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Abstract: Accumulating evidence demonstrates that the expression levels of programmed cell death protein 1 (PD-
1) and programmed death ligand 1 (PD-L1) are regulated at the various levels, including transcription, post-tran-
scriptional modification and post-translational modifications (PTMs). The PTMs of PD-1/PD-L1 contain phosphoryla-
tion, ubiquitination, methylation, glycosylation and palmitoylation. Recently, PD-L1 was reported to be acetylated at 
Lys263 site by p300 and was deacetylated by histone deacetylase 2 (HDAC2). Acetylation of PD-L1 prevented its 
translocation to the nucleus and led to a reduction of the nuclear portion of PD-L1, resulting in evading immune 
surveillance of tumor cells. In this review article, we briefly describe the PTMs of PD-1/PD-L1 and mainly summarize 
the novel findings of PD-L1 acetylation in tumor cells. Moreover, we discuss the associations of PD-L1 acetylation 
and ubiquitination, phosphorylation and methylation. Furthermore, we highlight that targeting acetylation of PD-L1 
by HDAC inhibitors might be useful for enhancing tumor immunotherapy.
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Introduction

Programmed cell death protein 1 (PD-1, also 
known as CD279), one of coinhibitory recep-
tors, is expressed on the surfaces of multiple 
types of immune cells, including B cells, natural 
killer (NK) T cells, CD4+ T cells, CD8+ T cells, 
dendritic cells and tumor infiltrating lympho-
cytes [1, 2]. There are two ligands of PD-1: pro-
grammed death ligand 1 (PD-L1, also named 
CD274 or B7-H1) and PD-L2 (also called CD273 
or B7-DC) [3]. PD-L1 is expressed on hemato-
poietic cells, including T cells, B cells, dendritic 
cells, macrophages and mast cells, and non-
hematopoietic healthy tissue cells such as 
keratinocytes, vascular endothelial cells, astro-
cytes, islet cells, placental syncytial tropho-
blasts, endothelial cells and corneal epitheli-
um. Both PD-L1 and PD-L2 can be expressed  
in tumor cells and tumor stroma [4]. The inter-
action of PD-1 and PD-L1 transmits inhibitory 
signals to T cells so that the tissue can main-
tain self-tolerance and avoid immune-mediated 
tissue damage [5]. PD-1 is a 288 amino acid 
type 1 transmembrane protein that is com-

posed of extracellular domain, a transmem-
brane domain and a cytoplastic domain con-
taining immunoreceptor tyrosine-based switch 
motif (ITSM) and immunoreceptor tyrosine-
based inhibitory motif (ITIM), while PD-L1, a 
290 amino acid type 1 transmembrane pro- 
tein, consists of a short cytoplasmic tail with- 
out typical signal motif [4, 5]. The interaction 
between the extracellular domain of PD-1 and 
PD-L1 leads to the conformational change of 
PD-1 and tyrosine phosphorylation in the cyto-
plasmic domain of PD-1, resulting in an 
increased connection between tyrosine phos-
phatase of SHP-2 and ITSM. SHP-2 recruitment 
results in a reduction of phosphorylation of TCR 
molecules, decreasing stimulation of down-
stream signals of TCR and inhibiting T cell 
responses. The PD-1/PD-L1 pathway eventually 
reduces the production of cytokines, such as 
IFN-γ, and cell survival proteins, such as Bcl-xl, 
leading to dysfunction or apoptosis of T cells 
[4-6]. PD-L2 is also a negative regulator of T cell 
activation and is highly expressed on tumor 
cells and antigen presenting cells [7].
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PD-1/PD-L1 post-translational modifications 

Evidence has demonstrated that PD-1/PD-L1 
expression is regulated at different levels, such 
as transcription, post-transcriptional modifica-
tion and post-translational modifications (PT- 
Ms) [8, 9]. Regarding PTMs, PD-1/PD-L1 has 
been reported to be modulated by phosphory-
lation, ubiquitination, glycosylation, methylati- 
on, palmitoylation and acetylation [9, 10]. In 
the following paragraphs, we will briefly describe 
these PTMs of PD-1/PD-L1 in human cancers.

Phosphorylation of PD-L1

AMP-activated protein kinase (AMPK) is acti-
vated by metformin, leading to PD-L1 phos-
phorylation at Ser195 site [11]. Knockout of 
AMPKα abrogated this phenotype of PD-L1 
phosphorylation. Moreover, PD-L1 Ser195 ph- 
osphorylation might occur in the ER lumen and 
block its ER-to-Golgi translocation, leading to 
ER-mediated PD-L1 degradation [11]. The Ja- 
nus kinase 1 (JAK1) could phosphorylate PD- 
L1 at Tyr112 site, resulting in enhancement of 
STT3A association with PD-L1 and promotion 
of PD-L1 glycosylation to stabilize the PD-L1 
stability [12]. In addition, glycogen synthase 3 
beta (GSK3β) binds and phosphorylates PD-L1 
at T180 and S184 sites [13].

Glycosylation of PD-1/PD-L1 

PD-L1 N-glycosylation at N192, N200 and 
N219 maintains stability of PD-L1 via prevent-
ing GSK3β-involved degradation of PD-L1 and 
inhibits T cell activity [13]. Tunicamycin, an N- 
linked glycosylation inhibitor, can remove the 
glycosylation of PD-L1 in cells. Moreover, EGF 
signaling pathway promoted PD-L1 glycosyl-
ation [13]. Targeting glycosylated PD-L1 pre-
vents the interaction between PD-1 and PD-L1, 
and enhances PD-L1 degradation [14]. PD-1 is 
also N-glycosylated and maintains stability and 
localization of PD-1 in T cells [15]. TCR activa-
tion induces PD-1 glycosylation, especially at 
the N58 site, leading to enhanced PD-1 stability 
and membrane expression, and mediating the 
interaction between PD-1 and PD-L1 [15].

Ubiquitination of PD-L1 

Several E3 ligases have been reported to tar- 
get PD-L1 for ubiquitination and degradation, 
including beta-transducin repeats-containing 
protein (β-TrCP) [13, 16], SPOP (speckle-type 

POZ protein) [17-19], STIP1 homology and U-box 
containing protein 1 (STUB1) [20], and HMG-
CoA reductase degradation protein 1 (HRD1) 
[11, 21]. F-box protein 38 (FBXO38) targets the 
PD-1 for ubiquitination and degradation, lead-
ing to regulating cancer immunotherapy [22]. 
Kelch like family member 22 (KLHL22) also 
participates into PD-1 degradation and regu-
lates antitumor function of T cells and tumor 
progression [23]. In addition, ubiquitin specific 
peptidase 22 (USP22) and ubiquitin specific 
peptidase 9 X-linked (USP9x) induce deubiqui- 
tination of PD-L1 and maintain its stabilization 
[24-26].

Palmitoylation of PD-L1

Multiple investigations demonstrate that Zinc 
finger DHHC-type palmitoyltransferase 3 (ZD- 
HHC3) and ZDHHC9 induce PD-L1 palmito- 
ylation and stabilize its protein activity, leading 
to tumor growth promotion [27, 28]. 2-bromo-
palmitate, a palmitoylation inhibitor, decrea- 
ses the PD-L1 protein level, indicating that 
PD-L1 could have a palmitoylation modifica-
tion. Moreover, Cys272 site is validated as a 
key palmitoylation site of PD-L1, contributing to 
PD-L1 stability and blockade of the immune 
surveillance of T cells [28]. In addition, PD-L1 
palmitotylation is observed in cisplatin-resis-
tance bladder cancer cells [29]. Inhibition of 
fatty acid synthase (FASN) repressed PD-L1 
palmitoylation and its expression [29]. Target- 
ing PD-L1 palmitoylation increases the sensi- 
tivity of tumor cells to T-cell killing and retards 
tumor growth [27, 28].

Acetylation of PD-L1 at Lys263

Acetylation is an important modification of 
PTMs in which protein residues are added the 
acetyl group by acetyltransferases from acetyl 
coenzymes A [30, 31]. The acetyltransferases 
include histone acetyltransferases (HATs), ly- 
sine acetyltransferases (KATs) and Nα-acetyl- 
transferases (NATs) [32]. The deacetylases that 
can catalyze the removal of acetyl group from 
the acetylated proteins have histone deacety-
lases (HDACs) and Sirtuins (SIRTs) [33]. In the 
following sections, we will describe the role of 
PD-1/PD-L1 acetylation in regulation of its sta-
bilization and tumor immunotherapy (Figure 1).

One study revealed that EGF stimulation in- 
creased tyrosine phosphorylation and acetyla-
tion of PD-L1 in A431 cells [34]. Another study 
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reported that overexpression of p300 enhanced 
PD-L1 acetylation, whereas depletion of p300 
or p300 inhibitor A485 reduced the acetylation 
of PD-L1 [35]. Moreover, Lys263 site was iden-
tified as the major acetylation site on PD-L1 by 
p300. Lys263 acetylation mainly blocked the 
translocation of PD-L1 into the nucleus from 
the plasma membrane, but did not reduce half-
lives or dimerization of PD-L1. Nuclear PD-L1 
upregulation could promote cancer cells to eva- 
de immune surveillance [35]. Huntingtin inter-
acting protein-1 related (HIP1R) protein target-
ed PD-L1 for lysosomal degradation to regulate 
T cell-involved cytotoxicity [36]. HIP1R interact-
ed with PD-L1 via its C-tail, whereas Lys263 
acetylation of PD-L1 blocked this interaction. 

HIP1R was connected to PD-L1 and was also 
linked to Adaptin-β2 (AP2B1), leading to clath-
rin-dependent endocytosis [35]. Deacetylation 
of PD-L1 on the plasma membrane could bind 
with HIP1R and AP2B1 for endocytosis and 
bind with vimentin to traffic via the cytoskele-
ton, and enter into the nucleus by importin-α1. 
PD-L1 might bind to DNA and alter gene tran-
scription, including interferon (IFN) signaling, 
NF-κB pathway, MHC class-I genes [35]. More- 
over, this study identified that only HDAC2 de- 
acetylase interacted with PD-L1 and reduced 
p300-mediated acetylation of PD-L1. HDAC2 
inhibitor in combination with anti-PD-1 antib- 
odies enhanced tumor growth repression and 
improved the survival in MC38 syngeneic mo- 

Figure 1. A schematic diagram showing how PD-L1 is acetylated and deacetylated in tumor cells. PD-L1 is acetylated 
at Lys263 site by p300, leading to preventing the translocation of PD-L1 into the nucleus from the plasma mem-
brane. HIP1R interacts with PD-L1 and AP2B1, resulting in clathrin-dependent endocytosis. Acetylation of PD-L1 
blocks the binding between PD-L1 and HIP1R. HDAC2 can reduce p300-mediated acetylation of PD-L1 and increase 
the nuclear portion of PD-L1, leading to regulation of immune surveillance of tumor cells.
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use model [35]. Therefore, combining HDAC2 
inhibitor with PD-1/PD-L1 blockade is a novel 
strategy for cancer immunotherapy. One HD- 
AC2 inhibitor, santacruzamate A (SCA), and the 
HDAC1/2 inhibitor ACY957 upregulated PD-L1 
acetylation and decreased the nuclear portion 
of PD-L1, alleviated the transcription of immu- 
ne checkpoints, including VISTA and B7-H3, 
resulting in increased infiltration of CD8+ T cells 
in tumor microenvironment [35].

HDACs regulate histone acetylation of PD-L1 
promoter region

HDACs are critically involved in regulating acet-
ylation via removing acetyl groups from the 
N-acetyl lysine amino acid of histones [37]. 
HDACs have been classified as I, IIa, IIb, III and 
IV. HDAC inhibitors, including LBH589 (pano- 
binostat), MS275 (etinostat) and MGCD0103 
(mocetinostat), elevated the expression of PD- 
L1 in melanoma cell lines [38]. Cells obtained 
from patient melanomas were treated with 
HDAC inhibitors and demonstrated that HDAC 
inhibitors, especially class I HDACs inhibitors, 
promoted PD-L1 and PD-L2 expression [38]. 
LBH589 treatment increased the expression  
of PD-L1 and PD-L2 in C57BL/6 mice [38]. 
Moreover, LBH589 treatment led to higher his-
tone acetylation at the promoter region of PD- 
L1 and PD-L2 in WM983A melanoma cells [38]. 
Furthermore, LBH589 mediated histone 3 ace- 
tylation and subsequently upregulated PD-L1 
expression at mRNA, protein and gene acetyla-
tion levels. Combining LBH589 and PD-1 block-
ing antibody retarded tumor progression and 
increased survival in mice [38].

HDAC3 suppression increased PD-L1 expres-
sion and enhanced the efficacy of anti-PD-L1 
treatment in B-cell lymphomas [39]. HDAC3 in- 
hibitor (RGFP966) and SAHA elevated histone 
acetylation and recruitment of bromodomain-
containing protein 4 (BRD4) by B-cell lympho-
ma 6 protein (BCL6) at the PD-L1 gene promot-
er, resulting in the activation of PD-L1 tran-
scription [39]. HDAC3 inhibitors decreased 
DNA methyltransferase 1 (DNMT1) expression 
and caused activation of PD-L1 transcription 
[39]. HDAC3 inhibitor in combination with anti-
PD-L1 treatment promoted tumor regression in 
murine lymphoma model [39]. Moreover, HD- 
AC3 inhibitor reduced the mRNA and protein 
levels of PD-L1 via regulation of signal trans-

ducer and activator of transcription 3 (STAT3)  
in pancreatic cancer cells, indicating that HD- 
AC3 inhibitors could enhance immunotherapy 
[40]. Moreover, HDAC3 overexpression inhibit-
ed PD-L1 expression in non-small cell lung can-
cer (NSCLC) cells. The lower expression of con-
stitutive photomorphogenic 1 (COP1) elevated 
the accumulation of c-Jun and consequently 
repressed HDAC3 expression and led to pro-
moting histone H3 acetylation of the PD-L1 pro-
moter, resulting in high expression of PD-L1 in 
drug-resistant NSCLC cells [41]. A HDAC3 in- 
hibitor, romidepsin, upregulated PD-L1 expres-
sion via enhancing the acetylation of histones 
H3 and H4 and elevating BRD4 expression, 
leading to suppression of cellular immune func-
tion in colon cancer cells [42]. Taken together, 
HDACs regulate histone acetylation of PD-L1 
promoter region.

PD-L1 acetylation and other PTMs

The associations of PD-1/PD-L1 PTMs are also 
needed to be clarified. Epidermal growth factor 
(EGF) stimulation induced upregulation of ph- 
osphorylation, acetylation and ubiquitination of 
PD-L1, but not SUMOylation, in A431 cells [34]. 
PD-L1 palmitoylation enhanced PD-L1 stability 
via preventing its ubiquitination and repressing 
its subsequent degradation by lysosomes [27]. 
PD-L1 activity is regulated by ubiquitination 
and N-glycosylation. GSK3β binds with PD-L1 
and activates β-TrCP-mediated degradation of 
PD-L1, whereas glycosylation (at N192, N200 
and N219) of PD-L1 antagonizes GSK3β inter-
action. EGF led to enhanced PD-L1 stability via 
inactivation of GSK3β in breast cancer, result-
ing in reduction of antitumor T cell immunity 
and efficacy of anti-PD-1 therapy in syngeneic 
mouse models [13]. N-glycosylation (at N35, 
N192, N200 and N219) and ubiquitinylation (at 
K178) of PD-L1 cannot affect its interaction 
with the biphenyl drug BMS-202 and did not 
change PD-L1 dimer stability [43]. PD-L1 phos-
phorylation is linked to its glycosylation and 
stabilization. Metformin treatment led to PD-L1 
phosphorylation at Ser195 site that was ph- 
osphorylates by AMPK (AMP-activated protein 
kinase), resulting in abnormal PD-L1 glycosyl-
ation and subsequent accumulation of PD-L1  
in the ER (endoplasmic reticulum) and ERAD 
(ER-associated protein degradation)-mediated 
destruction [11]. Moreover, IL-6 stimulated JA- 
K1 to cause PD-L1 phosphorylation at Tyr112, 
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leading to PD-L1 glycosylation by N-glycoltr- 
ansferase STT3A and promotion of PD-L1 sta-
bility [12]. Interestingly, PD-L1 glycosylation did 
not affect its acetylation and nuclear translo- 
cation [13]. PD-L1 glycosylation by B3GNT3 
blocked cell surface internalization and GSK3β-
involved degradation of PD-L1 [14].

Lysine specific demethylase (LSD) is recruited 
to the PD-L1 gene locus by B lymphocyte 
induced maturation protein 1 (Blmp-1) and in- 
hibits the expression of PD-L1 via removing 
H3K4 methylation of PD-L1 following ex vivo 
stimulation, such as acute viral infection [44]. 
LSD1, an H3K4 and H3K9 demethylase, can 
govern eomesoderin (EOMES) nuclear dynam-
ics through switching demethylation and ace- 
tylation of EOMES residues in PD-1+CD8+ T cells 
[45]. This observation suggests that demethyl-
ation and acetylation can be switched in spe-
cial conditions. HDAC3 inhibitors alleviated 
DNA methyltransferase DNMT1 expression, le- 
ading to activation of PD-L1 transcription [39]. 
Therefore, studies are underway to explore 
whether PD-L1 acetylation is correlated with its 
methylation.

Protein acetylation has been reported to antag-
onize its ubiquitination to regulate stability and 
subcellular localization of proteins [46, 47]. For 
example, S-phase kinase associated protein 2 
(Skp2) was acetylated by p300 and acetylation 
of Skp2 blocked its proteolysis by CDH1, lead-
ing to enhanced oncogenic activity [46]. USP7 
regulated the degradation of Tip60, one of 
HATs, and forkhead box P3 (Foxp3) expression 
[48]. Tip60 promoted Foxp3 acetylation and 
dimerization [49, 50]. In the absence of acety-
lation, several lysines on Foxp3 could be ubiq-
uitinated and caused its destruction [51]. Hy- 
peracetylation of Foxp3 blocked its ubiquitina-
tion and degradation and increased Foxp3 pro-
tein levels, providing a rapid temporal regula-
tion of Foxp3 expression levels [51]. It is neces-
sary to determine whether PD-L1 acetylation 
prevents its ubiquitination in cancer cells. En- 
tinostat, class I HDAC inhibitor, increased ST- 
AT3 acetylation and subsequently suppressed 
STAT3 phosphorylation and activity, and resul-
tantly inhibited Foxp3 expression in Foxp3+ 
Treg cells [52]. Similarly, entinostat enhanced 
STAT3 acetylation in myeloid-derived suppres-
sor cells (MDSCs)-like cells [53]. It is necessary 
to define the relationship between PD-L1 acety-
lation and its phosphorylation.

Targeting acetylation pathway for enhancing 
PD-1/PD-L1 therapy

Antibodies targeting PD-1/PD-L1 pathway have 
been used and exhibited impressive outcomes 
in several types of cancers [54]. In the past 
decade, Food and Drug Administration (FDA) 
has approved several antibodies targeting cyto-
toxic T-lymphocyte antigen-4 (CTLA-4), PD-1 or 
PD-L1 for the treatment of a wide spectrum of 
cancers, including melanoma, hepatocellular 
carcinoma, renal cell carcinoma (RCC), NSCLC, 
head and neck cancer, and bladder cancer [55-
60]. Anti-PD-1 antibodies have pembrolizumab 
and nivolumab, while anti-PD-L1 antibodies 
have atezolizumab and durvalumab, and Ipili- 
mumab is a monoclonal antibody against CTLA-
4 [61, 62]. Unfortunately, the response rate is 
low in some tumors, such as the prostate and 
colon, and nearly 1/3 of respondents will re- 
lapse [6, 63]. Some patients develop resis-
tance to immune checkpoint blockade, lead- 
ing to poor prognosis [64]. Therefore, targeting 
PD-1/PD-L1 PTMs might be useful to improve 
the efficacy of anti-PD-1/PD-L1 therapy.

Selenium nanoparticles inhibited the expres-
sion of PD-1 and upregulated the expression of 
cytotoxicity factors such as CD16, interferon-γ 
(IFN-γ) and natural killer group 2, member D 
(NKG2D), and increased tubulin-α acetylation 
in γδ cells, leading to potentiating antitumor 
cytotoxicity [65]. HDAC6 upregulated PD-L1 
expression via regulation of STAT3 pathway, 
and suppression of HDAC6 inhibited tumor  
progression in mice [66]. MPT0G612, an inhibi-
tor of HDAC6, blocked IFN-γ-mediated upregu-
lation of PD-L1 and stimulated apoptosis via 
inhibition of autophagy [67]. Several studies 
have shown that HDAC inhibitors, including 
VPA, nexturastat A, increased the efficacy of 
anti-PD-L1 antibody via activation of immune 
surveillance [68, 69]. HDAC3 inhibitor romi- 
depsin in combination with anti-PD-1 therapy 
enhanced antitumor effects on colon cancer 
cells [42]. SCA and ACY957 elevated PD-L1 
acetylation and the expression of immune ch- 
eckpoints, leading to enhancement of immuno-
therapy [35]. It is important to mention that  
not all HDAC inhibitors can target acetylation of 
PD-L1. Moreover, HDAC inhibitors cannot spe-
cifically target acetylation of PD-L1. Targeting 
HDAC might be an effective approach to im- 
prove immune checkpoint blockade in cancer 
cells.
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Conclusions and perspectives

To the end, this review article proposes a com-
bination therapy of HDAC inhibition and PD-1/
PD-L1 blockade, which makes up for the defi-
ciency of PD-1/PD-L1 blockade resistance, and 
provides a theoretical basis for this new tumor 
immunotherapy. However, a couple of critical 
concerns still need to be addressed in follow-
up studies. The expression of nuclear PD-L1 in 
metastatic tumors is higher than that in prima-
ry tumors, but it is not clear how nuclear PD-L1 
increases tumor invasiveness [35]. Without a 
doubt, further investigations are wanted to de- 
termine whether PD-L1 nuclear translocation 
inhibitors can be used as a complementary 
therapy for malignant tumors. Lys263 site was 
reported as the key acetylation site on PD-L1 
by p300. Whether there are other acetylation 
sites on PD-L1 needs to be determined. Do 
other acetyltransferases involve in regulation 
of PD-L1 acetylation? It is also necessary to 
define whether other deacetylases, besides 
HDAC2, could reduce acetylation of PD-L1. 
High expression of PD-L1 was associated with 
cisplatin resistance and ADR resistance in non-
small cell lung cancer [41]. It is unclear whether 
PD-L1 acetylation is associated with drug resis-
tance, which is required to be fully explored. 
Since PD-L1 has multiple types of PTMs, it is 
pivotal to determine the associations among 
PTMs of PD-L1. Discovery of the regulatory 
mechanisms how PD-L1 acetylation is involved 
in regulating other PTMs might be useful to find 
the new approaches for targeting PD-L1 acety-
lation other than HDACs inhibitors. One group 
showed that knockdown of transcription factor 
PU.1 decreased the expression and H3K27 
acetylation of PD-L2 via interacting with p300 
in dendritic cells [70]. Depletion of p300 re- 
duced the expression and PD-L2 acetylation  
in dendritic cells [70]. Moreover, PU.1 could 
bind to IRF4 on an Ets-IRF composite element 
(EICE) sequence of PD-L2 to regulate p300- 
mediated PD-L2 acetylation in dendritic cells 
[70]. It is elusive whether targeting PD-L2 acet-
ylation is helpful to improve the tumor immuno-
therapy. In conclusion, it is required to further 
investigate the role and molecular mechanism 
of PD-1/PD-L1 acetylation in tumor cells for 
improving immunotherapy.
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