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Abstract: The aberrant expression of the zinc finger protein 217 (ZNF217) promotes multiple malignant phenotypes, 
such as replicative immortality, maintenance of proliferation, malignant heterogeneity, metastasis, and cell death 
resistance, via diverse mechanisms, including transcriptional activation, mRNA N6-methyladenosine (m6A) regula-
tion, and protein interactions. The induction of these cellular processes by ZNF217 leads to therapeutic resistance 
and patients’ poor outcomes. However, few ZNF217 related clinical applications or trials, have been reported. More-
over, looming observations about ZNF217 roles in m6A regulation and cancer immune response triggered significant 
attention while lacking critical evidence. Thus, in this review, we revisit the literature about ZNF217 and emphasize 
its importance as a prognostic biomarker for early prevention and as a therapeutic target. 
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Introduction 

Cancer remains a major cause of death world-
wide [1]. The discovery of specific biomarkers 
of various types of neoplasms will improve ear- 
ly diagnosis and individualized therapies for 
better prevention and therapeutic outcomes. 
However, anti-neoplastic treatments are not 
always satisfactory due to the activation of 
other signaling pathways that weaken the ther-
apeutic effects [2]. Moreover, the increase in 
cancer mortality demands accurate biomark-
ers to perfect the detection of lesions with high 
cancer risks through an early diagnosis of pre-
malignant tissues [3]. In this review we focus 
our attention on ZNF217, a member of a large 
family of zinc finger transcription factors, which 
plays a key role in eukaryotic gene regulation, 
and which dysregulation, is often observed in 
cancer [4, 5]. Recent observations suggest that 
ZNF217 regulates gene expression in various 
cancers, where it promotes tumorigenesis 
through increasing proliferation, invasion and 
metastasis, and inhibition of apoptosis. These 
hallmarks correlate with therapeutic resistance 
and poor outcomes. However, there are no 

reviews that summarize and discuss the rela-
tionship between ZNF217 and therapeutic 
resistance. Here, we review the literature on 
the role of ZNF217 in cancer and other diseas-
es and explore the complex regulatory network 
that is triggered by ZNF217. We also emphasize 
its clinical application value in prognostic pre-
diction and therapeutic design. 

Expression of ZNF217: battles within transcrip-
tional or post-transcriptional layer

ZNF217 aberrant gene amplification, located in 
chromosome 20q13.2 region, was frequently 
detected in various precancerous lesions and 
cancers, including breast [6-12], ovarian [13-
16], gastric [17, 18], prostate [19], esophagus 
[18, 20], pancreatic [21], and colorectal carci-
nomas [22-25], glioblastoma [26, 27], hepato-
ma [28], lung cancer [29], lymphoma [30], 
Barrett’s esophagus [31-33], head and neck 
squamous cell carcinoma [34] and melanoma 
[35]. ZNF217 aberrant gene amplification and 
mRNA levels are associated with high cancer 
risk and poor therapeutic sensitivity [36-43]. 
However, ZNF217 expression level does not 
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consistently correlate with its gene amplifica-
tion status [10, 44]. Indeed, there exists a 
sophisticated regulatory mechanism that in- 
volves the triggering of ZNF217 uncontrollable 
expression to stimulate downstream signaling 
pathways and cause pathological alterations. 

At the transcriptional level, a negative correla-
tion between ZNF217 promoter methylation 
and its expression, was demonstrated by a 
whole-genome integrative analysis in glioblas-
toma that indicated that DNA methylation re- 
duces its expression level [26]. In cytotropho-
blasts, ZNF217 DNA methylation inversely cor-
related with oxygen concentration in most tu- 
mor tissues that were exposed to hypoxia due 
to their unlimited cell proliferation [45, 46]. 
Under hypoxic conditions, ZNF217 mRNA and 
ZNF217 protein expression levels are upregu-
lated by hypoxia-inducible factor-1α (HIF-1α) 
and HIF2α in glioblastoma [27]. Another tran-
scriptional factor, the signal transducer and 
activator of transcription 3 (STAT3), directly 
binds on the Zfp217 promoter, and upregu- 
lates its expression following melatonin treat-
ment of mouse ESCs, suggesting a STAT3 
potential regulatory role of ZNF217 expression 
[47].

At the post-transcriptional level, noncoding 
RNAs, such as microRNAs (miRNAs) and long-
noncoding RNAs (lncRNA), possess vital re- 
gulatory functions of ZNF217 expression. For 
instance, the 3’UTR region of the ZNF217 
mRNA could be targeted and repressed by 
microRNAs, even when their expression levels 
are decreased in diseases. In breast cancer, 
ZNF217 expression is negatively correlated 
with miR-503, which is upregulated by estro- 
gen (E2) stimulation, whereas estrogen recep-
tor (ER) antagonists, such as ICI 182,780 (ful-
vestrant), upregulates ZNF217 expression that 
may be associated with the inhibition of the  
ER signaling pathway [48, 49]. Additionally, a 
recent study demonstrated that a stiffer peri-
ductal stroma downregulates miR-203 level, 
which increases ZNF217 expression and trig-
gers early-stage tumorigenesis in high mam- 
mographic density breast tissues [50]. Con- 
trarily to microRNAs, long-noncoding RNAs 
appear to promote ZNF217 expression. Lnc-
ATB, which shows aberrant expression and  
promotes carcinogenesis in various cancers 
[51], upregulates ZNF217 expression via sup-

pressing miR-200c to induce carcinogenic phe-
notype in breast and prostatic cancers [52, 
53]. Other noncoding RNAs, which expression 
correlated with ZNF217 expression have been 
reported in other diseases (Table 1). Signifi- 
cantly, clustered rearrangements that were 
detected in breast cancer, may lead to  
ZNF217 gene amplification, while these rear-
rangements usually cause aberrant trans- 
criptional activation or decreased affinity to 
microRNAs [54]. Therefore, microRNA based 
anti-ZNF217 treatment should be verified in 
tumor masses. In summary, both transcription-
al and post-transcriptional mechanisms con-
tribute to aberrant ZNF217 expression, while 
no evidence on ZNF217 protein modification 
has been reported to date.

Epigenetic regulator ZNF217: a social butterfly 
meets chromatin, protein and RNA

ZNF217 contains eight zinc fingers and unlike 
traditional C2H2-type zinc finger proteins, it 
directly binds to DNA sequences by its 6th and 
7th zinc fingers, and two methyl-π interactions 
that strengthen its DNA affinity [55, 56]. After 
binding, ZNF217 acts as a bridge that recruits 
cofactors and orchestrates a transcriptional 
repressor complex that regulates the transcrip-
tional functions of target genes. These interact-
ing cofactors are mostly gene suppressors, 
such as REST transcriptional co-repressor 
(CoREST) [57-59], C-terminal binding protein 
1/2 (CtBP1/2) [57-61], lysine specific demeth-
ylase 1 (LSD1) [57-59], histone deacetylase 
(HDAC) [57, 58], lysine-specific demethylase 5B 
(Jarid1b) [59], lysine methyltransferase G9a 
[59, 62], lysine methylase enhancer of zeste 
homolog 2 (EZH2) [59, 63, 64] and DNA meth-
yltransferase 3 alpha (DNMT3A) [65]. For 
instance, ZNF217 is usually contained within 
canonical repressor complexes, such as 
CoREST and CtBP. ZNF217 contains several 
binding regions with CoREST and consistently 
co-bind independently of CtBPs [58, 65, 66]. 
For CtBPs, ZNF217 contains two different  
types of motifs (PXDLS and RRT) that bind with 
CtBPs [60, 67]. The CoREST or CtBPs complex 
then induces histone methylation, histone 
deacetylation and/or DNA methylation to sup-
press gene transcription [68, 69]. Thus, adeno-
virus type 5 E1A (AdE1A) interaction with the 
CtBP1/ZNF217 complex to reverse transcrip-
tional repressors activity, may contribute to the 
design of an anti-ZNF217 treatment [70]. 
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Table 1. Upstream factors regulating ZNF217/Zfp217 function in tissues and diseases

Tissues or diseases Tissues from patients or cells 
lines 

Special  
treatment

Factors upstream to 
ZNF217/Zfp217

Changes of ZNF217/
Zfp217 expression Changes in cells or tissues references

Glioblastoma GSCs cultured from glioblastoma 
patients, U87, A172

Hypoxia HIF-1α (+)
HIF-2α (+)

Upregulated GSC maintenance (+) [27]

Breast cancer MCF-7, MVLN E2 stimulation miR-503 (+) Downregulated Proliferation (-)
(miR-503 overexpression)

[48, 49]

MVLN Fulvestrant (ICI 
182780)

Unknown Upregulated [48]

SKBr-3 (Trastuzumab resistant) miR-200c (-) Upregulated Trastuzumab resistance (+)
Metastasis (+)

[101]

SKBr-3 (Trastuzumab resistant) Lnc-ATB (+)/miR200c (-) Upregulated Trastuzumab resistance (+)
Invasion (+)

[52]

Hepatoma HepG2, PLC-PRF-5, SK-Hep1, Huh7, 
MHCC97H, Immortalized human liver 
cell line

miR-101 (-) Upregulated Proliferation (+)
Invasion (+)

[43]

Prostate cancer 26 tumor tissues, LNCaP, DU145 miR-24 (-)
miR-22 (-)

Upregulated Proliferation (+) [179]

58 tumor tissues, PC-3, DU-145 Lnc-ATB (+) Upregulated Proliferation (+)
EMT process (+)

[53]

82 tumor tissues, PC-3, DU-145, 
LNCaP, HEK293T

GATA-3/miR-503 (-) Upregulated Proliferation (+)
Colony formation (+)
Invasion (+)
Migration (+)

[180]

Non-small cell lung cancer 24 tumor tissues, A549, H358 Lnc-SNHG15 (+)/miR-211-3p (-) Upregulated Proliferation (+)
Migration (+)

[181]

Cervical cancer 72 tumor tissues, HeLa, SiHa Lnc-CTBP1-AS2 (+)/miR-3163 (-) Upregulated Proliferation (+)
Invasion (+)
Migration (+)
Anti-apoptosis (+)

[182]

Epithelial ovarian cancer 40 tumor tissues, HEY, A2780, 
SKOV3, OVCAR3

Lnc-OIP5-AS1 (+)/miR-137 (-) Upregulated Proliferation (+)
Invasion (+)
Migration (+)
Metastasis (+)

[183]

Osteosarcoma Genetically engineered mouse model 
(Expression of ZNF217), SJSA-1

PI3K inhibitor 
(LY294002), 
Triciribine

PI3K/Akt pathway (-) Downregulated Proliferation (-)
Invasion (-)
Migration (-)
Apoptosis (+)

[76]

Keloid fibroblasts 57 keloid tissues, Keloid fibroblasts Lnc-ATB (+)/miR-200c (-) Upregulated Not mentioned [73]

Alzheimer’s disease 18 cerebrospinal fluid samples, PC12 Amyloid β-protein 
treatment

Lnc-ATB (+)/miR-200 (-) Upregulated Viability (-)
Apoptosis (-)
Inflammatory response (+)
Oxidative stress (+)

[172]

SK-N-SH, CHP212 Amyloid β-protein 
treatment

SNHG1 (+)/miR-361-3p (-) Upregulated Viability (-)
Apoptosis (-)
Inflammatory response (+)
Oxidative stress (+)

[173]



ZNF217 role in oncogenesis and drug resistance

3381 Am J Cancer Res 2021;11(7):3378-3405

Intervertebral disc degeneration (IDD) 48 IDD rats Ilizarov-type  
apparatus

Unknown Upregulated Unknown [184]

Breast tissue 22 normal human breast tissues, 
MCF10A MECs

Stiff collagen 
matrix

miR-203 (-) Upregulated Akt activity (+)
Tumor progression (+)

[50]

ESCs Mouse V6.5 ESCs, OG2-ESCs, MEFs Melatonin MT1-JAK2 (+)/STAT3 (+) Upregulated Proliferation (+)
Pluripotency factors stability (+)
Pluripotency (+)

[47]

Adipocytes 3T3-L1, C3H10T1/2 microRNA-
mimics

miR-503-5p (+)
miR-135a-5p (+)
miR-19a-3p (+)

Downregulated Adipogenesis (-)
Lipid droplet accumulation (-)

[154]

Phenotypes or factors that are enhanced or upregulated are labeled by “+”, while “-” means the opposite.
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Besides forming a transcriptional repression 
complex, ZNF217 also stimulates gene tran-
scription to promote disease progression. For 
instance, ZNF217 directly binds to the ErbB3 
promoter and upregulates its expression in 
MCF-7 and mouse embryonic fibroblasts  
(MEFs) [71]. Other promoters are also activat- 
ed by ZNF217, such as mesenchymal genes 
that include SNAIL1, SNAIL2, and Vimentin 
[72], as well as critical genes involved in the 
transforming growth factor beta (TGF-β) auto-
crine pathway, and which include TGF-β2, TGF-
β3 [40, 73]. It is odd that all ZNF217 recruited 
factors are gene suppressors. Co-factors inter-
acting with ZNF217 to stimulate gene trans- 
cription are yet to be identified. 

Moreover, ZNF217 localization is not limited to 
the nucleus, as more studies have shown that 
ZNF217/Zfp217 functionally interacts with pro-
teins both in nucleus and cytoplasm to regu- 
late different phenotypes [74-76]. Thus, signal-
ing receptors, such as ERα and mRNA m6A 
mediators, including methyltransferase-like 3 
(METTL3), are under the control of ZNF217 or 
Zfp217. m6A is the most prevalent internal  
modification on eukaryotic mRNA, that alters 
mRNA activity to regulate target gene expres-
sion and plays a significant role in carcinogen-
esis, which also suggests its potential use as  
a therapeutic target [77]. Therefore, new evi-
dence, at the post-transcriptional and post-
translational level, expand the regulatory net-
work of ZNF217. Whereas reports on ZNF217 
induced m6A variation in cancer, remain limit- 
ed.

Besides interacting with ERα, ZNF217 also  
regulates epigenetics via other mechanis- 
ms at the post-translational level, including 
phosphorylation, acetylation, ubiquitination. 
ZNF217 upregulates Akt phosphorylation via 
the activation of the PI3K-Akt signaling path-
way which promotes breast cancer pro- 
gression [71, 72, 78]. Moreover, the ZNF217/
mouse double minute 2 (MDM2) complex sig-
nificantly reduces p53 acetylation [79]. Th- 
ough there is no report about ZNF217 in ubi- 
quitination, the relationship between ubiquiti-
nation and CtBP1, one of the cofactors of 
ZNF217, has been reported. CtBP1 could  
serve as a platform for SUMOylation of CtBP-
interacting protein (CtIP) such as ZEB1 [66]. 
Deubiquitination of CtBP-interacting protein 
would promote DNA end resection and homo- 

logous recombination [80]. Thus, ZNF217 may 
participate in ubiquitination through CtBP1  
and other cofactors.

ZNF217 role in carcinogenesis and tumor 
progression

An advanced understanding of the regulatory 
mechanisms of carcinogenesis would result in 
novel and more effective therapeutic strate-
gies. However, a successful antineoplastic ther-
apy is usually limited by the advanced cancer 
stage and drug resistance; therefore, it is 
urgent to overcome these challenges [2]. In 
various cancer patients, ZNF217 aberrant over-
expression is associated with poor prognosis 
[27, 38, 40, 72, 74, 78, 81]. Previously, we have 
discussed the causes of ZNF217 aberrant 
expression and the model of regulatory mecha-
nisms, which is triggered by ZNF217. In the sub-
sequent context, we explore in detail the func-
tion of ZNF217 in carcinogenesis, including 
overcoming agonescence, accelerating cell-
cycle, triggering EMT, promoting heterogeneity, 
facilitating metastasis, and inhibiting apopto-
sis. These processes induced by ZNF217 also 
preserve cancer cells’ survival from stresses, 
such as anti-neoplastic therapy and others. 
Therefore, in-depth understanding of ZNF217 
functions, is necessary for the latent therapeu-
tic options that are based on ZNF217 (Figure 
1).

ZNF217 and immortality: overcoming agones-
cence

During the development of organisms, cells 
have a limited proliferation via a periodic cell-
cycle. Normal somatic cells meet their destina-
tion by entering the apoptotic process when 
telomeres become shorter enough. However, 
aberrant ZNF217 expression results in unlimit-
ed growth and uncontrolled proliferation, even 
bypassing senescence to achieve immortality, 
which features among the basic hallmark of 
tumorigenesis (Figure 2). 

After selection in serum-free medium, part of 
the human mammary epithelial cells (HMECs) 
acquires p16ink4a inactivity and keep proliferat-
ing until telomeres are shorter, which results  
in a mitotic failure [82]. Agonescence, a crisis 
during this process, is a barrier to immortality 
whereas ectopic ZNF217 expression could 
overcome this dilemma. A concomitant phe-
nomenon with ZNF217 overexpression in 



ZNF217 role in oncogenesis and drug resistance

3383 Am J Cancer Res 2021;11(7):3378-3405

Figure 1. ZNF217/Zfp217 mediates cancer hallmarks at different expression levels. ZNF217/Zfp217 induces carcinogenesis (Right circle) by stimulating or sup-
pressing gene transcription (Upper corner of left rectangle), interacting with factors (Middle corner of left rectangle) and regulating m6A (bottom of left rectangle).
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Figure 2. ZNF217 induces immortality and evades growth suppressors. CDK4 and CDK6 are directly inhibited by p16ink4a and p15ink4b and antineoplastic treatment 
such as CDK4/6 inhibitor. Deficiency of p16ink4a and p15ink4b could be detected in numerous human cancers and are sensitive to CDK4/6 inhibitors. The balance 
between ZNF217 and TGF-β in proliferation is disrupted by aberrant ZNF217 expression and results in decreased p15ink4b and upregulated cyclin D1 (possible via 
m6A regulation). p16ink4a is another potential target for ZNF217, which mechanism is unknown. Moreover, ZNF217 also targets CCNE (encoding Cyclin E) and stimu-
lates its expression [61]. These mechanisms, together with the upregulation of the expression of eEF1A2, induced by ZNF217, contribute to agonescene escape in 
normal epithelium, which finally transformed into immortalized cells. It is worth noting that the upregulation of CyclinE1, Cyclin E2 and Cyclin A2 is concomitantly 
observed following ZNF217-overexpression (not be mentioned in the figure) [92]. Thus, ZNF217 may also participate in other phases of cell-cycle to sustain prolif-
erative signaling.
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HMECs is associated with telomerase activa-
tion, telomere length stability and resistance  
to TGF-β-induced growth inhibition [83]. The 
telomeric repeat-binding factor 2 (TRF2) is a 
telomerase which expression is increased in 
immortalized HMECs where it protects telo-
meres, may contribute to ZNF217-induced telo-
meres stability [84]. Moreover, lethal treat-
ments, such as the combination of doxorubicin 
and negative TRF2 mutant (inducing ATM/p53 
dependent apoptosis) or TRF1 (inducing ATM/
p53 independent apoptosis), are ineffective  
following ZNF217 overexpression in both nor-
mal and malignant cell lines [78]. Obviously,  
the relationship between ZNF217 and TRFs is 
vital to cellular immortality, whereas the pre-
cise regulatory networks have yet to be 
elucidated. 

The timing to start a biological behavior in cells 
is under the control of the organism require-
ments. However, overexpressed ZNF217 acts 
differently in this process. Short-term epithelial 
growth factor (EGF) treatment is required for 
ZNF217-induced immortality, near the time of 
agonescence, in p53/phosphorylated Retino- 
blastoma (pRb)-activated human immortalized 
ovarian surface epithelial cells (IOSEs), while 
the maintenance of eternal cells is EGF-inde- 
pendent [85]. It is worth noting that ZNF217 
successfully induces immortality alone in p53/
pRb-deficient IOSEs, whereas it fails to achi- 
eve it in p53/pRb-activated IOSEs [85]. How- 
ever, alterations in p53 and/or pRb are not a 
prerequisite to ZNF217-induced immortaliza-
tion [78]. Additionally, elongation factor 1-α 2 
(eEF1A2), which co-exists with ZNF217 at the 
20q13 locus, is upregulated by ZNF217 during 
immortalization, whereas its absence reverses 
ZNF217-transduced immortalization in IOSEs 
[86]. Other studies demonstrated that eEF1A2 
stimulates the phospholipid signaling and acti-
vates the PI3K/Akt signaling pathway to pro-
mote metastasis and actin remodeling that  
ultimately favor tumorigenesis [87]. Therefore, 
the eEF1A2-induced anti-apoptotic effect may 
also play a significant role in ZNF217-induced 
immortalization. Attentionally, ZNF217 com-
bines and enhances lysine-specific demethyl-
ase 5B (Jarid1b) suppressive function on bre- 
ast cancer susceptibility genes (BRCA1), which 
plays a significant role in several DNA repair 
pathways [59]. Therefore, immortalization fea-
tures as a basic event in ZNF217-induced car- 
cinogenesis, which provides tumor cells an 

eternal lifespan and increases the possibility  
of DNA mutation. Thus, these results spark 
great interest in monitoring the aberrant 
expression of ZNF217 for early cancer risk 
prevention.

ZNF217 and cell cycle regulation: the beacon 
for CDK4/6 inhibitor?

CDK4/6 inhibitors have been approved by the 
Food and Drug Administration (FDA) for the 
treatment of breast cancer. Cyclin-dependent 
kinase inhibitors 2A/B (CDKN2A/B) play a sig-
nificant role in epigenetic regulation by encod-
ing cell cycle inhibitors [88]. The epigenetic 
silencing or mutational inactivation of CDKN2A 
(encoding p16ink4a and p14ARF) and CDKN2B 
(encoding p15ink4b) could be detected in numer-
ous human cancers and are sensitive to 
CDK4/6 inhibitors [89, 90]. Herein, the re- 
lationship between ZNF217 and CDKN2A/B 
provides a potential reference value for the 
application of CDK4/6 inhibitors in malignant 
tumors (Figure 2).

In MCF-7, the p15ink4b promoter is occupied and 
suppressed by ZNF217 and its cofactors, such 
as LSD1 and CoREST, in CtBP1-independent 
manner [58]. Histone modifications of the 
p15ink4b promoter by H3K4me2 is increased, 
whereas its modification by H3K9/14ac is 
decreased in the absence of ZNF217 [58, 91]. 
Additionally, ZNF217 recruited DNMT3A to 
methylate the p15ink4b promoter and prevent 
thymine DNA glycosylase (TDG)-dependent 
DNA demethylation that was induced by TGF-β 
in ZNF217-transfected HaCaT cells [65]. Thus, 
histone modification and DNA methylation, 
induced by ZNF217, impair CDKN2B transcrip-
tion and resist TGF-β-dependent DNA methyla-
tion. Besides, the expression of Cyclin D1, a 
member of the D-type cyclins, which pairs with 
CDK4/6 to overcome restriction point, signifi-
cantly correlated with ZNF217 expression and 
maybe a hallmark for the sensitivity to CKD4/6 
inhibitors [92, 93]. In summary, ZNF217 coun-
teracts TGF-β activity by repressing p15ink4b  
and upregulating Cyclin-D1 expression to pro-
mote proliferation. In contrast, the absence of 
ZNF217 causes a significant decrease in pRb 
and an elevated percentage of cells that curb- 
ed the G1 phase [58, 65].

Moreover, another region in CDKN2A/B has 
been recently recognized as a target of  
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ZNF217. The combination between ZNF217 
and ARF/p16 interaction loop was confirm- 
ed by Genetic CRISPR screening in SEM cells 
[90]. It is worth noting that ZNF217 could 
directly bind with ARF/p16ink4a interaction loop 
in the long-distance chromatin interaction 
model, suggesting that the binding pattern of 
ZNF217 on ARF/p16ink4a, depends on the chro-
matin spatial structure [90]. Similar to p15ink4b, 
p16ink4a also plays a significant role in cell-cycle 
regulation, while another factor, p14ARF, is a 
canonical regulator of p53 that prevents DNA 
damage and induces apoptosis [94]. Hence, it 
is important to verify whether p14ARF and 
p16ink4a are under the control of ZNF217. 
Ac-cording to the abovementioned findings, 
ZNF217 interaction with CDKN2A/B plays a  
significant role in the anti-neoplastic effect of 
CDK4/6 inhibitors. Thus, it is reasonable to 
unveil the role of ZNF217 in CDK4/6 treat- 
ment.

ZNF217 and invasion: welcome to the “EMT” 
express

Epithelial-mesenchymal transition (EMT) is a 
process in which cells lose their epithelial char-
acteristics and acquire mesenchymal features, 
which promotes the emergence of heteroge-
neous populations of invasive and metastatic 
tumor cells. This intra-tumoral heterogeneity is 
also a major driver of drug resistance [95, 96]. 
It is worth noting that ZNF217 gene amplifica-
tion is higher in primary and distant metastatic 
lesions compared to non-metastatic lesions in 
colorectal cancer and ovarian clear cell carci-
noma [28, 97]. In vitro and in vivo experiments 
also demonstrated that ZNF217 enhances 
invasion and metastasis via promoting EMT of 
cancer cells [40, 71, 72, 98] (Figure 3). 

During EMT, the expression of the epithelial 
marker E-cadherin (encoded by CDH1) is 
decreased, and the expression of mesenchy-
mal markers is increased. ZNF217 directly tar-
gets the CDH1 promoter to repress E-cadherin 
expression via recruiting CtBPs in MCF-7 and 
NTERA-2 cells [58, 61]. Meanwhile, LSD1 is 
also recruited by ZNF217 to increase the level 
of H3K4me2 at the CDH1 promoter and in- 
hibits E-cadherin expression in HCC cells [43]. 
On the contrary, ZNF217 enriched at and  
upregulated mesenchymal genes such as 
SNAIL1, SNAIL2 and TWIST promoters [72]. 
Additionally, E-cadherin could be suppressed 

by several mesenchymal factors, such as  
SNAIL (encoded by SNAIL1), SLUG (encoded by 
SNAIL2), and TWIST [99]. Moreover, an up- 
regulation of the expression of other mesen-
chymal genes, such as N-cadherin and vimen-
tin, was also observed following ZNF217 over-
expression [43]. Intriguingly, unlike the com- 
petitive relationship in p15ink4b regulation, 
ZNF217 positively regulates TGF-β expression, 
which is a canonical regulator of EMT [100]. 
ZNF217 promotes the TGF-β autocrine path- 
way by transcriptionally activating TGF-β2 and 
TGF-β3, while TGF-β pathway inhibitors reverse 
ZNF217-induced EMT [40, 101]. To restrain the 
process, miR-200c could curb the ZNF217-
induced TGF-β autocrine pathway and allevi- 
ate trastuzumab resistance and metastasis, 
whereas ZNF217 overexpression decreases 
miR-200c via suppressing TGF-β2 in HER2-
positive breast cancer cells [101]. Indeed, the 
functional differences within TGF-β isoforms 
are vital in immune regulation, suggesting that 
ZNF217 may transform immune response by 
stimulating the expression of TGF-β isoforms 
[102]. In summary, ZNF217 is a critical promot-
er of EMT that leads to metastasis. 

ZNF217 and metastasis: breaking the new 
world

Though cancer cells acquire the ability of intrav-
asation via EMT which leads to metastasis, 
anoikis that is enhanced by endovascular and 
lymphatic environments undermines the sur-
vival of cancer cells [103]. Therefore, circulat-
ing tumor cells must develop an anchorage-
independent ability to overcome this challenge. 
Moreover, extravasating and colonizing cancer 
cells end up in unfamiliar environment that is 
also an additional challenge [104]. Thus, eluci-
dating the mechanism of metastasis and inhib-
iting pivotal signaling pathways that are associ-
ated with EMT, are significant to improve pa- 
tient outcomes. For this reason, ZNF217, which 
promotes the formation of an anchorage-inde-
pendent growth and metastatic microenviron-
ment, attracts increasing attention (Figure 3).

Cells with high ZNF217 expression acquire the 
ability to survive anoikis. ZNF217 overexpres-
sion in primary MECs increased their self-
renewal capacity in a serum-free nonadherent 
culture environment, while in NIH3T3 cells, its 
overexpression stimulated anchorage-indepen-
dent growth in soft agar [72]. In ZNF217-trans- 
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Figure 3. ZNF217 triggers EMT process, anti-apoptosis ability and BMP pathway activation to promote heterogeneity, anti-anoikis and metastasis. E-cadherin main-
tains the adhesive junctions between epithelia cells and preserves the epithelial phenotype, while the absence of E-cadherin promotes the loss of cellular contact 
leading to malignant metastasis [185, 186]. ZNF217 directly inactivates E-cadherin transcription or indirectly stimulates mesenchymal genes, such as TGF-β2/3, 
SNAIL1/2 and TWIST. It also increases N-cadherin expression resulting in membrane ruffles. Thus, tumor cells become heterogeneous and more aggressive, while 
anti-TGF-β treatment would suspend the process. ZNF217 also upregulates eEF1A2, Bcl-XL and stimulates other anti-apoptosis factors to promote anti-anoikis in 
tumor cells, which help CTCs to survive in the circulatory system. With EMT enhancement and anoikis inhibition that induced by ZNF217, circulating tumor cells are 
inclined to finish intravasation and extravasation to colonize distant organs, such as bone (BMP pathway activation).
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fected IOSEs, cells exhibited anchorage inde-
pendence and a reduced serum dependence 
[85]. Several factors regulated by ZNF217 par-
ticipate in the progression of metastasis. 
ZNF217 upregulates eEF1A2 to promote the 
metastatic phenotype, while eEf1A2 knock-
down reverses this effect impact in IOSEs  
[86]. The expression of BCL2L1 (encoding Bcl-
XL), which plays an essential role as an anti-
anoikis factor in various cancers, is associ- 
ated with the ZNF217 increased mRNA levels 
of and contributes to the anchorage-indepen-
dent growth of colorectal cancer cells [105-
107]. Attentionally, other anti-apoptosis signal-
ing pathways (discussed later) activated by 
ZNF217, may also contribute to anchorage-in- 
dependent growth. Thus, circulating cells with 
high ZNF217 expression have an advantage in 
finalizing their colonization journey. 

The formation of a cancer microenvironment is 
crucial for the colonization process of meta-
static cancer cells. Interestingly, ZNF217 pro-
motes colonization by playing a pivotal role  
in the formation of the bone metastatic micro-
environment [108-110]. In primary tumors, 
ZNF217 mRNA expression level correlates  
with a high risk of bone metastasis in breast 
cancer patients [111]. In vitro experiments 
showed that ZNF217 overexpression enhances 
the BMP pathway in MDA-MB-231 cells (MDA-
MB-231-ZNF217), while soluble factors that  
are released by differentiated osteoblasts and 
MDA-MB-231-ZNF217, contribute to the che-
motaxis of metastatic cells [111]. Further 
explorations distinguished the precise factor 
within the BMP pathway that was influenced  
by ZNF217 in bone metastasis. Noggin (inhibi-
tor of BMP type I and II receptors), anti-BMP4 
antibody or LDN-193189 (inhibitor of BMP  
type I receptor) reversed ZNF217-induced inva-
sion and metastasis in vitro and in vivo [111]. 
Whereas according to the in vivo experiments, 
LDN-193189 increased both the number and 
size of metastases in MDA-MB-231-ZNF217 
xenograft mice [112]. Though the conclusions 
are paradoxical, these findings contribute to a 
better understanding of ZNF217-induced bone 
metastasis and suggest the possibility to use 
BMP-inhibitor in anti-ZNF217 based treat-
ments. Additionally, in vivo experiments dem-
onstrated that ZNF217- or Zfp217 overexpres-
sion in breast cancer cells, leads to increased 
lung micrometastases in mice, however, the 
precise mechanisms have yet to be elucidated 
[40, 113]. 

ZNF217 and stemness: the initiator of evil

Without early detection, cancer cells with unlim-
ited growth and EMT progression, get enough 
time to generate tumor heterogeneity. The 
emergence of CSCs, a process of establishing 
stem-like malignant cells during cancer pro-
gression, leads to increased self-renewal, het-
erogeneity, treatment resistance and cancer 
relapse [114]. Suppressing pathways related  
to CSCs emergence, would be an efficient ther-
apeutic strategy to treat cancer and to prevent 
its relapse [115]. Thus, ZNF217, the EMT medi-
ator that stimulates CSCs emergence and dif-
ferentiation, could be a good target to improve 
patients’ therapeutic outcomes. Moreover, 
studies on the role of Zfp217 in induced plurip-
otent stem cells (iPSCs), would extremely help 
understand ZNF217 functions in CSCs emer- 
gence.

Reprogramming is a multi-step process that 
comprises enhanced proliferation, followed  
by mesenchymal-to-epithelial transition (MET) 
and is completed by the activation of pluripo-
tency genes that transform somatic cells into 
induced pluripotent stem cells (iPSCs) [116]. 
This process is a good reference in under- 
standing the mechanism of CSC emergence 
due to the similarity with cancer cells’ dediffer-
entiation. Zfp217 depletion mostly causes 
decreased expression of pluripotency genes, 
indicating that Zfp217 is mainly required for 
later stages of reprogramming [117]. However, 
there exists a complex relationship between 
Zfp217 and these stemness genes (Figure  
4A). At the transcriptional level, Zfp217 and/or 
Zfp516 recruits CtBP2 to directly co-occupy 
and repress promoter regions of stemness 
genes in embryonic stem cells (ESCs) [63]. 
These regions exhibit a decreased H3K27ac 
that is induced by the nucleosome remodel- 
ing deacetylase (NuRD) complex, and an in- 
creased H3K27me3 which is induced by the 
polycomb repressive complex 2 (PRC2) [63]. 
Another research showed that Zfp217, Lsd1 
and Oct4 (encoded by POU class 5 homeobox 
1, Pou5F1) also co-occupy ESCs genomic sites, 
including those of nanog homeobox (Nanog), 
SRY-box transcription factor 2 (Sox2), Krüppel-
like factor 4 (Klf4), and cellular Myelocytoma- 
tosis (c-Myc) [117]. Based on these reports, 
Zfp217 appears to be a stemness repressor,  
as its function as a post-transcriptional regula-
tor of stemness is more significant, especially 
in an m6A manner. 
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Figure 4. ZNF217 regulates differentiation or dedifferentiation of CSCs, ESCs and MECs. A. In ESCs, Zfp217 post-transcriptionally stimulates mRNA expression of 
pluripotency genes, such as c-Myc, Nanog, Sox2 and Klf4, to regulate reprogramming. While the function of the transcriptional complex (including Zfp217, Oct4, 
Lsd1 and RNA pol II) which targets pluripotency genes is still unclear. Otherwise, after differentiation treatment, Zfp217 transcriptionally suppresses pluripotency 
genes by regulating histone modification, and triggering differentiation. Thus, the dual function of Zfp217 has a vital role in stem cell engineering. B. In tumor 
cells, HIFs transcriptionally stimulate ZNF217 gene expression (the binding may be indirect due to the core hypoxia response element motif that is not comprised 
in the binding region) and ALKBH5 to trigger dedifferentiation from cancer cells to CSCs by stimulating the m6A demethylation of NANOG and KLF4 mRNA. C. In 
pre-adipocytes, Zfp217 determines the direction of adipogenesis to white adipocytes rather than brown adipocytes by interacting with EZH2, METTL3, YTHDF2 and 
stimulating the expression of FTO. These studies emphasized the significant role of ZNF217/Zfp217 in m6A regulation.
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Zfp217 regulates stemness hallmarks via its 
interaction with m6A mediators, while the de- 
pletion of Zfp217 globally increased m6A levels 
and impaired MEFs reprogramming into iPSCs 
[63, 117]. For instance, METTL3 is a major 
methyltransferase that globally promotes 
mRNA methylation and is associated with carci-
nogenesis [118-120]. Zfp217 alleviates stem-
ness mRNAs degradation by combining with 
METTL3 and impeding METTL3 to bind RNAs, 
while the depletion of Zfp217 does not change 
the mRNA and protein expression levels of 
METTL3 in iPSCs [117]. A gradual decrease of 
ZFP217 was detected in retinoic acid (RA)-
induced and leukemia inhibitory factor (LIF)-
induced iPSCs, which coincided with the down-
regulation of pluripotency factors, such as 
Nanog, Oct4, and Sox2 [63, 117]. Moreover, 
Zfp217 absence abortively inhibits the expres-
sion of pluripotency genes, resulting in a failure 
of differentiation and an increased percentage 
of undifferentiated cells that succumbed to 
growth arrest and senescence [63, 117]. 
Noteworthy, melatonin treatment could restore 
the pluripotency of long-term cultured ESCs by 
stimulating the MT1-JAK2/STAT3-Zfp217 axis, 
resulting in a significant decrease in global m6A 
modification and an elevated Oct4 expression 
[47]. Intriguingly, the paradoxical function of 
Zfp217 that varies between the transcriptional 
and post-transcriptional levels, maybe due to 
the expression levels of some genes that could 
be upregulated when their promoters are 
enriched by the repressive factor ZNF217. It is 
worth noting that the functional parallels 
between CSCs and non-neoplastic stem cells 
(such as ESCs) are considered to be extensive 
[121]. Therefore, the abovementioned findings 
shed light on the significant role of Zfp217 in 
ESC reprogramming and differentiation and the 
possible regulatory mechanism of ZNF217 in 
CSCs emergence (Figure 4B).

Similar to Zfp217 expression in ESCs, ZNF217 
expression level is much higher in glioma stem 
cells (GSCs) compared with non-GSCs, and 
ZNF217 mRNA levels decreased after GSCs dif-
ferentiation [27]. Furthermore, under hypoxia, 
HIFs increase ZNF217 and AlkB homologue 5 
(ALKBH5) expression to upregulate NANOG and 
KLF4 mRNA levels in an m6A manner, however, 
the study did not investigate the interaction 
between ZNF217 and METTL3 in cancer cells 
[122]. In both experiments, HIF1α and HIF1β 

target the ZNF217 promoter and upregulate its 
expression (possibly through indirect binding), 
while ZNF217 deficiency harms CSCs emer-
gence, suggesting that ZNF217 plays a signifi-
cant role in HIFs-dependent CSC emergence 
[27, 122, 123]. Additionally, ZNF217 overex-
pression downregulates adult stem cell gene 
expression signature, while also causing an 
increased progenitor cell-like gene expression 
signature (CD44high/CD24low) in HMECs. This 
effect was also observed with the expression of 
luminal and myoepithelial cell markers 
(K8+K14+) in tumor cells [72, 124]. Moreover, 
Ntera2, a tumor stem cell line that can differen-
tiate into neurons and other cell types under RA 
treatment, efficiently realized its pluripotent 
embryonal ability with the depletion of ZNF217 
[61]. Apparently, these studies extended the 
role of ZNF217 in the regulation of stemness 
and suggest a possible application of ZNF217 
in regenerative medicine and anti-neoplastic 
treatments. Nevertheless, ZNF217 role in carci-
nogenesis highlights the urgency in developing 
targeting strategies of this oncogene. Drug 
resistance, a lethal malignant progression that 
is responsible for treatment failures and patient 
deaths, emphasizes the importance of clinical 
applications that target ZNF217.

Role of ZNF217 in drug resistance

For anti-neoplastic treatments, the usage of 
cytotoxic drugs, mainly causes global apopto-
sis, while targeted therapy antagonizes specific 
receptors. Both treatment methods result in a 
significant improvement to the outcomes of 
cancer patients. However, both therapies have 
limitations due to treatment invalidation, or 
drug resistance. To resolve this issue, it is 
essential to select patients who are more sen-
sitive to the treatments or identify new targets 
that can be used for the inhibition of tumorigen-
esis and cancer progression. Based on the pre-
mentioned studies, ZNF217 promotes carcino-
genesis in tumor tissues by triggering the 
activation or suppression of multiple signaling 
pathways. The variation usually results in an 
enhanced proliferation, an inhibited apoptosis, 
and an increased cancer heterogeneity. Thus, 
these cancer cells resist stresses, such as anti-
neoplastic treatments. In the next section, we 
focus on the role of ZNF217 in drug-resistance 
and suggest a potential use of ZNF217 as a bio-
marker that predicts drug resistance and its 
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clinical application for the Akt-inhibitor, triciri- 
bine.

ZNF217 and anti-apoptosis: all roads do lead 
to chemoresistance

Chemotherapy is the usage of cytotoxic agents 
to induce apoptosis in tumor cells [125]. Can- 
cer cells’ resistance to chemotherapy is us- 
ually featured by an accelerated drug meta- 
bolism or a deficit in apoptotic signaling path-
ways. Besides, pre-mentioned factors, such as 
eEF1A2 and Bcl-XL, contribute to the anti-apop-
totic effect, together with other factors indu- 
ced by ZNF217 and that also contribute to a 
decreased sensitivity to chemotherapy. The 
tumor suppressor gene p53 plays a pivotal role 
in apoptosis, whereas its mutation or enhanced 
expression of the p53 inhibitor, MDM2, causes 
cellular defects in responding to various stress-
es, including chemotherapy [126]. ZNF217 
overexpression forms a ZNF217/MDM2 com-
plex which significantly reduces p53 acetyla-
tion state of p53, and directly binds to and sup-
presses the CDKN1A (encoding CDK2 and 
CDC2 inhibitor, p21CIP1) promoter in H1299 cell 
line [79]. Furthermore, ZNF217 overexpression 
causes an upregulation of anti-apoptotic pro-
teins, such as Bcl-2 and Bcl-XL, and a downreg-
ulation of pro-apoptotic proteins, such as Bad, 
Bak and Bax, while the expression levels of 
these p53 downstream factors could be less 
varied compared with control cells when facing 
paclitaxel stimulation in MDA-MB-231 cells [92, 
127, 128]. Thus, ZNF217 contains a compre-
hensive regulatory relationship with the canoni-
cal p53 signaling pathway (Figure 5). However, 
mutant p53 prevalently exists in multiple tumor 
masses, and whether p53 plays a significant 
role in ZNF217-induced drug resistance needs 
further study.

Distinct from the p53 signaling pathway, other 
factors induced by ZNF217 also contribute to 
chemoresistance. ZNF217 suppresses EPB4- 
1L4A-AS2, a lncRNA that inhibits tumorigenesis 
and induces apoptosis in breast cancer, by 
recruiting EZH2 to the EPB41L4A-AS2 locus 
with increased H3K27me3 enrichment [64]. 
Aurora-A, a serine threonine kinase that regu-
lates cell division and cell cycle progression, is 
co-amplified with ZNF217 in IOSEs [129, 130]. 
Aurora-A positively regulated by ZNF217 in 
MCF-7 and results in paclitaxel resistance, 
while Aurora-A kinase inhibitor reverses 

ZNF217-induced drug resistance [92]. In ovari-
an clear cell carcinoma (OCCC), ZNF217 gene 
amplification is an independent prognostic fac-
tor for progression-free and overall survival 
after standard platinum agent-based chemo-
therapy [38]. AT-rich interaction domain 1A 
(ARID1A) is an epigenetic tumor suppressor, 
whereas its gene mutation is detected in 
approximately 50% of OCCC [131]. Loss of 
ARID1A expression is significantly related to 
younger patients, ZNF217 amplification and 
PI3K/Akt pathway activation in OCCC [132]. 
ZNF217 gene amplification correlated with a 
decreased E-cadherin expression and an acti-
vated PI3K/Akt pathway in OCCCs [44]. Thus, a 
correlation between ZNF217 amplification and 
ARID1A mutant may contribute to OCCC pro-
gression and platinum resistance, while the 
abovementioned studies require evolving evi-
dence. However, a precise relationship between 
the PI3K/Akt pathway and ZNF217, provides 
more values in clinical application.

ZNF217 and the PI3K/Akt pathway: brothers 
in arms

The PI3K/Akt pathway is a pivotal signaling 
pathway that plays an essential role in the pro-
liferation and inhibition of apoptosis. ErbB3 is a 
member of the epidermal growth factor recep-
tor (ErbB) family, which is associated with 
numerous human cancers, and which inhibition 
results in effective cancer therapies in cancer 
patients [133, 134]. ErbB3 forms heterodimers 
with other ErbBs, such as ErbB2 (or Her-2), and 
stimulates downstream signaling pathways, 
such as the Ras/MAPK and PI3K/Akt pathways 
which lead to resistance to multiple therapies, 
including trastuzumab, paclitaxel, and tamoxi-
fen [135]. Therefore, ErbB3 downregulation or 
inactivation would be an ideal therapeutic 
strategy for cancer treatment, whereas ZNF217 
may counteract this effect (Figure 5).

In breast cancer cell lines, primary human 
breast tumors and murine mammary tumor 
models, ErbB3 expression level is positively 
correlated with ZNF217 expression [71, 72]. 
ZNF217 upregulates Akt phosphorylation via 
increasing the transcriptional activation of 
ErbB3, while ZNF217 downregulation results in 
reduced Akt and mitogen-activated protein 
kinase (MAPK) phosphorylation, and ErbB3 
expression in MCF-7 and ZR-75-1 cell lines [71, 
72, 78]. Intriguingly, though ZNF217 and CtBPs 
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Figure 5. ZNF217 initiates therapeutic resistance via multiple signaling pathways. Indeed, ZNF217 induces the activation of proliferation (Aurora-A, ERα signaling 
pathway, PI3K/Akt signaling pathway, LSD1), heterogeneity (TGF-β signaling pathway) and apoptosis inhibition (p53 signaling pathway) which promotes stress 
resistance associated with treatments, such as tamoxifen, doxorubicin, paclitaxel, and trastuzumab. Other signaling pathways associated with drug resistance 
such as Wnt and Hedgehog pathways, would be activated by ZNF217, while whether ZNF217 induction of drug resistance through these two pathways need more 
studies. Attentionally, the PI3K/Akt pathway plays a significant role in ZNF217-induced drug resistance, while triciribine sufficiently reverses this event. Therefore, 
anti-ZNF217 treatment shows a great potency to reverse therapeutic resistance in cancer.
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were both detected on the ErbB3 promoter, 
these molecules acted oppositely [71]. ErbB3 
promoter shows a preservation of H3K9ac and 
an absence of both H3K9me3 and H3K27me2 
in CtBP1/2 null MEFs [71]. Another research 
demonstrated that ZNF217 overexpression in 
the MBA-MD-231 cell line increases ErbB2 and 
ErbB3 expression and the phosphorylation 
state of the focal adhesion kinase (FAK), a core 
factor of the integrin associated signaling path-
way that stimulate PI3K [40, 136]. Therefore, 
ZNF217 mainly causes an activation of the 
PI3K/Akt pathway and could be used as a ther-
apeutic target.

Triciribine is an Akt inhibitor that specifically 
inhibits the PI3K/Akt pathway, whereas several 
Phase I/II clinical trials with triciribine demon-
strated that a single agent therapy may not effi-
ciently suppress tumor lesions [137-140]. 
Intriguingly, several studies on ZNF217 may 
help optimize the effect of triciribine. The com-
bination of triciribine and doxorubicin reverses 
ZNF217 expression and ZNF217-induced doxo-
rubicin resistance in breast cancer [72]. Fur- 
thermore, treatment order critically impacted 
the effectiveness of triciribine. Zfp217-trans- 
fected mice breast cancer cells resisted EAC 
treatment (microtubule inhibitor epothilone B, 
doxorubicin, and cyclophosphamide), while 
treatment with triciribine, followed by paclitaxel 
treatment (TCN→PAC), is more efficient than 
treatment with paclitaxel, followed by triciribine 
treatment (PAC→TCN), and which led to a 
decrease in tumor burden, CSCs population 
and an increase of survival in mice with Zfp217-
transfected tumors [113]. More importantly, 
Zfp217-transfected tumors show a decreased 
microvessel density and a higher percentage of 
CD31+ (endothelial cell marker) SMA- (muscle 
and pericyte cell marker α-smooth muscle 
actin) vessels, while these vessels become 
more maturation (CD31+SMA+) after TCN→PAC 
treatment [113]. Similar phenomena could be 
detected in xenograft tumors from ZNF217-
overexpressed patients [113]. Without combi-
nation with chemotherapy, triciribine abrogated 
stiff collagen matrix induced mammary epithe-
lial cell proliferation and Akt activity in vivo [50]. 
It is worth noting that studies demonstrated 
that ZNF217 inhibition causes a decreased Akt 
phosphorylation and vice versa, suggesting the 
existence of a potential regulatory loop bet- 
ween ZNF217 and the PI3K/Akt signaling path-
way [52, 53, 72, 78]. Moreover, the PI3K inhibi-

tor, LY294002, reversed lnc-ATB-induced upre- 
gulation of ZNF217 in prostate carcinoma [53]. 
Thus, the usage of PI3K/Akt inhibitors may 
increase the efficiency of an anti-ZNF217 
treatment. 

ZNF217 and ER: undermining endocrine 
therapy

E2, which is synthesized by ovaries and aroma-
tase, mainly induces the activation of ERα and 
downstream signaling pathway and promotes 
the progression of ER positive (ER+) breast can-
cer [141-143]. For decades, ER antagonists 
were used in basic applications to treat ER+ 
breast cancer, whereas endocrine-treatment-
resistant ER+ breast cancer remains a chal-
lenge. As mentioned before, ZNF217 acts as an 
anti-stress factor that threatens the survival of 
cancer cells. E2 suppression of ZNF217 expres-
sion in breast cancer cell lines, whereas fulves-
trant promotes it, also corroborate this hypoth-
esis [48, 49]. Indeed, ZNF217 participates in 
the maintenance of ERα signaling regardless of 
E2 presence (Figure 5). 

In breast cancer, a precise study of ZNF217 
chromatin occupancy, identified binding sites 
of five transcription factors (TCF7L2, NR2F2, 
GATA3, FOXA1 and ERα) that overlapped with 
ZNF217, while in vitro experimental analysis 
showed that the expression of genes targeted 
by ZNF217-ERα, correlated with the progres-
sion of multiple malignancies [81]. Significantly, 
ZNF217-ERα interaction could be detected 
either in the nucleus and/or cytoplasm of 
breast cancer cells, indicating that ZNF217 
may regulate ERα transcriptional or posttran-
scriptional function [74]. The C-terminus of 
ZNF217 physically binds to ERα hinge domain 
and enhances its recruitment to estrogen 
response elements (EREs), which triggers the 
activation of downstream processes, such as 
growth regulation by estrogen in breast cancer 
1 (GREB1), an estrogen-responsive gene asso-
ciated with hormone dependency in cancer, 
while ZNF217 knockdown results in a signifi-
cant increase in sensitivity to endocrine thera-
py [74, 144]. Moreover, a recent study demon-
strated that ZNF217 interacts with LSD1 to 
promote the survival of prostate cancer cells, 
including those that are castration-resistant, 
independently of its demethylase function and 
androgen receptor [145]. Thus, a consolidated 
relationship between ZNF217 and endocrine 
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therapy resistance may lead to potential clini-
cal applications. 

Several studies investigated ZNF217 charac-
teristics in breast cancer and led to the follow-
ing conclusions: 1) ZNF217 expression is con-
sistently high in luminal, and low in basal 
subtype tumors; 2) A high ZNF217 expression 
is associated with poor prognosis in Luminal, 
ER- HER2+, and basal tumor subtypes; 3) A high 
level of ZNF217 mRNA expression in primary 
lesions is consistently associated with a short-
er recurrence-free survival (RFS) in ER+/Her-2-/
LN0 breast cancer patients, who received adju-
vant and neoadjuvant endocrine therapies; 4) 
The most powerful prognostic value of ZNF217 
is observed in the Luminal-A subgroup [42, 72, 
74, 81]. Moreover, ZNF217 showed a better 
predictive efficiency than the 21-Gene Ex- 
pression Assay in ER+ breast cancer (a small 
cohort, n=48, warrant further study), which is 
used to predict adjuvants’ chemotherapy ben-
efit to patients [146, 147]. Compared with  
other subclasses of breast cancer, ZNF217 
mRNA expression level is informatively associ-
ated with bone-metastases in ER+ subclasses 
[111]. According to the results, clinical databas-
es highlight the role of ZNF217 in predicting 
breast cancer response to endocrine therapy. 
Therefore, ZNF217 contributes to the progres-
sion, endocrinotherapy-resistance, and devel-
opment of bone metastatic lesions in ER+ 
breast cancer, suggesting that ZNF217-mo- 
nitoring or anti-ZNF217 treatment should be 
considered as an alternative scheme for 
Luminal A breast cancer treatment. Overall, 
ZNF217 shows an ability to protect cancer cells 
from various therapeutic stresses.

The role of ZNF217 in diseases other than 
cancer 

We dedicate a significant portion of this review 
to the role of ZNF217 in promoting the progres-
sion and therapeutic resistance of malignant 
tumors. Additionally, the process of ZNF217-
induced immortalization is similar to that of  
the progression from usual ductal hyperplasia 
to ductal carcinoma in breast cancer [148]. 
Moreover, stiffer periductal stroma increases 
ZNF217 expression in high mammographic 
density breast tissue [50]. These phenomena 
imply that ZNF217 aberrant expression may be 
an early event in the pathological transforma-
tion of normal tissues. Here, more observations 

highlight the significant role of ZNF217/Zfp217 
in the pathogenic process of noncancer diseas-
es. The regulatory landscape of this oncogene 
in diseases may help expand the role of ZNF217 
in organisms.

Zfp217 and adipogenesis: when oncogene 
meets metabolic diseases

Obesity, an excess bodyweight state featured 
by increased adipose tissues, has been proved 
to be associated with metabolic diseases and 
cancer [149]. There exist two ways that incre- 
ase adipose depots: hypertrophy (increasing 
adipocyte size) or hyperplasia (generation of 
new adipocytes from preadipocytes via adipo-
genesis). Adipogenesis is a complicated pro-
cess that is regulated by various signaling hor-
mones and ligands and is associated with 
liposarcomas [150]. Moreover, an aberrant adi-
pocyte metabolism contributes to a more 
aggressive tumor microenvironment that pro-
motes breast cancer progression [151]. Inter- 
estingly, ZNF217 expression is significantly 
upregulated by beef tallow dietary, a fatty acid 
associated with cancerogenic properties, such 
as increased occurrences of colorectal cancer 
[152]. Furthermore, an indispensable role of 
Zfp217 in adipogenesis has been unveiled in 
several recent studies that suggested a novel 
function of ZNF217 in adipocytes’ metabolism 
(Figure 4C).

Unlike in ESCs, Zfp217 expression level is con-
comitantly upregulated during adipogenesis 
and positively correlated with Pparg2 expres-
sion in pre-adipocytes [75, 153, 154]. The 
absence of Zfp217 decreases mRNA expres-
sion levels of adipocyte marker genes and key 
adipogenic transcription factors, as well as 
harms the formation of lipid droplets, especial-
ly white adipocyte phenotype droplets, result-
ing in obesity [153, 154]. Additionally, Zfp217 
constrains more adipocytes into G1 phase to 
suppress their proliferation, and interacts with 
EZH2, which may contribute to the upregulation 
of the Wnt signaling pathway to facilitate adipo-
genesis, whereas microRNAs impair adipo-
cytes’ differentiation via Zfp217 mRNA target-
ing [154]. However, for cell cycle regulation, 
another study demonstrated an opposite result 
and showed that the absence of Zfp217 causes 
an upregulation of METTL3 expression and a 
decreased level of CCND1 mRNA (Figure 2), 
resulting in an increased m6A level that was 
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recognized and decayed by YTH domain family 
2 (YTHDF2, an m6A reader protein) [153]. 
Additionally, a specific interaction and co-local-
ization between Zfp217 and YTHDF2 were 
observed in the nucleus and cytoplasm, while a 
delayed adipogenesis that was induced by 
Zfp217 depletion, could be rescued by YTHDF2 
knockdown in pre-adipocytes [75]. At the tran-
scriptional level, Zfp217 directly activates Fat 
mass- and obesity-associated gene (FTO) pro-
moter to upregulate FTO expression, which con-
tributes to the promotion of adipogenesis, while 
a direct competition between FTO and YTHDF2 
in m6A regulation has been confirmed [75]. 
Thus, the abovementioned findings suggest 
that Zfp217 directly stimulates FTO transcrip-
tion and sequesters YTHDF2 to maintain the 
m6A demethylation activity of FTO. It is worth 
noting that FTO is a canonical obesity gene, 
which also plays a significant role in carcino-
genesis [155-157]. Therefore, the significant 
role of Zfp217 in adipogenesis sheds light on 
the function of ZNF217 in adipocyte metabo-
lism related to malignant tumors.

ZNF217 and PCOS: the safest place turns into 
dangerous

Polycystic ovary syndrome (PCOS) features 
reproductive endocrine abnormalities in wo- 
men. PCOS correlated with patients’ increased 
obesity and was characterized by an elevated 
secretion of androgens (hyperandrogenemia) 
compared with an increased/decreased estro-
gen, while androgen is a suppressive factor in 
gynecologic cancers. However, PCOS is associ-
ated with an increased risk of gynecologic 
tumors, such as endometrial, uterine, ovarian, 
and breast cancers [158-161]. Moreover, treat-
ments, such as oral contraceptive (OC) in  
PCOS, may promote the development of pre-
menopausal breast cancer [162]. A recent 
study using Genome-wide association studies 
(GWAS) identified several PCOS candidate loci, 
including ZNF217 in PCOS, which are vulnera-
ble to ovarian hyperstimulation syndrome 
(OHSS), an overreaction to ovulation treatment 
that is commonly used in PCOS treatment 
[163]. Further research showed that the 
ZNF217 overexpression can be detected in 
ovarian granulosa cells in high risk OHSS 
patients and mice [164]. In vitro experiments 
showed that of ZNF217 overexpression pro-
motes E2 synthesis through the upregulation of 

the cAMP response element binding protein 
(CREB) and aromatase, and negatively regu-
lates TSP-1, causing a suppression of vascular 
permeability [164]. Moreover, ZNF217 was 
decreased in the granulosa cells from PCOS-
like mice (treated by dehydroepiandrosterone) 
and women with polycystic ovary syndrome, 
while ZNF217 suppressed cyclooxygenase 2 
(COX2) and Prostaglandin E2 (PEG2) syntheses 
that were inhibited by PGE2 to form a feedback 
loop in vitro [165]. Therefore, according to the 
previous section reports, ZNF127 may be a sig-
nificant factor that connects obesity and breast 
cancer, while the positive relationship between 
ZNF217 and E2 synthesis, and the negative 
relationship between ZNF217 and the inflam-
mation factor PGE2, may contribute to the 
tumor microenvironment.

ZNF217 and Barrett’s esophagus: more work 
to do

Barrett’s esophagus (BE) is the pre-malignant 
histological precursor of esophageal adenocar-
cinoma (EAC). The identification of BE and early 
stage of EAC should improve the outcomes of 
patients with dysplasia and who are at high risk 
of malignant progression [166]. However, BE 
diagnostic features still trigger debates. Recent 
studies demonstrated ZNF217 value in predict-
ing EAC risk in BE. ZNF217 gene amplification 
could be detected in adenocarcinomas of the 
gastroesophageal junction [20, 167] and de- 
tected and associated with response to endo-
scopic therapy in BE [168-170]. Moreover, 
increased HER-2, CDKN2A, c-MYC and ZNF217 
copy numbers that were detected by fluores-
cence in situ hybridization (FISH) probes, could 
be used to predict high-grade dysplasia and the 
development of high risk EAC in BE patients 
[31-33]. Interestingly, HER-2, CDKN2A and 
c-MYC contain regulatory associations with 
ZNF217. Thus, based on the phenomena that 
are induced by ZNF217 in pre-malignant breast 
tissues, there exists a high interest in uncover-
ing the oncogenicity of ZNF217 in BE.

ZNF217 and Alzheimer’s disease: fuel inflam-
mation

Alzheimer’s disease (AD) is a neurodegenera-
tive disorder characterized by the accumulation 
of β-amyloid (Aβ) plaques that lead to a cogni-
tive decline [171]. With the increased concen-
tration, maturation, and expansion, Aβ triggers 
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multiple pathological events that accelerate 
the progression of AD. Intriguingly, ZNF217 par-
ticipates in Aβ-induced cell injury. Aβ-induced 
neurotoxicity significantly inhibited viability and 
induced apoptosis via the lncRNA-ATB/miR-
200/ZNF217 axis in PC12 cells [172]. More- 
over, the lncRNA-SNHG1/miR-361-3p/ZNF217 
axis was positively regulated by Aβ [173]. It is 
worth noting the two studies showed that 
pathogenic factors induced by Aβ, could be 
influenced by ZNF217 knockdown, such as 
decreased inflammatory responses (TNF-α, 
IL-1β, IL-6 and Malondialdehyde) and oxidative 
stress (Superoxide dismutase, SOD) [172, 173]. 
According to the discovery in AD, a relationship 
between ZNF217 and inflammation has been 
unveiled and may contribute to investigating 
the role of ZNF217 in tumoral immune res- 
ponse.

Although attacks from immunocytes are effec-
tive in eliminating tumor cells, immune escape 
that is associated with tumors’ heterogeneity, 
significantly affects this response. Thus, can-
cer immunotherapy attracts more attention. 
For instance, targeted therapies, such as 
trastuzumab prevents the activation of the 
HER-2-dependent cell signaling pathway and 
induces antibody-dependent cell-mediated 
cytotoxicity. Immune checkpoint inhibitors and 
oncolytic viruses also contribute to solid 
tumors’ immune sensitivity. Though no rese- 
arch showed a role of ZNF217 in tumoral 
immune escape, this could be enlightened by 
the regulatory network induced by ZNF217. For 
instance, TGF-β contributes to the immune 
exclusion and a lack of immunogenicity in 
tumor masses [174]. FTO is associated with the 
response to anti-programmed death-1 (PD-1) 
blockade, while the inhibition of FTO attenu-
ates self-renewal and reprograms immune 
response in CSCs [175, 176]. Moreover, 
ZNF217 aberrant gene amplification may be 
associated with a more favorable response to 
PD-1 blockade in primary mediastinal large 
B-cell lymphomas (PMBL) [177]. Thus, the 
oncogene ZNF217 inclines to compose varia-
tions of immune microenvironment and immu-
nogenicity that impact cancer progression.

Conclusion

In this review, we discussed the role of ZNF217 
in various and significant cancer processes, 

such as somatic immortalization, cell cycle 
acceleration, heterogeneity formation and inhi-
bition of apoptosis. ZNF217 also possesses a 
huge transcriptional, post-transcriptional and 
post-translational regulatory network. It is 
worth noting that ZNF217 interacting factors 
that co-occupy gene promoters are mostly gene 
suppressors. Though some studies demon-
strated a transcriptional activator role of 
ZNF217, the precise mechanism has yet to be 
unveiled [71]. Interestingly, ZNF217/Zfp217 
also plays a significant role in m6A regulation, 
which is the most prevalent internal modifica-
tion on eukaryotic mRNAs and that alters  
mRNA activity to regulate target gene expres-
sion and that plays a significant role in carcino-
genesis [122, 157, 178]. Hence, it is possible 
that ZNF217 transcriptionally suppresses gene 
expression, while also post-transcriptionally 
stimulates mRNA translation to control gene 
expression and promote malignant pheno- 
types. 

When ZNF217 fulfills its function, cells seem to 
acquire an ability to resist several types of 
stresses, which impedes their cell growth and 
survival. The role of ZNF217 in drug resistance 
suggests that its presence is a guarantee of 
normal cellular processes in somatic cells, 
while in malignancy, it impedes anti-neoplastic 
treatments. Thus, anti-ZNF217 treatments, 
including miRNA, triciribine and others, may 
constitute an alternative anti-neoplastic treat-
ment strategy. 

Early diagnosis and individualized treatment 
feature the most effective way to reduce can-
cer mortality. Here, we highlighted the value of 
ZNF217 as a biomarker that predicts treat-
ments’ sensitivity and outcomes in pre-malig-
nant and cancer patients. ZNF217 may be a 
biomarker for CDK4/6 or other CDKs inhibitors. 
The Akt inhibitor, triciribine, reversed ZNF217 
mediated drug resistance, while ZNF217 could 
act as a biomarker for the designation of fu- 
ture triciribine clinical trials. For breast cancer 
induced bone metastasis, ZNF217 expression 
level could be used to select specific anti-BMP 
drugs for further clinical trials. More important-
ly, the ZNF217 regulatory network may contrib-
ute to immune escape in cancer cells. There- 
fore, monitoring ZNF217 may contribute to the 
precise selection of therapeutic regimen.
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