesicles (EVs). It can increase paracrine signal-
ing between cancer cells, increased tumor cell 
aggressiveness, proliferation, angiogenesis, 
and chemotherapeutic resistance [71]. EGFR, 
vascular endothelial growth factor (VEGF) and 
VEGR receptor (VEGFR) are major cytokines 
involved in tumor angiogenesis [72, 73]. On- 
cogenic EFGR can promote the accumulation 
and proliferation of endothelial cells and fibro-
blasts ultimately leading to the formation of 
vessels. One of the significant mechanisms by 
which oncogenic EGFR contributes to tumor 
angiogenesis is via the up-regulation of VEGF  
in tumor cells [70]. Khalid Al-Nedawi and col-
leagues demonstrated that oncogene-contain-
ing tumor cell-derived membrane microvesicles 
(MVs) with EFGR has been proven to act as a 
unique form of angiogenesis-modulating stimu-
li and function in an autocrine manner [74]. 
Furthermore, Alicia M. Viloria Petit testified that 
the usage of anti-EGFR/VEGF neutralizing anti-
body can cause a dose-dependent inhibition of 
VEGF protein expression and lead to significant 
reduction in tumor blood vessel in vivo [70]. In 
addition to EGFR, PDGFRA could be another 
affecting oncogene for angiogenesis, which 
impact the angiogenesis of ovarian tumor [75].

On the other hand, ecDNA can express func-
tional small regulatory RNA including microRNA 
(miRNA) [36]. These miRNAs have favorable 
intra- and extracellular regulatory features. For 
example, miR-9 effectively reduces the sup-
pression of cytokine signaling 5 (SOCS5), lead-
ing to activated Janus kinase-Signal Transducer 
and Activator of Transcription (JAK-STAT) path-
ways [76]. This signaling cascade promotes 
endothelial cell migration and tumor angioge- 
nesis.

EcDNA in tumor drug resistance

Tumor’s resistance stems from the changes in 
metabolic pathways, production of efflux P- 
glycolprotein (P-gp) pumps to chemotherapy 
drugs, and changes in membrane permeability 
mostly due to acquired or spontaneous gene 
mutations [77-79]. Cells that acquire adaptive 
mutations are more likely to pass those muta-
tions on to daughter cells, driving tumor pro-
gression and chemotherapeutic resistance 
[33, 80]. EcDNA oncogene amplification may 
maximize proliferation and survival by increas-
ing the likelihood of oncogenic expression in 
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subsets of cells or improve the expression and 
activity of P-gp (Figure 4A), thus enabling tu- 
mors to adapt effectively to the changing micro 
environment, which contributes to drug resis-
tance and difficult to cure cancers [81-83]. 

Gene amplification in ecDNA is highly sensitive 
to its growing environment. It has been verified 
that of cytotoxic regimes may result in drug 
resistance in tumors with a high copy number 
of gene amplification in ecDNA while the ab- 
sence of cytotoxic drugs may lead to the loss  
of unstable gene [84, 85]. Moreover, Frederick 
Alt and his teammates found ecDNA promotes 
tumor resistance to methotrexate (MTX) by 
increasing the amplification of the dihydrofo-
late reductase (DHFR) gene [85] (Figure 4B). 
MTX, as a methylenetetrahydrofolate reduc-
tase inhibitor, can inhibit DHFR and block the 
production of tetrahydrofolic acid (THFA) from 
dihydrofolate, which then obstructs the trans- 
fer of one carbon unit in the biosynthesis of 
purine nucleotide and pyrimidine nucleotide 
and thus inhibit DNA synthesis. Cells with  
DHFR in ecDNA remarkably lose the amplified 
DHFR gene over time as they grow in the ab- 
sence of MTX. This phenomenon is also called 
as drug-mediated loss of unstable genes. At 
some point this also reflects the characteris- 
tics of ecDNA in tumor resistance. The loss of 
unstable gene also occurs when cells are cul-
tured with hydroxyurea in higher proportions. Interest- 
ingly, hydroxyurea can effectively reduce gene 
loss in ecDNA at low concentrations. Treatment 

xyurea can be used as a potential chemothera-
py drug to interfere with ecDNA. By the way, 
hormone receptor (HR) pathway may be a new 
target to improve chemotherapeutic outcome 
by decreasing extrachromosomal amplification 
in cancer [46]. 

Gene amplification of ecDNA is also affected  
by radiation. Radiation-mediated loss of extra-
chromosomal amplified multidrug resistance 1 
(MDR1) genes is accompanied by a reduction  
in P-gp levels and function [89]. Furthermore, 
ionizing radiation accelerates the loss of ampli-
fied MDR1 on DMs in multi-drug resistant KB 
cell [89]. The elimination of MDR1 gene ampli- 
fication in DMs led to the reversal of more sen-
sitive phenotypes [89, 90]. This phenomenon 
implies that ecDNA mutation plays a crucial 
role in the selective loss of amplified unstable 
genes involved in cell resistance [87, 88]. 

Conversely, mutations in ecDNA could also be  
a source of tumor resistance. Mutations in the 
function of EGFRvIII in ecDNA make glioblasto-
ma resistant to EGFR inhibitors and tyrosine 
kinase inhibitors (TKIs) [6, 91]. The absence of 
EGFRvIII in ecDNA promotes tumor resistance. 
And the loss of the EGFR gene in ecDNA allows 
glioblastoma to develop resistance to the EGFR 
TKIs Erotinib [91]. Resistance to EGFR TKIs has 
proven to occur by elimination of mutant EGFR 
from EGFR clone mutations in ecDNA and re- 
appears after the drug is discontinued. The 
intermittent EGFR TKI administration allows 

Figure 4. The effects of ecDNA in drug resistance. A. ecDNA drug-resistance-
related oncogene amplification improves the activity of P-gp and thus in-
creases the drug efflux; B. ecDNA increases the amplification of the dihydro-
folate reductase (DHFR) gene to promote tumor resistance to methotrexate 
(MTX) when the tumor was exposed to high levels of MTX. 

of several human tumor cell 
lines with low concentrations 
of hydroxyurea accelerated 
the loss of oncogenes repre-
sented by MYC in ecDNA am- 
plification, thereby reducing 
tumorigenicity [67, 68]. Hydro- 
xyurea mediates EGFR gene 
loss, though the process is 
reversible and the EGFR gene 
recovers after withdrawal of  
hydroxyurea [86]. DNA repli- 
cation inhibitors represented 
by low-dose hydroxyurea (50-
150 μm) can induce the loss 
of amplified genes in ecDNA 
[11]. This treatment resulted 
in a reduction in the number 
of DHFR copies amplified in 
the hamster CHO cells [87, 
88]. This indicates that, hydro- 
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glioblastoma to regain drug sensitivity with  
rapidly elevated levels of EGFRvIII DNA outside 
the chromosome [91]. In addition, treatment of 
glioblastoma with Erotinib results leads to an 
increase in the MDM2 DM copies [91]. 

These results suggest that cancer can evade 
treatment by targeting oncogenes that main-
tain DNA outside of chromosomes in a highly 
specific, dynamic and adaptive way [91]. In  
conclusion, ecDNA participates in tumor resis-
tance and may become a potentially new target 
for therapy in the future. 

EcDNA in tumor metastasis, prognosis and 
diagnosis

A review of the cause of tumor metastasis and 
the types of oncogenes revealed the involve-
ment of diverse genes, including the S100 pro-
tein family, MYC, RAS, c-SIS, MYB, ERBA and 
other genes. Tumor microenvironment plays a 
central role in promoting tumor metastasis 
[92]. S100A4 for example, is recognized as a 
protein that promotes metastasis. S100A4 can 
alter cell adhesion, stimulate angiogenesis, 
attract immune cells to growing tumor lesions, 
and promote secretion of various cytokines and 
growth factors into tumor microenvironment 
[93]. Intracellular S100A4 interacts covalently 
with its targets, including actin, non-myosin 
heavy chain IIA (NMIIA) and tropomyosin, and is 
thus related to cell migration [94, 95]. Also, 
S100A4 has been shown to be involved in the 
metastasis of various tumors [96]. 

Studies have demonstrated that c-MYC can 
promote the expression of S100A4 by influenc-
ing downstream signaling molecules in pros-
tate carcinoma cells [97]. The mutated p53 
gene is also related to c-MYC and S100A4, 
which indirectly regulates the invasiveness of 
tumor cells [98]. Although EcDNA is currently 
thought to play a certain role in tumor metasta-
sis [5], but the definitive mechanism is still 
unclear. It is thought to be related to the pres-
ence of c-MYC and other genes in the circular 
structure of ecDNA. However, whether or not 
ecDNA contains genes of the S100 protein  
family or directly affects metastasis remains to 
be explored further.

The purpose of studying the molecular mecha-
nism of ecDNA’s is to be able to understand 
and implement its use in clinical oncology. At 
present, there’s little evidence of the clinical 

significance of ecDNA in cancer treatment. 
Notably, evidence of ecDNA in blood has been 
reported raising interest in its potential as a 
diagnosis and prognostic tool to improve of 
tumors detection and treatment [41]. EcDNA 
containing MET has been investigated as a 
marker to identify subclonal cell populations  
of malignant glioma [49]. Also, micronucleus 
containing ecDNA has been detected outside 
the cell [99]. Blood ecDNA levels has also been 
used to guide the prognosis of tumors such as 
ovarian cancer [43]. However, at present, there 
is no clinical application of ecDNA although it 
can be detected by liquid biopsy in blood [41]. 
We have reason to believe that in the future, 
ecDNA can become a central as an indicator for 
the diagnosis of tumors and the prognosis of 
malignant neoplastic diseases.

Research deficiency and conclusion

Until now, studies on ecDNA mainly focus on 
the structure of ecDNA and the genes it con-
tains, in contrast, there are very few studies 
that explore the production mechanism, type 
and normal physiological function of ecDNA. 
Whether ecDNA itself has a unique regulatory 
mechanism for downstream signaling path-
ways, and the transmission mechanism of 
ecDNA between cellules is also unknown. In 
addition, there is a lack of targeted therapeutic 
drugs for ecDNA. This series of limitations has 
become a deficiency and bias in current ecDNA 
studies. 

So, taken together, ecDNA is a significant ex- 
tracellular gene carrier structure containing 
highly accessible chromatin, which plays a  
vital role in tumor genesis, angiogenesis, drug 
resistance formation and metastasis. EcDNA 
as a tumor diagnostic and prognostic indicator 
has recently become a subject of interest to 
researchers. In the future, drugs targeting 
ecDNA as a whole or some of its genes can 
become new target for cancer therapy. We 
believe focus in new cancer therapies should 
start to shift from nucleus centric studies to 
investigate other contributors outside the chro-
mosome, outside the nucleus, and even out-
side the cellule. 
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