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Abstract: DNA lesions arise from a combination of physiological/metabolic sources and exogenous environmental 
influences. When left unrepaired, these alterations accumulate in the cells and can give rise to mutations that 
change the function of important proteins (i.e. tumor suppressors, oncoproteins), or cause chromosomal rearrange-
ments (i.e. gene fusions) that also result in the deregulation of key cellular molecules. Progressive acquisition of 
such genetic changes promotes uncontrolled cell proliferation and evasion of cell death, and hence plays a key 
role in carcinogenesis. Another less-studied consequence of DNA damage accumulating in the host genome is the 
integration of oncogenic DNA viruses such as Human papillomavirus, Merkel cell polyomavirus, and Hepatitis B 
virus. This critical step of viral-induced carcinogenesis is thought to be particularly facilitated by DNA breaks in both 
viral and host genomes. Therefore, the impact of DNA damage on carcinogenesis is magnified in the case of such 
oncoviruses via the additional effect of increasing integration frequency. In this review, we briefly present the various 
endogenous and exogenous factors that cause different types of DNA damage. Next, we discuss the contribution of 
these lesions in cancer development. Finally, we examine the amplified effect of DNA damage in viral-induced onco-
genesis and summarize the limited data existing in the literature related to DNA damage-induced viral integration. 
To conclude, additional research is needed to assess the DNA damage pathways involved in the transition from viral 
infection to cancer. Discovering that a certain DNA damaging agent increases the likelihood of viral integration will 
enable the development of prophylactic and therapeutic strategies designed specifically to prevent such integration, 
with an ultimate goal of reducing or eliminating these viral-induced malignancies.

Keywords: DNA lesions, DNA damaging agents, mutations, genomic instability, carcinogenesis, oncoviruses, viral-
induced malignancies, viral integration

Introduction

DNA is the biological template needed for an 
organism to develop, function, grow, and re- 
produce. Its integrity and stability are therefore 
vital to life. However, due to its dynamic nature, 
this macromolecule is constantly subjected to 
several alterations. In fact, it has been es- 
timated that each cell of the human body 
receives approximately 70,000 DNA lesions 
per day [1, 2]. These aberrations arise from 
physiological or metabolic sources, as well as 
exogenous environmental influences [3, 4]. 
Depending on the source or cause of DNA 
damage, the lesions can range from simple 
base changes to more complex alterations 
including single- or double-stranded breaks [5]. 
To avoid detrimental consequences to cellular 
functions and hence survival, life has evolved 

several systems that maintain genetic stability 
under strict control. Indeed, in addition to the 
proofreading activity of the DNA polymerases 
that correct mis-incorporated bases during 
replication, cells possess various DNA repair 
mechanisms to restore the damaged molecule 
[6, 7]. Unfortunately, not all DNA lesions are 
efficiently repaired in an error-free manner, 
leading to the acquisition and accumulation  
of many mutations which can ultimately contri- 
bute to several diseases, including cancer [8, 
9]. The relevance of DNA damage in carcino- 
genesis became particularly apparent when it 
was recognized that almost all carcinogenic 
agents are also mutagenic, causing changes  
in the DNA sequence [10]. In recent years,  
DNA damage and repair processes have also 
received a special attention in the case of 
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oncogenic viruses, since the process of mali- 
gnant transformation by several of these virus- 
es, including Hepatitis B virus (HBV), Merkel 
cell polyomavirus (MCV) and Human papillo- 
mavirus (HPV), is likely dependent on DNA da- 
mage promoting viral integration into human 
genome [11, 12]. In this paper, we review the 
various endogenous and exogenous factors 
that cause different types of DNA damage and 
discuss the contribution of these lesions to 
cancer induction. Finally, we shed the light on 
the amplified effect of DNA damage in viral-
induced carcinogenesis.

Sources and types of DNA damage 

Based on the origin of the insult, DNA damage 
is classified into two main groups, namely 
endogenous and exogenous DNA damage. En- 
dogenous DNA lesions are caused by cellular 
metabolic processes such as oxidation, hydro-
lysis, alkylation, and polymerase incorporation 
errors, whereas exogenous sources of DNA 
damage include environmental factors such as 
IR, UV radiation, and various chemical agents. 
Here we present a brief overview of the main 
endogenous and exogenous agents causing 
different types of DNA damage (summarized in 
Table 1). 

Endogenous DNA damage 

Oxidative DNA damage

One of the most prominent sources of DNA 
damage is reactive oxygen species (ROS). 
These chemically reactive molecules contain-
ing oxygen are produced endogenously as com-
mon byproducts of aerobic cellular respiration, 
and are also derived from catabolic oxidases, 
anabolic processes, and peroxisomal metabo-
lism. ROS can also be induced by various exog-
enous sources such as UV light, ionizing radia-
tion, diet, stress, pathogens, and smoking [13, 
14]. At low or moderate levels, these free radi-
cals play essential physiological roles in intra-
cellular cell signaling and homeostasis, cell 
death, immune defense against pathogens, 
and induction of mitogenic response. However, 
in excess, they can cause oxidative damage to 
the biological macromolecules, severely com-
promising cell health and contributing to dis-
ease development [15-17]. For this reason, 
cells are equipped with several systems to pro-
tect the cellular components and mitigate the 

deleterious effects of ROS. For instance, aero-
bic respiration is confined to the mitochondrial 
compartment, thereby protecting the other cel-
lular elements. Furthermore, the DNA is wra- 
pped around complexes of histones, giving the 
chromosome a more compact shape, thereby 
protecting it from oxidizing effects. Most impor-
tantly, redox homeostasis is maintained by two 
arms of antioxidant defense machineries: enzy-
matic components (i.e. superoxide dismutase, 
catalase, glutathione peroxidase, glutathione 
S-transferase) and non-enzymatic, low molecu-
lar weight compounds (i.e. glutathione, vitamin 
A, vitamin C, vitamin E) [3, 18, 19]. When the 
balance between ROS production and antioxi-
dant defense mechanisms are disrupted, oxi-
dative stress occurs, causing damage to the 
DNA, proteins, and lipids. 

Approximately 100 different oxidative DNA ba- 
se lesions can be generated by excessive pro-
duction of ROS [20-22]. Some of the most com-
mon and biologically significant oxidative base 
modifications include 7,8 dihydro-8-oxoguanine 
(8-oxoG), thymine glycol (TG), 8-hydroxyade-
nine, 5-hydroxymethyluracil, 2,6-diamino-4-hy-
droxy-5-formamidopyrimidine and 4,6-diamino-
5-formamidopyrimidine (commonly called Fa- 
Pys), and cyclopurines [23, 24]. Depending on 
their chemical composition, these base lesions 
can either serve as a miscoding template ca- 
using mutagenesis or they can block DNA and 
RNA polymerase complexes thereby inhibiting 
DNA replication and transcription. For example, 
8-oxoG pairs incorrectly with adenine instead 
of cytosine, causing G→T transversions and 
thereby adding to the mutational load [25, 26]. 
On the other hand, the “bulky” adducts such as 
cyclopurines cause DNA helix distortion and 
therefore block DNA or RNA polymerase pro-
gression [27, 28]. As for 5-hydroxymethyluracil, 
the oxidation of the methyl group of thymine 
hinders the binding of AP-1 transcription fac-
tors to DNA [29, 30]. 

In addition to oxidation of the DNA bases, ROS 
radicals also cause single-strand DNA breaks 
(SSBs). It is estimated that oxidative stress  
generates around 2,300 SSBs per cell per hour 
[3]. This highly common type of DNA damage 
involves the breakage of the phosphodiester 
backbone in one of the DNA strands and often 
harbors single nucleotide losses or non-con-
ventional damaged termini such as 3’-phos-
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Table 1. Endogenous and exogenous sources of DNA damage, types of DNA lesions produced, repair mechanisms activated, and consequences 
on the DNA structure and processes

Damaging event Major forms of lesion Repair mechanisms Consequences on DNA 
Endogenous factors Oxidation (ROS) Oxidative base modifications Base excision repair Serve as miscoding template causing  

mutagenesis; helix distortion
SSBs Single strand break repair or double 

strand break repair pathways
Collapse of DNA and RNA polymerase complexes; 
recombination events

Alkylation (SAM) Methylated bases Direct reversal; base excision repair; 
mismatch repair

G→A and T→C mutations; Inhibition of DNA 
replication

Hydrolysis AP sites Base excision repair; lesion bypass Misincorporation of bases; DNA or RNA  
polymerase block

Deaminated bases (uracil) DNA glycosylase & base excision repair Changes in coding properties causing mutagenesis
Polymerase incorporation errors Base substitutions, insertions 

or deletions
Mismatch repair Mutagenic outcomes and genomic instability;  

fork collapse
Exogenous factors Ionizing radiation DSBs Non-homologous end-joining; Homolo-

gous recombination
Mutagenesis, chromosomal translocation and 
rearrangements; genomic instability

SSBs AP endonucleases Polymerase block
Single base alterations  
(mostly oxidation)

Base excision repair

Ultraviolet radiation CPDs and 6-4PPs Nucleotide excision repair Mutagenicity (C to T and T to C transversions and 
CC to TT transition mutations); helix distortion; 
error-prone bypass

Chemical agents (aromatic 
amines, alkylating agents, 
PAHs, reactive electrophiles, 
natural toxins, chemotherapeu-
tic agents)

Base lesions and DNA adducts Nucleotide excision repair; direct re-
versal; base excision repair; mismatch 
repair

Base substitutions; frameshift mutations;  
replication and transcription block; destabilization 
and breakage of DNA; helix distortion

Intrastrand or interstrand 
crosslinks

Nucleotide excision repair; homologous 
recombination

Structure disruption; inhibition of DNA replication 
and transcription
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phate, 3’-phosphoglycolate, or 5’-hydroxyl gr- 
oups. Consequences of such damage are col-
lapse of DNA or RNA polymerase complexes, as 
well as recombination events during replica-
tion. Consequently, if SSBs are not repaired 
rapidly, they can lead to cell death, chromosom-
al aberrations, and genetic mutations [23, 31]. 
While oxidized bases are commonly repaired by 
the base excision repair (BER) mechanism, 
DNA breaks are repaired by the single strand 
break repair (SSBR) or double strand break 
repair (DSBR) pathways [32-34]. 

Finally, oxidative damage to other cellular mac-
romolecules such as lipids also produce addi-
tional forms of DNA damage. In fact, lipid per-
oxidation (LPO) products are responsible for 
about 1 adduct per 106-107 DNA bases [35-37]. 
For instance, malondialdehyde (MDA), generat-
ed as one of the final products of polyunsatu-
rated fatty acid peroxidation, can interact with 
DNA bases to form mutagenic bulky adducts 
such as pyrimido[1,2α]purin-10(3H)-one (M1G), 
or induce the generation of a covalent inter-
strand crosslink. Both of these generated le- 
sions create structural alterations in the DNA 
molecule, thereby inhibiting replication or tran-
scription machinery of the cells [38, 39]. An- 
other major lipid peroxidation-derived alde-
hyde, 4-hydroxy-2-nonenals (4-HNE), can also 
react with the DNA to form four diastereomeric 
1,N2-γ-hydroxypropano adducts of deoxygu- 
anosine (HNE-dG), preferentially at the muta-
tional hotspot codon 249 of the human p53 
gene, and therefore these LPO products have 
been associated with p53 mutation-related 
cancers [40, 41]. Removal of the different types 
of LPO-induced adducts from the DNA mole-
cule is achieved by several repair systems, 
including direct reversal, BER, nucleotide exci-
sion repair (NER), and recombination [42]. 

Alkylating DNA damage

Besides ROS, several other small reactive 
molecules endogenously present in living cells 
can cause DNA damage. S-adenosyl-L-methi- 
onine (SAM), commonly used as a reactive 
methyl group donor by methyl transferases, is 
involved in DNA methylation reactions crucial 
for gene regulation [43]. However, like any re- 
active compound, this alkylating agent can 
spontaneously modify DNA bases to generate 
harmful adducts. It is estimated that up to 
4,000 7-methylguanine, 600 3-methyladenine 

and 10-30 O6-methylguanine residues are for- 
med per cell per day in mammals. SAM also 
produces two other minor mutagenic methyl 
lesions, 3-methylthymine and 3-methylcytosine 
[44, 45]. While SAM is the most prominent  
type of alkylating agent, other examples of 
endogenous compounds that induce methy- 
lated DNA lesions include nitrosated bile salts, 
betaine, and choline [46]. Furthermore, alkyla- 
ting DNA damage can be originated by exo- 
genous sources such as tobacco smoke, en- 
vironmental pollution, and diet (such as nitrate- 
or nitrite-containing food) (discussed later in 
Section II-B-3b) [45, 47].

7-methylguanine residues are relatively harm-
less since they do not cause any alterations in 
the coding specificity of the guanine base. 
However, the destabilization of the glycosidic 
bond due to N-7 substitution on guanine can 
result in a spontaneous cleavage generating a 
mutagenic apurinic (AP) site and imidazole ring 
opening, which interferes with DNA replication 
[48, 49]. Similarly, 3-methyladenine is partly 
cytotoxic due to its ability to inhibit DNA synthe-
sis [50, 51]. In contrast, O6-methylguanine and 
the related residues O4-methylthymine and 
O4-ethylthymine residues mispair during DNA 
replication, causing G→A and T→C transition 
mutations, respectively. Therefore, if left unre-
paired, these methylated DNA bases are a 
major source of mutagenic and genotoxic le- 
sions [52-54]. Methylated bases are typically 
repaired by one of two main pathways: direct 
reversal by O6-methylguanine-DNA methyltr- 
ansferases and the BER pathway. In cases of 
abnormal base pairing with other residues, mis-
match repair (MMR) may also be triggered 
[55-58]. 

Hydrolytic DNA damage

Endogenous DNA damage can also result from 
hydrolytic processes occurring under physiolog-
ical conditions. As a molecule within an aque-
ous milieu, the covalent structure of the DNA is 
unstable and subject to hydrolytic reactions. 
DNA hydrolysis can result in spontaneous for-
mation of apurinic/apyrimidinic (AP) sites, or 
deamination of individual bases [59].

Abasic or AP sites are generated in the DNA 
when water molecules attack and cleave the 
N-glycosidic bond between the bases and the 
sugar phosphate backbone. The generation of 
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these DNA lesions can further be induced by 
ROS radicals or alkylating agents [60]. AP sites 
are also produced as an intermediate in the 
BER pathway when a DNA glycosylase removes 
the damaged base [61, 62]. In humans, abasic 
sites are one of the most common types of 
endogenous DNA lesions, with an estimated 
10,000 AP sites created per cell per day [63, 
64]. Because they lack the instructional infor-
mation, AP sites can cause mutations due to 
misincorporation of bases (preferentially ade-
nine) opposite the non-coding abasic site dur-
ing semi-conservative replication [65, 66]. Fur- 
thermore, they can block DNA or RNA polymer-
ases and inhibit DNA replication and transcrip-
tion respectively [67]. Due to their unstable 
nature, abasic sites are also often converted 
into SSBs from a β-elimination reaction [68, 
69]. The BER pathway is the major mechanism 
for the repair of AP sites, while translesion DNA 
synthesis, also referred to as lesion bypass, is 
used as a secondary defense mechanism 
against these abasic lesions [70].

The second type of hydrolytic process that 
causes endogenous DNA damage is called 
spontaneous deamination. During this reacti- 
on, water molecules attack and replace exocy-
clic amine groups of the individual bases, con-
verting cytosine, adenine, guanine, and 5-meth-
ylcytosine into uracil, hypoxanthine, xanthine, 
and thymine, respectively [71]. In addition, the 
rates of base deamination may be stimulated 
by environmental exposure to UV radiation, 
intercalating agents, nitrous acid, and sodium 
bisulfite [72-75]. Cytosine and its homologue 
5-methyl cytosine are the preferential targets 
of hydrolytic deamination. Around 100-500 
cytosines are deaminated to uracil per cell 
each day, whereas 5-methylcytosine is deami-
nated to thymine 3-4 times more rapidly than 
cytosine [3, 71, 76]. Since hydrolytic deamina-
tion introduces changes in the coding proper-
ties of the original bases, it is considered a 
major source of spontaneous mutagenesis in 
humans. For instance, cytosine deamination 
causes the alteration of original C:G base pair-
ing into a U:A base pair in the first round of rep-
lication, which then results in a CG→TA muta-
tion, a feature that underlies the common can-
cer-associated C/T mutational signature. On 
the other hand, deamination of 5-methylcyto-
sine results in a G:T base pairing, causing 
GC→AT transition at the CpG sequences [77-
80]. While deaminated cytosine is excised from 

the DNA by uracil-DNA glycosylase generating 
an AP site that is efficiently corrected via the 
BER pathway, the lesion caused by 5-methylcy-
tosine deamination is a substrate for the thy-
mine-DNA glycosylase or the relatively slower 
mismatch repair (MMR) process [81-84]. 

Damage from polymerase incorporation errors 

Faulty DNA replication is another source of 
endogenous DNA damage. With every DNA rep-
lication, 3×109 nucleotide bases are copied by 
DNA polymerases in humans. These enzymes 
also fill the gaps generated during several DNA 
repair mechanisms such as BER, NER, and 
MMR [85]. While some DNA polymerases (par-
ticularly δ and ε) synthesize DNA at a high fidel-
ity, others copy bases at a lower fidelity during 
DNA replication or repair processes. It is esti-
mated that despite a highly evolved replication 
apparatus, base incorporation errors occur at a 
frequency of 10-6 to 10-8 per cell per generation 
[86-88]. Replication errors that escape the 
proofreading activity of replicative polymerases 
result in inaccurate base substitutions and sin-
gle base insertion/deletion errors in the newly 
synthesized DNA strand. If these errors are not 
quickly and accurately repaired by the MMR 
pathway, they become incorporated into both 
strands during the next replication cycle, there-
by leading to a change of DNA sequence and 
mutagenic outcomes [88, 89]. Additionally, rep-
licative polymerases can mis-incorporate uracil 
instead of thymine opposite adenine in the DNA 
due to alterations in the concentration of the 
nucleotide pool within the cell’s environment. 
Although U:A base pairing follows “normal” 
Watson-Crick geometry and does not cause 
any distortion, it still requires repair by uracil-
DNA glycosylase since the methyl group of thy-
mine is essential to bind with DNA-binding pro-
teins in the major grove of the DNA [90-92]. 
Finally, replication errors can also accumulate 
from strand slippage events, particularly in 
repetitive sequences such as microsatellites 
(stretches of 2-6 nucleotide repeats), since 
nearby repetitive bases can stabilize the incor-
rect base pairing and allow DNA replication to 
resume, causing insertion and deletions of 
nucleotides that can potentially change the 
reading frame [23, 93, 94]. Worse, replication 
through microsatellite sequences or transcrip-
tion-derived R-loops can lead to replicative 
stress, leading to fork collapse, double-strand 
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DNA breaks (DSBs), and genomic instability 
[95-98]. Cells have evolved several checkpoint 
pathways that examine the internal and exter-
nal cues and respond to potential failures. The 
S phase checkpoint in particular constitutes 
the surveillance mechanism that ensures suc-
cessful DNA replication, preventing genomic 
instability upon replication stress [99, 100].

Exogenous DNA damage 

Ionizing radiation

Ionizing radiation, composed of alpha, beta, 
gamma, neutrons, and X-rays, is considered a 
major physical agent with DNA-damaging ef- 
fects and is ubiquitous in our environment. 
Common sources of exposure to IR involve cos-
mic rays from outer space, radioactive materi-
als in rocks and soil, and medical devices used 
for diagnosis and therapy [101, 102]. IR can 
cause damage to the DNA by its direct interac-
tion with the molecule, thereby disrupting the 
physical structure of the molecule. This type of 
damage accounts for 30-40% of IR-induced 
lesions. The remainder of the IR-induced DNA 
lesions are caused indirectly via radiolysis of 
water molecules generating free radicals that 
in turn cause oxidative damage to the DNA 
[103-105]. Hence, depending on the type and 
dose of exposure, IR can induce a spectrum of 
DNA damage lesions ranging from single base 
alterations (such as oxidation, alkylation, dea- 
mination, AP sites) to DNA-protein crosslinks, 
DNA-DNA crosslinks, SSBs and DSBs. For in- 
stance, studies have shown that each Gy of 
gamma radiation generates approximately 850 
pyrimidine lesions, 450 purine lesions, 1,000 
SSBs and 20-40 DSBs per cell [106-109]. 

Because ROS radicals account for about 
60-70% of the IR-induced DNA damage, the 
base lesions produced by IR are, as expected, 
very similar to those generated by oxidative 
stress discussed earlier (see Section II-A-1). In 
contrast, SSBs induced by IR have a unique sig-
nature containing 3’ phosphate or 3’-phospho-
glycolate ends rather than the usual 3’-OH ends 
at the DNA breaks. These modified ends are 
typically processed and repaired by AP endo-
nucleases, polynucleotide kinases/phospha-
tases, and tyrosyl DNA phosphodiesterases 
[110-113]. Finally, DSBs, usually induced in 
clusters by IR, are considered to be the most 

important and dangerous of these lesions due 
to their high cytotoxic and mutagenic ability. 
Generated from multiple damaged sites that 
are closely positioned on both DNA strands, 
they lack an undamaged complementary st- 
rand that could be used as a template during 
repair [114, 115]. Consequently, these DSBs 
are usually repaired without a template via  
non-homologous end-joining (NHEJ), resulting 
in deletion/insertion mutations as well as chro-
mosomal translocation and rearrangements at 
the repair junctions. In those cases where they 
can seek a repair template such as sister ch- 
romatids during S/G2 phases or homologous 
chromosomes, DSBs can also be repaired by 
homologous recombination (HR). Although this 
repair mechanism is more accurate, translo- 
cations, inversions, deletions, and large-scale 
loss of heterozygosity can still occur from the 
associated crossover events [116-119].

Ultraviolet radiation

Exposure to ultraviolet radiation is another 
common environmental health hazard that 
causes DNA damage and alters the genomic 
integrity of an organism. Based on the range of 
wavelength, UV radiation is classified into three 
categories: UV-A (315-400 nm), UV-B (290-315 
nm), and UV-C (280-100 nm). While UV-C is 
absorbed by the ozone layer, UV-A and UV-B are 
able to penetrate the Earth’s atmosphere and 
therefore comprise the primary damaging com- 
ponents of the solar UV spectrum, posing a 
great concern to humans [120]. 

The DNA molecule is most susceptible to UV 
damage at its relatively flexible areas. In fact, 
the p53 gene is considered to be one of the  
hot spots for UV-induced lesions [121]. This 
non-ionizing radiation causes two major types 
of DNA lesions, cyclobutane pyrimidine dimers 
(CPDs), and pyrimidine (6-4)-pyrimidone pho- 
toproducts (6-4PPs), at a rate of 105 DNA 
photolesions per hour in an exposed cell [122]. 
CPDs are produced when two adjacent pyri- 
midine bases become covalently linked to 
create a cyclic ring structure. On the hand, 
6-4PPs are generated from a noncyclic cova- 
lent bond formed between the 5’ end of C6  
and 3’ end of C4 of adjacent pyrimidines via 
spontaneous rearrangement of the unstable 
intermediates, oxetane (when the 3’-end is thy- 
mine) or azetidine (when the 3’-end is cyto- 
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sine) [120, 123, 124]. 6-4PP adducts can al- 
so undergo isomerization to their Dewar form 
following exposure to another light photon from 
UV-A or UV-B, while reverting back to the con- 
ventional 6-4PP structure when exposed to 
UV-C radiation [125, 126]. Although 6-4PPs 
make up around 1/3rd of the total UV-induced 
DNA modifications, they have a greater po- 
tential to cause mutagenesis [23]. CPDs and 
6-4PPs are usually repaired by the specialized 
UV-induced DNA damage repair system called 
NER; but if left unrepaired, they result in 
cytotoxicity and mutagenicity [127]. Both of 
these bulky dimers distort the structure of the 
DNA helix, introducing bends that can hinder 
transcription and replication, requiring transle- 
sion polymerases to bypass them, thereby 
contributing to mutagenic load [128]. The mo- 
st common mutations induced by pyrimidine 
dimers include C to T and T to C transversions 
followed by the characteristic tandem CC to TT 
transition mutations [129, 130]. In addition to 
its direct effect on pyrimidine bases, UV ra- 
diation can also induce modifications to the 
DNA purine bases but to a very low extent 
(1×10-5 in native DNA). For instance, photopro- 
ducts such as adenine dimer and Pörschke 
photoproduct (an adenine residue that has 
undergone photocycloaddition reactions with 
adjacent adenine or thymine) have been re- 
ported following UV-B radiation [131, 132]. Fur- 
thermore, UV radiation can also cause dama- 
ge to the DNA indirectly through generation of 
ROS particles by photosensitizing reactions. 
These free radicals oxidize the DNA bases su- 
ch as guanine causing G-T transversions as 
discussed earlier in the “oxidative DNA dama- 
ge” section. Other oxidation products induced 
upon exposure of DNA to UV radiation include 
8-oxo-Ade, 2,6-diamino-4-hydroxy-5-formami- 
doguanine (FapyGua), FapyAde, and oxazolone 
[120, 133, 134]. DNA strand breakages and 
DNA-protein and DNA interstrand crosslinks 
have also been documented in UV-exposed 
cells [135-138].

Exogenous DNA-damaging agents

In addition to ionizing radiation and UV radia-
tion, in our daily lives we are exposed to numer-
ous extrinsic DNA-damaging agents that create 
a massive diversity of DNA adducts. Exogenous 
sources of these agents include industrial and 
environmental chemicals, dietary products (in- 
cluding food preservatives and additives), and 

pharmaceutical agents. Due to the space 
restriction and scope of this manuscript, we will 
briefly discuss about the most important extrin-
sic DNA-damaging agents. 

Aromatic amines: Aromatic amines, such as 
2-aminofluorene and its acetylated derivative 
N-acetyl-2-aminofluorene, are found in ciga-
rette smoke, fuel, coal, industrial dyes, synthet-
ic chemical insecticides, and high temperature 
cooking. These aminofluorenes are activated 
by the P450 monooxygenase system into carci-
nogenic ester and sulfate alkylating agents, 
which attack the C8 position of guanine to 
cause C8-guanine lesions. If not repaired by 
the NER pathway, these adducts ultimately 
lead to base substitutions and frameshift mu- 
tations [139-144].

Exogenous alkylating agents: In addition to the 
endogenous alkylators naturally occurring in 
the cells (discussed in Section II-A-2), several 
alkylating agents are produced exogenously 
from diet components, tobacco smoke, indus- 
trial processing, biomass burning, and chemo- 
therapeutic agents. As discussed earlier, alky- 
lating agents react with great affinity to the 
highly nucleophilic base ring nitrogens and 
spontaneously modify DNA bases to generate 
methylated DNA lesions, including modified 
adenine (at N1, N3, N6 and N7), guanine (N1, 
N2, N3, N7 and O6), cytosine (N3, N4 and O2), 
thymine (N3, O2 and O4). Moreover, bifunctional 
alkylating agents can also cause formation of 
intrastrand or interstrand crosslinks that ad- 
versely impair replication or transcription [3, 
145-148].

Polycyclic aromatic hydrocarbons: Polycyclic 
aromatic hydrocarbons (PAHs) are potent atmo-
spheric pollutants present in cigarette smoke, 
car exhaust fumes, charboiled food, and incom-
plete combustion of organic matter and fossil 
fuels. Examples of PAHs include naphthalene, 
anthracene, pyrene, 1-hydroxypyrene, 1-nitro-
pyrene, dibenzo[a,l]pyrene, and benzo(a)pyre- 
ne, with the latter being the most studied [149, 
150]. Composed of carbon compounds with 
two or more aromatic rings, PAHs are activated 
by cytochrome P450 system as well as photo-
oxidation, one electron oxidation, multiple ring-
oxidation, and nitrogen-reduction pathways, to 
generate reactive intermediates that cause 
damage to the DNA [151-153]. Activated ben- 
zo(a)pyrene produces the carcinogen (+)-anti-
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BPDE [(+)- 7,8-hydroxy-9α, 10α-epoxy-7,8,9,10-
tetrahydrobenzo(α)pyrene], and the (+)-anti-
BPDE and the (-)-anti-BPDE intermediates, whi- 
ch intercalate into the DNA and bind to guanine 
at the N2 exocyclic position to form BPDE-N2-
dG DNA adducts. If left unrepaired by NER and 
BER pathways, these lesions lead to G/T trans-
version mutations and harmfully affect replica-
tion, resulting in cancer development [154-
157]. Indeed, many PAH-related mutation sig-
natures have been reported in the tumor sup-
pressor gene p53 [158-160].

Other reactive electrophiles: There are seve- 
ral other prominent reactive electrophiles that 
cause DNA damage and induce carcinogene-
sis. For example, N-nitrosamine, encountered 
by humans from tobacco smoke and preserved 
meats, is a potent carcinogen that has been 
linked with esophageal, gastric, and nasopha-
ryngeal cancers. Formed by a reaction between 
nitrates or nitrites and certain amines, this 
compound alkylates N-7 of guanine, leading to 
destabilization and increased breakage of DNA, 
thereby causing toxic and mutagenic effects 
[161-164]. 4-nitroquinoline 1-oxide is another 
reactive electrophile naturally occurring in the 
environment, with mutagenic properties in oral 
carcinogenesis. This compound is activated to 
4-acetoxyaminoquinoline 1-oxide which causes 
the formation of C8-guanine, N2-guanine, and 
N6-adenine covalent adducts, as well as oxida-
tive DNA lesions such as 8-hydroxyguanine 
[165-167]. Another remarkable electrophilic 
compound is the estrogen hormone, commonly 
used in hormonal replacement therapy. Pro- 
longed use of this hormone has been reported 
to increase risks of breast cancer due to its 
DNA damaging nature. Upon its hydroxylation 
by the P-450 1BI enzyme complex, estrogen  
is converted into reactive catechol estrogens, 
which either become oxidized to semiquinones 
and quinones that react with purines at the N3 
and N7 positions, or they generate free radi-
cals, ultimately leading to AP sites and strand 
breakages [168-171].

Natural toxins: Aflatoxins (B1, B2, G1, G2, and 
M1), produced by pathogenic fungi such as 
Aspergillus flavus and Aspergillus parasiticus, 
have been associated with increased risk of 
liver cancer [172-174]. Humans are exposed to 
these genotoxic and carcinogenic compounds 
from contaminated cereals, oilseeds, spices, 

tree nuts, and milk products [172]. Following 
dietary or inhalation exposure, the most preva-
lent and potent aflatoxin B1 (AFB1) is activated 
by the P450 complex into aflatoxin B1-8,9-
epoxide which alkylates guanine to generate  
an AFB1-N7-guanine adduct. The latter weak-
ens the glycosidic bond and causes depurina-
tion or is further hydrolyzed to form AFB1-
formamidopyrimidine, which causes less DNA 
distortion but still blocks replication with a 
greater G/T transversion potential [175-177].

Chemotherapeutic agents: Chemotherapeutic 
agents are intentionally employed in clinical 
settings to treat patients suffering from differ-
ent types of cancer. Several of these anti-can-
cer drugs exert their effect through DNA dam-
age, including cisplatin or cis-diamminedichlo-
roplatinum (II), carboplatin, oxaliplatin, 5-fluoro-
uracil (5-FU), methotrexate, temozolomide, eto- 
poside, and doxorubicin [178]. For instance, 
upon cell entry, cisplatin is hydrolyzed to an 
electrophile that attacks nucleophilic centers 
of the DNA to form interstrand and intrastrand 
crosslinks, disrupting the structure of the DNA 
and thereby interfering with DNA replication 
and transcription [179, 180]. On the other 
hand, 5-FU and methotrexate impair DNA repli-
cation through different mechanisms. These 
anti-metabolites substitute for the natural nu- 
cleotides during replication or promote nucleo-
tide pool imbalances that cause arrest in chro-
mosomal duplication [178, 181-183]. As for 
temozolomide, this drug acts as an alkylator 
and reacts with the DNA to form O6 methylated 
guanine adducts causing cytotoxic and muta-
genic outcomes [184, 185]. Finally, agents 
such as etoposide and doxorubicin act by in- 
hibiting the superhelical relaxation activity of 
topoisomerases, which leads to protein-DNA 
adduct formation and DSBs [186-188]. Colle- 
ctively, the extent of the DNA damage induced 
by these chemotherapeutic agents overwhelm 
the cell’s DNA repair ability leading to the acti-
vation of cell death responses.

Implications of DNA damage in carcinogen-
esis

DNA damage is implicated in the development 
of several human diseases including Alzhei- 
mer’s disease, coronary artery disease, dia- 
betes, chronic obstructive pulmonary disease, 
and cancer [189, 190]. The relevance of DNA 
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damage in carcinogenesis became particularly 
apparent when it was recognized that almost 
all carcinogenic agents are also mutagenic, 
causing changes in the DNA sequence [10, 
191]. Indeed, studies have shown that the 
mutation rates in the cancer genome increase 
when cells are exposed to substantial exo- 
genous DNA damaging agents such as radia- 
tion, tobacco smoke, and aflatoxins, which are 
associated with skin, lung, and liver cancers, 
respectively [192-197]. These DNA aberrations 
include substitutions, insertions, deletions of 
small or large fragments of DNA, genomic 
amplification, and rearrangements [198, 199]. 
While some of these aberrations act as pa- 
ssenger mutations that do not directly drive 
carcinogenesis, others, defined as driver muta- 
tions, play a key role in cancer initiation and 
progression [199-201]. 

A multitude of acquired alterations have been 
identified in protein-coding genes that lead to 
the activation of oncogenes or to the loss of 
tumor suppressor functions in various types of 
cancer. One well-characterized example is the 
set of TP53 mutations, which are extremely 
widespread in human sporadic cancers, oc- 
curring at rates that range from 38%-50% in 
ovarian, esophageal, colorectal, head and ne- 
ck, and lung cancers to about 5% in leukemia, 
sarcoma, malignant melanoma, and cervical 
cancer [202]. Missense mutations in this gene 
give rise to mutant p53 proteins that lose their 
tumor suppressive functions, which drastically 
disrupt the nature of the p53 pathway, pro- 
moting invasion, metastasis and chemoresis- 
tance [203]. RB1, another tumor suppressor 
gene which plays a key role in regulating cell 
cycle, is also commonly found to be mutated  
in various cancers, including retinoblastoma, 
osteosarcoma, and small cell lung cancer. The 
loss of function of this gene results in increas- 
ed cell proliferation and a failure in terminal 
differentiation [204-206]. Cancer development 
can also be promoted via mutations that ac- 
tivate proto-oncogenes such as secreted gr- 
owth factors (e.g. PDGF), cell surface tyrosine 
kinase receptors (e.g. EGFR), signal transduc- 
tion G-proteins (e.g. RAS), and nuclear trans- 
cription factors (e.g. MYC), leading to the sti- 
mulation of cell proliferation and expansion of 
the transformed cell population [207, 208].

Another common class of genomic aberrations 
in cancer includes chromosomal rearrange- 

ments and gene fusions, also resulting in the 
deregulation of key cellular proteins. One of the 
most prominent example of reciprocal chromo- 
somal translocation is the t(9;22) Philadelp- 
hia translocation observed in chronic myeloid 
leukemia. This translocation of the proto-on- 
cogene ABL1 located on chromosome 9 to the 
BCR gene on chromosome 22 results in the 
BCR-ABL1 fusion gene, which encodes a BCR-
ABL1 protein with enhanced tyrosine kinase 
activity that promotes uncontrolled cell proli- 
feration in the absence of growth factors [209-
211]. Another well studied chromosomal tr- 
anslocation is the t(14;18) in follicular lympho- 
ma, which leads to the overexpression of anti-
apoptotic protein BCL2, that provides extended 
survival to B-cells [212, 213]. Although gene 
fusions are most frequently found in hemato- 
logical malignancies, they have also been 
identified in epithelial tumors such as fusion of 
TMPRSS2 to ERG or ETV1 in prostate cancer, 
EML4-ALK gene fusion in non–small-cell lung 
cancer, and RAF kinase pathway gene fusion in 
gastric and prostate cancer [214]. Needless to 
say, DSBs are prerequisites for these chromo- 
somal translocations since they facilitate the 
swapping of chromosomal arms between he- 
terologous chromosomes [215].

In addition to carcinogens acting directing on 
the DNA sequence and causing mutagenesis, 
DNA repair processes are also involved in the 
induction of many permanent DNA sequence 
changes accountable for oncogenesis. Under 
normal circumstances, DNA repair processes 
correct the deleterious DNA lesions thereby 
suppressing mutagenesis. However, when DNA 
repair mechanisms are defective, genome 
instability arises, increasing mutation rates 
and leading to cellular transformation [216-
218]. Inhibitions of proteins involved in DNA 
repair pathways have been linked to increased 
risks of various cancers. For instance, here- 
ditary non-polyposis colon cancer is caused by 
defective MMR [219, 220], and a large pro- 
portion of breast and ovarian cancers are 
caused by mutations in the BRCA1 and BRCA2 
genes, which are crucial for the process of DSB 
repair by HR [221-223]. Other inherited human 
diseases of DNA repair with cancer susceptibi- 
lity syndromes include Xeroderma pigmento- 
sum, Ataxia-telangiectasia, Bloom’s and Wer- 
ner’s syndromes, and Li-Fraumeni-syndrome 
[8].
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According to the multistep model of cancer 
development, a lifetime exposure to endo- 
genous and exogenous DNA damaging agents 
accounts for the progressive accumulation of 
driver mutations that give rise to a clonal cell 
population with an advantage in proliferation 
[224, 225]. Indeed, unlike the non-cancerous 
somatic cells where genomic integrity is well 
maintained and cell divisions are strictly con- 
trolled, the pre-cancerous cells are prone to  
a high frequency of genomic changes and al- 
terations due to defects in the regulation of 
surveillance mechanisms, as well as in the DNA 
damage checkpoint, DNA repair machinery and 
mitotic checkpoint pathways [226]. This pro- 
cess, defined as genomic instability, is an 
enabling characteristic and a driving force of 
tumorigenesis [227, 228]. Ranging from single 
nucleotide changes to gross chromosomal al- 
terations, genomic instability is classified into 3 
types based on the level of disruption. Nucleo- 
tide instability is the increased frequency of a 
single or a few nucleotide changes (i.e., in- 
sertions, deletions, and substitutions); microsa- 
tellite instability includes deletions or expan- 
sion of short nucleotide repeats called micro- 
satellites; and the most prominent form of 
genomic instability, chromosomal instability, is 
characterized by chromosomal abnormalities 
such as aneuploidy, amplifications, deletions, 
translocations, and inversions [229, 230]. 

As mentioned earlier, in hereditary cancers or 
cancer-predisposing syndromes, including he- 
reditary breast and ovarian cancer, hereditary 
non-polyposis colon cancer, xeroderma pig- 
mentosum, and MYH-associated polyposis, ge- 
nomic instability is caused by mutations in DNA 
repair genes, supporting the mutator phenotype 
hypothesis [231]. The latter is based on the 
idea that genomic instability, present in pre- 
cancerous cells due to mutations in caretaker 
genes that maintain genomic stability, drives 
tumorigenesis by increasing the rate of spon0 
taneous mutations [232-234]. On the other 
hand, genomic instability in sporadic cancers  
is supported by the oncogene-induced DNA 
replication stress model in which mutations in 
oncogenes, checkpoint regulating genes, and 
tumor suppressors that drive proliferation are 
responsible for DNA replication stress causing 
DNA damage and genomic instability in the 
early cancer stages [235-237]. In any case, 
unrepaired DNA damage therefore plays a cul- 

prit role in cancer development and aggressi- 
veness due to the detrimental consequences 
of genetic alterations and genomic instability. 
In the next section, we discuss how the DNA 
damage response mechanisms activated by 
DNA lesions are exploited by oncogenic DNA 
viruses to promote viral integration and cause 
carcinogenesis.

Role of DNA damage in DNA oncovirus inte-
gration and carcinogenesis 

Approximately 20%-25% of all human cancers 
is caused by DNA oncogenic viruses such as 
HBV, MCV, and HPV [238]. However, infection 
with these oncogenic viruses does not neces-
sarily cause cancer development. In fact, pro-
gression to cancer rarely occurs following in- 
fection with an oncogenic virus [239, 240]. 
Several mechanisms underlying the ability of 
DNA oncogenic viruses to cause cellular trans-
formation have been reported, with unrepaired 
DNA damage being the most common and 
overlapping feature of these oncoviruses to 
promote tumor development [12, 241]. During 
viral infections, the host cells generally activate 
their surveillance mechanisms to detect and 
repair DNA damage in order to maintain genom-
ic integrity. Many viruses also stimulate DNA 
damage signaling pathways, either directly by 
virus infection itself or indirectly via the expres-
sion of viral proteins, to ensure an S-phase-like 
replication environment, preventing apoptosis 
and promoting episomal maintenance [242]. 
However, when DNA damage accumulates in 
the host genome and the activated DNA dam-
age repair system is not sufficient to repair the 
lesions, one side-effect is the integration of the 
viral episome into the host genome, which can 
trigger cancer development in the infected 
cells.

Integration of the viral genome is a crucial 
event in the process of malignant transforma-
tion for several oncogenic viruses. For example, 
integration of the HBV episome into the genome 
of hepatocytes has been reported in over 85%-
90% of HBV-related hepatocellular carcinoma 
cases [243-245]. HBV integration leads to  
overexpression of cellular cancer-related ge- 
nes, such as telomerase reverse transcriptase 
(TERT), mixed-lineage leukemia 4 (MLL4), and 
CCNE1 encoding cyclin E1 [246]. Furthermore, 
integrated HBV sequences encoding HBx and/
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or truncated envelope pre-S2/S proteins induce 
genomic instability and cell cycle deregulation 
by interfering with NER, repressing p53-me- 
diated gene transcription and inactivating p53- 
dependent tumor suppression, as well as trans-
activating several cellular genes and signaling 
pathways linked to carcinogenesis [247-252]. 
Overall, HBV integration promotes further ge- 
netic alterations such as chromosomal dele-
tions, translocations, fusion of transcripts and 
amplification of DNA, which lead to activation 
of oncogenes and depletion of tumor suppres-
sor genes, promoting the development of hepa-
tocellular carcinoma [253, 254]. 

While HBV integration contributes to carcino-
genesis by stimulating both cellular and viral 
responses, integration of HPV into the host 
genome solely activates viral mechanisms that 
promote malignant transformation. Integration 
of HPV into the host genome typically results in 
the disruption and loss of the viral negative 
regulator E2, allowing persistent over-expres-
sion of the two viral oncoproteins, E6 and E7 
[255-258]. The E6 oncoprotein causes evasion 
of apoptosis and perturbation of cell cycle con-
trol by forming a complex with p53 and target-
ing it to proteasomal degradation. On the other 
hand, the E7 oncoprotein stimulates unre-
strained replication and cell division by binding 
to and stimulating the degradation of Rb, lead-
ing to the inappropriate release of the E2F tran-
scription factor. Therefore, when these viral 
oncoproteins are over-expressed following viral 
integration, the HPV-infected cells undergo un- 
controlled cellular proliferation and survival, 
and consequently develop HPV-induced malig-
nancies [259-261]. It is estimated that about 
90% of HPV-positive cervical cancer cases con-
tain HPV integrated into the host genome, sup-
porting the idea that development of cervical 
cancer in HPV-infected women is tightly linked 
to the integration status of the virus [262-264]. 
The frequency of HPV integration in other ano-
genital cancers is not as well documented, with 
one study reporting integrated HPV in nearly 
80% of anal cancer cases [265]. In the case of 
HPV-positive head and neck carcinomas, viral 
integration has been detected at lower rates, 
with many tumors having either episomal or 
mixed episomal and integrated viral DNA 
[266-268]. 

As for MCV, integration of this viral episome 
into the human genome has been noted in 

70%-80% of Merkel cell carcinoma tumors 
[269, 270]. While the exact role of MCV integra-
tion in Merkel cell carcinoma development 
requires further study, it has been documented 
that the integrated viral genome almost always 
contains mutations that truncate the C-termi- 
nal DNA binding and helicase domains of large 
tumor (T) antigen, preventing auto-activation of 
integrated virus replication, which would be 
detrimental for cell survival [271-273].

Although the mechanism of these viral integra-
tions has not been well defined, none of these 
DNA oncoviruses encode genes that produce 
integrase enzymatic activity proteins similar to 
those encoded by the human immunodeficien-
cy virus [274]. Instead, the integrative process 
of these oncogenic viruses is thought to be 
linked to the extent of DNA damage existing in 
the host cells. According to this model, viral 
integration requires DSBs in both the host DNA 
and in the circular viral episome, following 
which the recruitment of DNA damage repair 
complexes ensures the accessibility of ligases 
that can reconnect the recombined host and 
viral sequences, creating the perfect microen-
vironment for viral integration [12, 275]. While 
DSBs can be directly caused by exogenous 
DNA damaging agents and IR as discussed ear-
lier, spontaneous DSBs also occur at a rate of 1 
DSB per 108 bp during normal cellular process-
es [276]. Furthermore, it has been reported 
that about 1% of single strand DNA lesions 
such as SSBs, AP sites, oxidation products 
8-oxoG and TG, and alkylation products, are 
converted to 50 DSBs per cell per cell cycle 
during the S phase (a rate of 1 DSB per 108 bp) 
[277]. Indeed, if left unresolved, SSBs cause 
the collapse of a replication fork, leading to 
DSB formation; while unrepaired base damag-
es in the template strand cause stalling of rep-
lication fork, leading to the formation of nicks 
and gaps in DNA that generate DSBs (reviewed 
in [116]). Consequently, these simultaneous 
breaks in the phosphate backbones of the two 
complementary DNA strands serve as integra-
tion sites for oncogenic DNA viruses (Figure 1). 
In support of this hypothesis, environmental 
conditions known to cause DNA damage have 
been epidemiologically associated with incre- 
ased incidence of viral-induced carcinogenesis. 
For instance, exposure to UV and possibly ion-
izing radiation is a risk factor for MCV-induced 
Merkel cell carcinoma [278-280]. In the case of 
HBV-related hepatocellular carcinoma, environ-
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mental risk factors include aflatoxin B1 ex- 
posure, alcohol consumption and smoking 
[281-286]. As for HPV-mediated malignancies, 
smoking, long term use of oral contraceptiv- 
es, high parity, inflammation, and co-infections 
with STD-associated pathogens Chlamydia tra-
chomatis and Neisseria gonorrhoeae are con-
sidered as non-viral risk factors [287-294]. 
Several publications have also reported incre- 
ased oxidative stress and subsequent DNA 
damage in patients with cervical carcinoma 
compared to normal population (reviewed in 
[295]). In addition to these observational and 
epidemiological studies, some pieces of evi-
dence have also mechanistically linked DNA 
damage to a higher integration frequency of 
these oncogenic DNA viruses. For example, the 
integration frequency of HBV into the host 
genome has been shown to be increased in the 
presence of DNA strand breaks induced by oxi-
dative stress [296]. In the case of HPV, Winder 
et al. (2007) have demonstrated that genera-
tion of DSBs due to Ku70 depletion in cervical 
keratinocyte cell line W12 containing HPV16 
episomes results in the integration of viral DNA 
into the host genome [297]. Our lab has also 
shown that chronic oxidative stress, induced 
either by the exogenous agent L-Buthionine-
sulfoximine or by the HPV E6* protein, increas-

es the frequency of integration of HPV16 into 
the genome of cervical keratinocytes [275]. 
Furthermore, the activity of DNA-dependent 
protein kinase, an important enzyme involved 
in DSB repair via the NHEJ pathway, has been 
found to be significantly lower in patients with 
cervical cancer, compared to a healthy popula-
tion [298]. It was recently demonstrated that 
this disruption of the NHEJ pathway is mediat-
ed by the HPV16 E7 oncoprotein and often 
results in a reciprocal increase in microhomolo-
gy-mediated end-joining [299]. Supporting this 
observation, integration breakpoints in cervical 
and oropharyngeal cancers have been found to 
be enriched with micro-homologous sequence 
between the HPV and human genomes, indicat-
ing the involvement of microhomology-mediat-
ed DNA repair pathways in the process of HPV 
integration [266, 300]. Collectively, these data 
support the idea that DNA lesions can serve as 
sites for viral integration and that inducing DNA 
damage dramatically increases viral integration 
frequency.

Conclusions 

To summarize, the DNA molecule is subject  
to continuous damage from a combination of 
endogenous and exogenous sources. Endoge- 

Figure 1. DNA lesions serve as integration sites for oncogenic DNA viruses and promote malignant transformation 
of the infected cells. Created with BioRender.com. 
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nous DNA lesions are caused by cellular meta-
bolic and physiological processes such as oxi-
dation, hydrolysis, alkylation, and polymerase 
incorporation errors, whereas exogenous sour- 
ces of DNA damage include exposure to envi-
ronmental factors such as IR, UV radiation, 
chemical agents (aromatic amines, alkylating 
agents, PAHs, reactive electrophiles, aflatoxins) 
as well as chemotherapeutic agents. When left 
unrepaired, DNA damage accumulates in the 
cells and gives rise to mutations that change 
the function of important genes (i.e. activation 
of oncogenes, loss of tumor suppressor func-
tions), or causes chromosomal rearrangements 
and gene fusions that also result in the dere- 
gulation of key cellular proteins. Progressive 
acquisition of such genetic mutations promotes 
uncontrolled cell proliferation and evasion of 
cell death, and hence plays a key role in cancer 
initiation and progression. Another less-studied 
consequence of DNA damage accumulating in 
the host genome is the integration of oncoge- 
nic DNA viruses. This critical step of malignant 
transformation by HBV, MCV and HPV is thou- 
ght to be particularly facilitated by DSBs in both 
viral and host genome. Therefore, the impact of 
DNA damage on carcinogenesis is magnified in 
the case of these oncoviruses via the addition-
al effect of increasing integration frequency. 

In this paper, we also reviewed the limited data 
connecting DNA damage and repair mecha-
nisms with viral oncogenesis through viral inte-
gration. As discussed, several epidemiological 
pieces of evidence point in support of the idea 
that DNA damaging agents are risk factors for 
viral integration and subsequent carcinogene-
sis, yet mechanistically only a few studies have 
examined the connection of these DNA damag-
ing agents with viral oncogenesis. Therefore, a 
critical evaluation should be undertaken to fur-
ther assess the etiology of virus-mediated car-
cinogenesis and identify the DNA damage path-
ways involved in the progression from viral 
infection to cancer development. In particular, 
the role of these non-viral factors in viral inte-
gration needs to be more clearly elucidated, 
with the ultimate goal of reducing or eradicat-
ing these viral-mediated malignancies that ac- 
count for about 20% of human cancers world-
wide. Indeed, demonstrating that a certain DNA 
damaging agent increases the likelihood of 
viral-host integration and magnifies the pro-
cess of carcinogenesis will enable the develop-

ment of both preventative and therapeutic st- 
rategies designed specifically to intercept the 
critical step of malignant transformation by the 
oncogenic DNA viruses. For instance, the cur-
rent epidemiological data support the imple-
mentation of precautionary measures such as 
HBV vaccination programs in regions with high 
AFB1 exposure as well as abstinence from 
smoking and alcohol to prevent hepatocellular 
carcinoma, or cessation of smoking and limita-
tion of oral contraceptive for HPV management. 
More importantly, research on the molecular 
mechanisms involved in viral integration will 
allow the development of more effective treat-
ment approaches to eradicate virus-based car-
cinogenesis. Of particular interest, molecules 
such as poly(ADP-ribose) polymerase-1 (PARP-
1) that protect DNA strand breaks and act as 
anti-recombinogenic factors need to be the 
focus of future studies, since these guardians 
of genomic integrity have the potential to pre-
vent viral integration [296].
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