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Abstract: Chemotherapy is one of the main treatments for cancer, especially for advanced cancer patients. In the 
past decade, significant progress has been made with the research into the molecular mechanisms of cancer cells 
and the precision medicine. The treatment on cancer patients has gradually changed from cytotoxic chemotherapy 
to precise treatment strategy. Research into anticancer drugs has also changed from killing effects on all cells to 
targeting drugs for target genes. Besides, researchers have developed the understanding of the abnormal physi-
ological function, related genomics, epigenetics, and proteomics of cancer cells with cancer genome sequencing, 
epigenetic research, and proteomic research. These technologies and related research have accelerated the devel-
opment of related cancer drugs. In this review, we summarize the research progress of anticancer drugs, the current 
challenges, and future opportunities.
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In the 1940s, nitrogen mustard was found to 
cure malignant lymphoma in humans [1] which 
has boosted researchers’ confidence in curing 
cancer. With the rapid development of biology, 
people have researched the subjects including 
biochemistry, immunology, and therapeutics 
[2-4], leading the cognition of tumors to a 
genetic level [5-7]. The clinical application of 
various antitumor drugs has continually prompt-
ed researchers to explore many new antitumor 
drugs [8-10].

Small molecule drugs mainly refer to chemical 
synthetic drugs with molecular weight less than 
1000, of which structure has good spatial dis-
persion and leads to their high drug efficiency 
and pharmacokinetic properties [11]. As a 
result, the market started to focus on those 
drugs. Small molecule anticancer drugs, usual-
ly signal transduction inhibitors, can block the 
signal transduction pathways for tumor growth 
and proliferation, then to cure the tumor [12] 
such as, Novartis Gleevec’s for the treatment of 

chronic myeloid leukemia and gastrointestinal 
stromal tumors and AstraZeneca’s treatment  
of non-small cell lung cancer with epidermal 
growth factor receptor (EGFR) as the target. 
Small molecule drugs have already had the 
advantages of wide use and mature theory.

Although small molecule drugs have achieved 
encouraging results, there are still many chal-
lenges. Disobedience of the rational drug use 
would increase the side effects and drug toler-
ance, leading to poor treatment effect [13]. 
Secondly, small molecule drug monotherapy, 
especially protease inhibitors, cancer cells are 
prone to cause drug-resistant mutations in ab- 
out 2 weeks [14]. In addition, small molecule 
drugs are prone to generate multi drug resis-
tance sites. In a word, the small molecule drugs 
are in the ascendant, and new drugs are con-
stantly emerging, which has made the anti-can-
cer and anti-tumor drug treatment essential 
[15]. With the continuous development of such 
drugs with low drug resistance, high efficacy 

http://www.ajcr.us


Discovery of small molecule drugs

2387 Am J Cancer Res 2021;11(6):2386-2400

and few side effects, it is believed that in the 
near future, there will be significance break-
through in the treatment of cancer. 

Nowadays, novel and effective antitumor drugs 
is urgently needed. The basic approaches, ch- 
allenges, and opportunities for the discovery of 
antineoplastic agents are summarized below.

Drug target selection

Choosing the right target needs to balance ben-
efits and risks, which is one of the most critical 
problems [19-21]. Wrong drug target is a costly 
waste of drug research and development [22-
24]. In general, the selection of targets depends 
on a detailed understanding of the molecular 
mechanism (Figure 1). After the target activity 
is regulated in pharmacology (including activa-

tion or inhibition), it can achieve antitumor 
effects both in vitro cell system and in vivo, and 
has selectivity for cancer cells with few side 
effects [25-27]. 

Naturally-derived drugs

Naturally-derived drugs kill tumor cells by inhib-
iting proliferation and inducing apoptosis aim-
ing at metabolic heterogeneity; the drugs also 
act on tumor cells in indirect manners, such  
as immune regulation and epithelial-mesenchy-
mal transition (EMT) inhibition of metastasis 
(Figure 2). Therefore, researchers have focused 
on identifying natural products to use as drugs 
for treating cancer [29].

At present, more than 2,000 plants have been 
screened for anticancer activity in China, 190 

Figure 1. Discovery and development from gene to drug. Small molecules that act on new molecular targets rep-
resent therapeutic dependencies and vulnerabilities. There are four main steps of cancer drug discovery: target 
selection and validation, chemical hit and lead generation, lead optimization to select a clinical candidate, and 
biology-led clinical trials.
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have shown anticancer activity in animal exper-
iments [30]. Paclitaxel is an alkaloid compound 
isolated and purified from the bark of the gym-
nosperm yew [31]. When treated with paclitax-
el, the cells would accumulate microtubules 
interfere with various functions of the cells, 
such as blocking the normal cell division [32]. 
In Phase II-III clinical studies, paclitaxel is ma- 
inly used for ovarian cancer [33] and breast 
cancer [34]; it has also shown to have some 
beneficial effects against lung cancer, color- 
ectal cancer and melanoma [35-38]. Another 
plant called vinorelbine is a cell cycle-specific 
drug with semi-synthetic compound [39]; the 
plant navelbine could stop mitosis in the meta-
phase by blocking tubulin polymerization to 
form microtubules and induce tubule formation 
disorders [40, 41].

Synthetic antitumor drugs

Chemical antitumor drug refers to cytotoxic 
drug and acts on the chemical structure of DNA 
[42], which plays an irreplaceable role in treat-
ing cancer; These drugs are mainly alkylating 
agents, antimetabolites, antitumor antibiotics, 
platinum complexes, and targeted drugs [43]. 

However, while these drugs kill cancer cells, 
normal cells would also receive detrimental ef- 
fects [45]. Besides, the significant drug resis-
tance and allergic reactions have also limited 
their long-term clinical applications [46-48]. 
Therefore, chemical antitumor drugs with low 
toxicity and high efficiency are an urgent issue 
for pharmaceutical companies.

Alkylating agents were one of the earliest cla- 
sses of drugs for cancer treatment are mainly 
used for chronic lymphocytic leukemia and 
malignant lymphoma [49], which could gener-
ate a carbocation or other compound with an 
electrophilic group in vivo [50]. These reactive 
electrophilic species can covalently combine 
with electron-rich groups (e.g., amino, sulfhy-
dryl, hydroxyl, carboxyl, and phosphate) in bio-
logical macromolecules (e.g., DNA, RNA, and 
enzymes) in cells [51-53]. This combination 
would cause loss of biological macromolecule 
activity or cleavage of DNA molecules, resulting 
in death of tumor cell and antitumor activity 
[54-58].

Antimetabolites are a class of drugs that affect 
the biosynthesis of nucleic acids [59], which 

Figure 2. Potential drug targets for targeted therapy. Common proteins upregulated in the majority of tumors were 
classified in the four functional categories: proteins involved in extracellular matrix (ECM), immune response, cell 
cycle/DNA replication, and metabolism.
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chemical structure is similar to what nucleic 
acid metabolism required. Antimetabolitescan 
prevent cell division and proliferation by speci- 
fically interfering with the metabolism of nucle-
ic acids including methotrexate, 6-mercaptopu-
rine, 5-fluorouracil (5-FU), and cytarabine [60, 
61]. Deoxyfluorouridine is a prodrug of 5-FU 
[62], which could be decomposed into 5-FU  
by pyrimidine nucleoside phosphorylase after 
entering the body in order to kill the tumor; it  
is used clinically to treat breast and digestive 
tract tumors clinical [63]. Is a congener of cyta-
rabine [64], its one nucleotide can allow intru-
sion, and the second nucleotide can inhibit the 
multimerization process after breaking DNA, 
forming a mask chain break [65]. Difluoro deoxy 
cytarabinealso inhibits nucleotide reductase 
and inhibits DNA synthesis, which means it is 
one of the first choices in treating non-small 
cell lung cancer (NSCLC) and pancreatic tumors 
[66]. Antitumor antibiotics, containing dime-
thoxy daunorubicin, which has high fat solu- 
bility and a strong anti-leukemia effect, are 
extracted from a class of microbial culture flu-
ids that interfere with transcription by directly 
disrupting DNA or embedding DNA [67]. Pu- 
romycinis a semi-synthetic antibiotic with a tet-
rahydropyran at the 4-position of doxorubicin 
[68] which can inhibit DNA replication and tran-
scription, and block the cell cycle in the G2 
phase; it has a wide antitumor spectrum and 
can inhibit tumor metastasis [69]. The cardio-
toxicity of puromycin is no higher than epirubi-
cin, it’s side effect of hair loss is significantly 
lower than other anthracyclines during the clini-
cal treatment of breast cancer and lymphoma 
[70].

The anticancer mechanism of platinum antitu-
mor drugs can be divided into four steps: trans-
membrane transport, hydration dissociation, 
targeted migration, and action on DNA, which 
may cause DNA replication disorders, thereby 
inhibiting the division of cancer cells [71-73]. 
Preclinical studies have shown significant in- 
hibitory effects on colorectal tumor cell lines 
and cisplatin-resistant cell lines, and significant 
synergistic effects with 5-FU [74-76]. Nidaplatin 
is more effective than isodose cisplatin in the 
head and neck, testis, lung, esophagus, blad-
der, ovary, and cervical tumors, while diges- 
tive tract reaction and nephrotoxicity are mild 
[77-79].

Molecularly targeted drugs are often targeted 
at key enzymes in cell signaling pathways in- 

volved in tumor cell differentiation and prolifer-
ation, also screen for low-toxic, highly potent, 
and specific small molecule compounds that 
selectively act on specific targets [80-82]. It 
was first used clinically in an antitumor small 
molecule compound with a single kinase tar-
get, which easily produces drug resistance with 
a narrow therapeutic range [83]. Most solid 
tumors are multi-link and multi-target. Multi- 
nomial integration analysis that are essential 
tools for stratifying patients according to risk 
factors provide insights to use more target- 
ed and individualized therapeutics (Figure 3). 
Blocking a certain target or receptor does not 
need to block the signal transduction of all 
cells, so multi-kinase targeting represent a new 
development direction of tumor-targeted thera-
peutic [84], including targeted drugs that inhi- 
bit tumor angiogenesis, protein tyrosine kinase 
inhibitors, and mammalian target of rapamycin 
(mTOR) inhibitors [85].

Targeted drugs that inhibit tumor angiogenesis 
include inhibit vascular endothelial growth fac-
tor (VEGF) such as bevacizumab for the treat-
ment of NSCLC, panitumumab, cetuximab, tras- 
tuzumab, and some other drugs [86-88]. There 
are also targeted drugs inhibit angiogenesis 
directly such as endostatin and angiostatin,  
the two endogenous tumor neovascular inhibi-
tors that inhibit tumor angiogenesis, induce 
tumor cell apoptosis, prevent tumor invasion 
and metastasis by inhibiting the growth of tu- 
mor endothelial cells [89]. Both drugs inhibit 
angiogenesis directly, being used in clinical 
practice in China [90].

Sorafenib is a multi-target inhibitor inhibit tar-
gets for Fms-like tyrosine kinase, c-KIT, plate-
let-derived growth factor receptor, and Raf/
MEK/ERK signaling pathways [91-93]. Acting 
on multiple targets can not only inhibit tumor 
cell growth and differentiation but also inhi- 
bit tumor neovascularization [94] and improve 
treatment efficiency, so it can be used for the 
treatment of NSCLC and liver cancer [95].

Mammalian target of rapamycin (mTOR) inhibi-
tors have been used as immunosuppressants 
for more than 10 years clinically [96], which is a 
serine/threonine protein kinase involved in reg-
ulating cell proliferation, growth, and metabo-
lism [97, 98].

Other targeted antitumor drugs such as histo- 
ne deacetylase inhibitors mainly control gene 
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expression by changing the histone acetyla- 
tion degree, then changing the chromatin struc-
ture [99], which could induce tumor cell growth 

arrest, differentiation, and apoptosis to treat-
tumors [100]. For example, the vorinostat of 
Merckwas the first histone deacetylase inhibi-

Figure 3. A road map to personalizing targeted cancer therapies using multinomial integration analysis. Multinomial 
integration analysis approach has been used for personalized targeted therapeutics in a genome profiled patient 
cohort. Mass spectrometry (MS)-based proteomics can measure global protein abundance and post-translational 
modifications to provide additional biological insights, which may not be deciphered by genomic analysis alone. The 
combination of sequencing and MS provides a more comprehensive picture linking cancer genotype to phenotype 
through functional proteomics and signaling networks. Integrated analyses of genomic, transcriptomic, proteomic, 
and phosphoproteomic data from tumor and matched non-tumor liver tissues revealed the connection and discor-
dance among multi-omics and alterations in critical signaling and metabolic pathway. Thus, tumor genome analysis 
for mutation in a cancer-specific gene as a biomarker results in a better outcome in clinical trials.
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tor approved by the US Food and Drug Ad- 
ministration in treating cutaneous T-cell lym-
phoma, marking a new approach to tumor ther-
apy [101].

Autophagy is a catabolic process that leads to 
cellular degradation and the recycling of pro-
teins and organelles by lysosomal digestion. 
Induced in starvation and several forms of 
stress rapidly, in which its dysregulation would 
join the processes like tumor. However, Apo- 
ptosis is a type of programmed cell death that 
cells are destroyed without releasing noxious 
substances into the surrounding area. Althou- 
gh the molecular mechanisms of apoptosis still 
need clarification, several proteins have been 
already known to have a vital role in regulating 
programmed cell death. It was proposed that 
therapeutic resistance in cancer is due to an 
upregulation of anti-apoptotic proteins and a 
downregulation of pro-apoptotic proteins, lead-
ing to genetic instability and the activation of 

oncogenes that favor cell survival and resis-
tance to chemotherapy and recurrence (Figure 
4).

Genetic engineering

At the end of the 20th century, a series of  
significant discoveries in cell and molecular 
biology promoted the biomedical technology 
development and many technological break-
throughs [102] including the found of wild-type 
tumor suppressor genes, suicide genes, anti-
drug resistance genes and antisense oligonu-
cleotides, and tumor genetically engineered 
bacteria tumors [103-105]. For example, Her- 
ceptin is a recombinant DNA-derived human-
ized monoclonal chimeric anti-p185HER-2 anti-
body [106] that can specifically bind to HER-2, 
downregulate it’s gene, antagonize the growth-
promoting effects of it’s family, and mediate 
antibody-dependent cytotoxicity and anti-an- 
giogenesis [107]. G3139 is an antisense oligo-

Figure 4. Status of proteins that participate in the apoptotic pathway in cancer. An overexpression of anti-apoptotic 
proteins has been reported, as well as a downregulation of pro-apoptotic proteins that participate in the mitochon-
drial apoptotic pathway and in the TNF receptor pathway. It has been suggested that the dysregulation of these 
proteins induces resistance to apoptosis in different therapeutic approaches.
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nucleotide drug against Bcl-2 [108, 109]. The 
renewal of these technologies have led to radi-
cal treatments for cancer (Figure 5).

In recent years, the development of molecular 
biology technology has been rapidly changed 
[110]. New cancer vaccine have become the 
focus, including genetically engineered cancer 
vaccines. Studies have shown that genetically 
modified tumor cells can kill cancer cells effi-
ciently [111]. At present, the clinical applica- 
tion of cancer vaccines mainly focuses on the 
treatment of lung cancer, malignant melanoma, 
colon cancer, and certain hematological tumors 

[112, 113]. Therefore, the use of appropriate 
anticancer drugs for combination and sequen-
tial chemotherapy to achieve the goal of curing 
cancer or prolonging life is an optimized pro- 
tocol.

Nanotechnology

Nanoparticles refer to particles between 1 and 
100 nm in size, which havestrong adsorption 
capacity, large surface area, high catalytic effi-
ciency, and high surface reactivity [114]. It is a 
new way to deliver anticancer drugs. Particles 
>200 nm in tissue are easily phagocytized by 

Figure 5. Comparison of sources and technologies for anti-cancer compounds. Traditional sources and new technol-
ogies that use microbial fermentation, insect and mammalian cell cultures, and transgenic animals have drawbacks 
in cost, scalability, product safety, and authenticity.
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the phagocytic system, whereas magnetic par-
ticles <100 nm are more easily adsorbed and 
deposited at a lower rate, facilitating diffusion 
to tissues are widely used in antitumor drugs 
[115]. The properties exhibited by nanomateri-
als indicate anopolymer material showed broad 
anticancer application.

Other ways

With the further research of physiological and 
biochemical mechanisms, some drugs known 
as prototype drugs have achieved great suc-
cess in medical effects and in the pharmaceuti-
cal market [117]. Many drugs with intellectual 
property rights have emerged, and those drugs 
with the same efficacy are called “me-too” 
drugs [118], the research of it is to find similar 
chemical structures that are not protected by 
patents [119]. Researchers change local chem-
ical structures, increase water solubility or fat 
solubility, and bioavailability [120]. Those drugs 
would cause metabolic transformation in vivo, 
prolonging the duration of action, which are 
sometimes better than the original drug, re- 
ducing side effects and adverse reactions to 
some extent [121]. For example, Melphalan 
(sarcolysin), with phenylalanine as the carrier, 
has a better effect on malignant tumors [122]. 
Formylmerphalan is obtained by subjecting 
NH2 to formylation on the basis of melphalan 
[123], comparing with sarcolysine, it has hi- 
gher therapeutic index and lower toxicity [124]. 
These drugs have followed the development 
ideas, mechanism of action, and targets of in- 
novative drugs [125], and have modified the 
listed drugs in chemical structure, circumvent-
ing patent infringement with low research diffi-
culty, low investment, and low risk. It is a way 
researching on new drugs, and it is also a sh- 
ortcut to create a transition [126].

Old drugs refer to drugs that have been put  
on the market for clinical application and are 
known to everyone, Basedon previous resear- 
ch and development, detailed molecular struc-
ture, mechanism of action, and safety informa-
tion [127]. “Me-too” dugs means shortening 
the development cycle of small molecule dr- 
ugs, reducing risks, and increasing the succe- 
ss rate of small molecule drug development, 
enabling faster entry into clinical trials and 
rapid phase II clinical trials [128]. The assess-
ment is reported to save approximately 40% of 

the cost and shorten the development cycle to 
3 to 12 years [129, 130]. 

Challenges and opportunities

Since the 20th century, people havn’t paid 
much attention to oncology drug research. 
Traditional cytotoxic drugs are still the main 
body of cancer drug therapy. However, with the 
development of molecular oncology and molec-
ular pharmacology, the nature of tumor is grad-
ually being clarified. The application of ad- 
vanced technologies such as large-scale rapid 
screening, combinatorial chemistry, and genet-
ic engineering have accelerated the drug devel-
opment process [131, 132].

However, at present, the development of small 
molecule drugs has reached a bottle neck, 
which is not only reflected in the floating num-
ber of new drugs on the market, but also in the 
increasing number of pharmaceutical R & D 
enterprises invest without breakthrough. For 
small molecule drugs, it is a matter of time to 
catch up or surpass. In the next few decades, 
the market share of large molecule drugs will 
be higher, gradually surpassing small molecule 
drugsbut does not mean that small molecule 
drugs will disappear. It just means that such 
drugs will start to move forward steadily rather 
than speedily [133-135].

Conclusion

Although therapeutic drugs have been discov-
ered by this traditional method, there are still 
problems such as unpredictability, blindness, 
and resource inefficiency. When life sciences 
enter the post-genome era, scientists will dis-
cover new genes from a large number of gene 
sequencing results, delve into their functions 
and regulatory networks, andimprove the qual-
ity and efficiency of innovative drug resear- 
ch through a large number of bioinformatics 
libraries, compound information libraries and 
biochips.
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