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Abstract: The causal relationship between body mass index (BMI) and type 2 diabetes (T2D) and breast cancer 
prognosis is still ambiguous. The aim of this study was to investigate the prognostic effect of BMI and T2D on 
breast cancer disease-free survival (DFS) among Asian individuals. In this two-sample Mendelian randomization 
(MR) study, the instrumental variables (IVs) were identified using a genome-wide association study (GWAS) among 
24,000 participants in the Taiwan Biobank. Importantly, the validity of these IVs was confirmed with a previous 
large-scale GWAS (Biobank Japan Project, BBJ). In this study, we found that a genetic predisposition toward higher 
BMI (as indicated by BMI IVs, F = 86.88) was associated with poor breast cancer DFS (hazard ratio [HR] = 6.11; 
P < 0.001). Furthermore, higher level of genetically predicted T2D (as indicated by T2D IVs) was associated with 
an increased risk of recurrence of and mortality from breast cancer (HR = 1.43; P < 0.001). Sensitivity analyses, 
including the weighted-median approach, MR-Egger regression, Radial regression and Mendelian randomization 
pleiotropy residual sum and outlier (MR-PRESSO) supported the consistency of our findings. Finally, the causal 
relationship between BMI and poor breast cancer prognosis was confirmed in a prospective cohort study. Our MR 
analyses demonstrated the causal relationship between the genetic prediction of elevated BMI and a greater risk 
of T2D with poor breast cancer prognosis. BMI and T2D have important clinical implications and may be used as 
prognostic indicators of breast cancer.

Keywords: Mendelian randomization, breast cancer progression, body mass index, type 2 diabetes, breast cancer 
survival analysis

Introduction

Breast cancer is the most frequent malignancy 
in women and causes ~627,000 deaths annu-

ally worldwide [1]. Because of its high inci-
dence, the treatment for breast cancer has 
been well standardized based on specific sub-
types, such as the estrogen receptor (ER) sta-
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tus of the tumor [1]. However, breast cancer 
progression varies substantially, even among 
patients with the same subtype.

Diabetes and obesity have been suggested to 
be linked to breast cancer progression [2, 3]. 
Obese and diabetic breast cancer patients are 
more likely to have larger-size tumors, and they 
have a three times higher breast cancer recur-
rence rate than patients who were neither dia-
betic nor obese [2]. An increased BMI is asso- 
ciated with higher mortality and recurrence of 
breast cancer, particularly in postmenopausal 
women in observational studies [4-6]. Further- 
more, diabetes mellitus may reduce breast  
cancer survival [7-9]. A multiethnic cohort  
study reported that breast cancer women who 
have had T2D for > 7 years have higher all-
cause mortality than those who have had T2D 
for < 7 years [10]. Whether putative associ- 
ation between BMI and T2D and breast cancer 
progression is causal or subject to undetected 
confounding effects remains unclear. If it can 
be clarified, proper management of BMI and/ 
or T2D may become an additional therapeutic 
means for improving breast cancer outcomes.

Unfortunately, conventional epidemiological 
observation studies are prone to being bias- 
ed by reverse causal association and unmea-
sured confounding [11]. In contrast, Mendelian 
randomization (MR), which is based on the 
foundation of random assignment of alleles 
from parent to child, estimates the causal rela-
tionship between exposures and diseases out-
comes, which can potentially overcome this 
limitation. There are three major assumptions 
when performing a MR analysis, which have 
been described in the Supplementary Material 
[12]. Our aim was to investigate the prognos- 
tic effect of BMI and T2D on breast cancer 
prognosis among Asian women. To validate our 
findings, a series of sensitivity analyses was 
performed. Additionally, the causal relation- 
ship between BMI and breast cancer progres-
sion was further confirmed in a prospective 
cohort study.

Methods

Study population

The study participants were from the Breast 
Cancer Association Consortium (BCAC) [13]. 
The present study was purposely conducted in 
a genetically homogenous population; as a 

result, we included only 8766 women of East 
Asian ancestry. Detailed descriptions about 
study participants are provided in the Supple- 
mentary Material and Table S1. Genotyping, 
imputation and genetic quality-control infor- 
mation are presented in the Supplementary 
Material. We first excluded subjects without 
complete vital information (dead or alive) and 
follow-up time. A total of 6642 participants 
were retained. All studies in BCAC have been 
approved by institutional review boards and  
all patients have provided written informed 
consent. 

Selection of genetic instrument variables

We selected genetic IVs using a two-step 
approach. First, we conducted a genome-wide 
association study (GWAS) to identify exposure 
(i.e., BMI and T2D)-associated variants (SNPs) 
in 24,000 individuals aged 30-70 years from 
the Taiwan Biobank cohort [14] who had suc-
cessfully passed the standard genetic quality-
control. Second, we replicated these exposure-
associated variants to ensure the sufficient 
strength of IVs by using the Biobank Japan 
Project (BBJ) [15], which is a publicly available 
large-scale GWAS. Only SNPs that achieved the 
genome-wide significance level (P < 5 × 10-8) 
with a minor allele frequency of > 0.01 were 
considered as valid IVs. Moreover, the F statis-
tic was used to examine the precision and 
strength of the effect of BMI IVs on BMI mea-
surement [16]. Conventionally, a threshold of F 
statistic > 10 has been considered to be ade-
quate to avoid weak instrument bias [17]. 
However, the status of T2D (i.e., whether a 
patient had or did not have T2D) was not avail-
able in our studies, we could not perform an F 
statistic analysis for T2D. Summary-level statis-
tics were extracted from the BBJ for female-
specific GWASs for BMI (n = 82,438 women) 
and T2D (n = 102,386 women).

Mendelian randomization analyses

In our MR study, the effect estimates and cor-
responding SEs of IVs for exposure (BMI and 
T2D) were extracted from the female-specific 
GWASs in BBJ; the effect estimates and corre-
sponding SEs of IVs and outcome (breast can-
cer DFS) were determined from multiple Cox 
proportional hazard models after adjusting for 
breast cancer prognostic factors, including age 
at diagnosis, tumor stage, ER status and genet-
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ic admixture using the first two principal com-
ponents of population structure (to account for 
genetic heterogeneity among Eastern-Asian 
women) in BCAC. These breast cancer prognos-
tic factors were adjusted in all of our analyses. 
We also harmonized our data to ensure con- 
sistent directions for the IV-exposure and 
IV-outcome associations, as described in the 
Supplementary Material.

We used the inverse-variance weighted (IVW) 
method by Burgess et al. [18] to obtain MR esti-
mates. To substantiate our analyses, we fur-
ther performed a series of sensitivity analyses: 
weighted-median, MR-Egger regression, Radial 
regression and Mendelian randomization plei-
otropy residual sum and outlier (MR-PRESSO). 
The IVW, MR-Egger regression and weighted 
median methods were conducted using the  
R package ‘MendelianRandomization’. Radial 
regression and MR-PRESSO were conducted 
using the R package ‘RadialMR’ and ‘MRP- 
RESSO’, respectively. Moreover, we assessed 
the relationship between BMI and breast can-
cer DFS by stratifying by ER status as described 
in the Supplementary Material.

Sensitivity analyses

To account for potential pleiotropy effects that 
may lead to biased MR results, we carried out 
additional sensitivity analyses. MR-Egger re- 
gression was used to detect the presence of 
horizontal pleiotropy effects by examining if  
the intercept deviated significantly from zero 
[19]. The weighted median method was as- 
sumed to provide unbiased estimates of at 
least 50% of valid IVs [20]. Radial regression 
was used to detect influential outliers [21]. 
After correcting for pleiotropy effects by re- 
moving all influential outliers until little or no 
heterogeneity remained, we re-analyzed the 
MR results. Finally, the MR-PRESSO method 
[22] was examined whether there were any 
remaining pleiotropy effects.

Observational analyses for body mass index 
on the outcome of breast cancer progression

A prospective cohort study in the BCAC was 
conducted to evaluate the relationship of an 
increased BMI with reduced breast cancer  
DFS. We limited the follow-up period to 10 
years because it is commonly used in clinical 
evaluation of breast cancer progression. Ac- 
cording to the Asian-specific criteria for BMI as 

documented by the WHO recommendations 
[23], we categorized BMI as follows: under-
weight (BMI < 18.5 kg/m2), normal weight  
(18.5 ≤ BMI < 23 kg/m2), overweight (23 ≤  
BMI ≤ 27.5 kg/m2) and obese (BMI > 27.5 kg/
m2). We combined underweight and normal 
weight individuals into one group and over-
weight and obese individuals into a second 
group for analysis. Survival curves were con-
ducted with the Kaplan-Meier method, and  
the survival probabilities were compared using 
the log-rank test between BMI subgroups by 
stratifying the ER status. A multiple Cox pro- 
portional hazard model was used to assess  
the relationship between BMI subgroups and 
breast cancer DFS after adjusting for breast 
cancer prognostic factors in ER-positive and 
ER-negative patients separately.

Results

Cohort characteristics

In our study, 467 events occurred among 6642 
breast cancer women during the follow-up time 
(6-360 months). Characteristics of this group 
are shown in Table 1. Overall, age at diagnosis, 
tumor stage and ER status were associated 
with breast cancer DFS (P < 0.05) (Table 2). 
This is consistent with the current understand-
ing of breast cancer progression, supporting 
the validity of our initial analysis.

Two-sample Mendelian randomization analysis

We identified 188 BMI-associated SNPs and 
251 T2D-associated SNPs in the Taiwan 
Biobank cohort. Next, we evaluated whether 
these candidate IVs achieved genome-wide  
significance in the BBJ cohort and verified 33 
and 86 SNPs as IVs for BMI and T2D, respec-
tively. We subsequently excluded 21 pleio- 
tropic outliers for T2D IVs by Radial regres- 
sion, which showed substantial heterogeneity 
(Figure 1). Finally, we used 33 SNPs as BMI  
IVs and 45 SNPs as T2D IVs (Tables S2, S3). 
After data harmonization, the direction of the 
IVs was positively associated with increased 
BMI and a higher risk of having T2D.

The IVW method, which provides unbiased  
estimates when all IVs are valid [24], showed 
that a higher genetically predicted BMI (as indi-
cated by IVs) was associated with poor breast 
cancer DFS (HR = 6.11 [95% confidence inter-
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val (CI): 3.10-12.01]) (Figure 2). The F statistic 
for BMI was 86.88 after adjusting for the  
breast cancer prognostic factors, which strong-
ly indicates the adequate strength of our BMI 
IVs. Moreover, we performed a stratified analy-
sis according to the ER status of breast can- 
cer. We identified 25 of 33 BMI IVs (P < 0.05) 
among ER-positive patients (n = 4096). In con-
trast, no BMI-associated SNPs were identified 
in ER-negative patients (n = 2133). This sug-

for BMI and T2D (Figure 2). For the T2D analy-
sis, the intercept of the MR-Egger regression 
deviated from zero (P = 0.001), revealing the 
presence of modest pleiotropy (Table 3). Fur- 
thermore, after removing pleiotropy outliers 
among the T2D IVs identified by the Radial 
regression, we observed a slightly stronger 
causal estimate for genetically higher T2D risk 
on breast cancer DFS (before removing the  
outliers: HR = 1.23 [95% CI: 1.10-1.38]; after 
removing the outliers: HR = 1.43 [95% CI:  
1.24-1.65]) (Table 3). In contrast, we found no 
evidence of horizontal pleiotropy among BMI 
IVs.

Observational analyses of body mass index 
and breast cancer disease-free survival

Taking advantage of the availability of informa-
tion for both BMI and the follow-up period as 
collected by individual studies in the BCAC, we 
were able to confirm our MR findings by a pro-
spective cohort study. Survival curves indicat-
ed that breast cancer patients who were  
underweight or of normal weight were more 
likely to experience longer survival times rela-
tive to those who were overweight or obese in 
ER-positive patients (Figure 5). The DFS proba-
bility for breast cancer differed significantly 
between BMI subgroups as determined by the 

Table 2. Multivariate Cox regression analyses 
among BMI and breast cancer prognostic 
factors among individuals from the Breast 
Cancer Association Consortium
Factor HR (95% CI) P
Age at diagnosis 1.013 (1.003-1.023) 0.0067
BMI 1.028 (1.000-1.059) 0.05
ER status 0.594 (0.482-0.778) < 0.001
Tumor stage 2.646 (2.270-3.083) < 0.001
PC1 1.456 (1.214-1.746) < 0.001
PC2 0.662 (0.562-0.778) < 0.001
Abbreviations: BMI: body mass index; ER: estrogen 
receptor; Tumor stage: tumor size-lymph node involve-
ment-metastasis status; HR: hazard ratio; 95% CI: 95% 
confidence interval; PC1: the first principal component of 
population structure; PC2: the second principal compo-
nent of population structure.

Table 1. Characteristics of the study population from 
the Breast Cancer Association Consortium
Characteristic Value
Total number of patients 6642
Events, n (%) 467 (9.74)
Follow-up, months, median (range) 48 (6-360)
Age at diagnosis, years, mean (SD) 48.3 (11.15)
BMI, kg/m2, mean (SD) 23.11 (3.52)
underweight (BMI < 18.5 kg/m2), n (%) 317 (4.77)
normal (18.5 ≤ BMI < 23 kg/m2), n (%) 2231 (33.59)
overweight (23 ≤ BMI ≤ 27.5 kg/m2), n (%) 1833 (27.60)
obese (BMI > 27.5 kg/m2), n (%) 515 (7.75)
ER status, n (%)
    Positive 4096 (61.66)
    Negative 2133 (32.11)
Tumor stage, n (%)
    I 2705 (40.72)
    II 2561 (38.56)
    III 721 (10.86)
    IV 77 (1.16)
Abbreviations: BMI: body mass index; ER: estrogen receptor; Tumor 
stage: tumor size-lymph node involvement-metastasis status of 
tumor stage.

gests that an elevated BMI is causally as- 
sociated with an increased risk of breast 
cancer recurrence and mortality, especi- 
ally among ER-positive patients (Figure 3; 
Table 3).

In terms of T2D and breast cancer pro-
gression, IVW analysis indicated an in- 
creased risk of having T2D with reduced 
breast cancer DFS (Table 3). In addition, 
the wide confidence intervals for the rela-
tionship between BMI and breast cancer 
DFS in IVW analysis may indicate uncer-
tainty in the precision of the effect size.  
To verify these results, we used the pleiot-
ropy robust methods (MR-PRESSO and 
IVW Radial), which provide more precise 
estimates. It is notable that the findings 
were consistent across these MR analys- 
es (Figure 2). The scatter plots of MR esti-
mates are shown in Figure 4.

Sensitivity analyses

Weighted-median analyses showed simi- 
lar causal effect estimates and were in  
the same direction as the IVW analyses  
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log-rank test in ER-positive patients (P <  
0.001), but this was not the case for ER-neg- 
ative patients. A multivariate Cox proportional 
hazard model demonstrated the relationship 
between increased BMI and poor breast can- 
cer DFS (HR = 1.42 [95% CI: 1.05-1.92]) am- 
ong ER-positive patients (Figure 5). Both MR 
and observational analyses supported the  

genetic risk scores based on BMI-associated 
SNPs in European suggested the causal effect 
of elevated BMI on reduced breast cancer sur-
vival among ER-positive patients, but not  
found in ER-negative patients [25]. A higher 
BMI was associated with higher breast cancer 
mortality and recurrence across different eth-
nicities [4-6]. Breast cancer patients who were 

Figure 1. The effect of removing pleiotropy outliers from the T2D IVs. (A, B) Graphs of radial estimates before (A) 
and after (B) removing pleiotropy outliers from the T2D IVs. In the radial plots, the absolute vertical distance of each 
variant from the slope is equal to the square root of its contribution to heterogeneity with respect to Cochran’s Q 
statistic. The horizontal axis of the radial plots is the square root of the actual weight from the IVW analysis of each 
SNP. Its vertical axis scale refers to the ratio estimate for each SNP multiplied by the same square root weight.

Figure 2. Mendelian randomization (MR) analyses testing the prognostic 
effect of body mass index (BMI) and type 2 diabetes (T2D) on breast can-
cer. Results from four MR methods-weighted median, IVW (inverse-variance 
weighted), MR-PRESSO (Mendelian randomization pleiotropy residual sum 
and outlier) and IVW Radial-are presented as hazard ratios with 95% confi-
dence intervals (95% CIs).

existence of an adverse effect 
of an increased BMI on breast 
cancer progression.

Discussion

To date, this is the first two-
sample MR analysis among 
Asian that attempted to clari- 
fy possible metabolic factors 
(i.e., BMI and T2D) related to 
breast cancer prognosis. This 
is also the first MR analysis 
using both data from an indi-
vidual GWAS and from a GWAS 
consortium to select IVs. This 
careful approach resulted in 
IVs with high confidence.

Consistent with our findings,  
a MR study conducted using 
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overweight during early adulthood as compar- 
ed with patients who were never overweight 
had a risk of early death from breast cancer 
increased by 3% [26]. Similarly, a Japanese 
study showed that obese patients had redu- 
ced breast cancer DFS relative to the individu-
als with normal range BMIs, especially among 
postmenopausal women with ER-positive tu- 
mors [27]. Biological mechanisms underlying 
the connection between obesity and breast 
cancer risk/recurrence have been proposed, 
including insulin resistance, increased inflam-
matory cytokines, higher leptin levels and adi-
pokine imbalances [28].

Previous studies have reported that being  
overweight on breast cancer prognosis may 
relate to menopausal status and ER status.  
We found that elevated BMI was associat- 
ed with reduced breast cancer DFS among 
ER-positive patients, consistent with previous 
findings among Europeans [25, 27]. Due to the 
absence of menopausal status data, we could 
not stratify by it. It is notable that breast can- 
cer in Asians is intrinsically and etiologically  
different from that in Westerns [29, 30]. Fur- 
ther investigation of how BMI affects breast 
cancer progression after considering the ef- 
fect of menopausal status and different eth-

the activation of transcription factors (such as 
of NF-κB [35], STAT3 [36] and HIF1α [37]) and 
related mitogenic and angiogenic signalling 
mechanisms that may cause the acceleration 
of breast cancer progression (such as invasion 
and metastasis of breast cancer and increa- 
sed breast cancer cell survival, proliferation 
and migration [7]), supported our findings that 
having T2D is causally linked to breast cancer 
progression.

Conventional epidemiological studies are likely 
to biases by unmeasured confounding factors, 
different error types (e.g., measurement error) 
and uncertainty of causality. MR overcomes 
these limitations and should provide more reli-
able causal estimates. The causal effect esti-
mates of increased BMI and reduced breast 
cancer DFS differed from the observational 
analyses and MR analyses in our study. We 
suggest that the effect size estimates from  
our observational analyses are a measure of 
the total effect of BMI, which may be influ- 
enced by environmental and/or lifestyle fac-
tors. In contrast, the MR analysis reflected the 
direct effect of genetic predisposition of BMI  
on breast cancer progression. The main limita-
tion of this study is the inability to control for 
the treatment of breast cancer patients, a 

Figure 3. Results of MR analyses testing the prognostic effect of BMI on 
breast cancer in patients with estrogen receptor-positive (ER+) cancer. Scat-
ter plot of the log odds ratio of genetic association with BMI in ER-positive 
cancer versus the log hazard ratio of genetic associations with breast can-
cer disease-free survival (DFS). The line of simple median is almost overlap 
with the line of weighted median.

nicities simultaneously in larg-
er samples is warranted.

Patients who had been diag-
nosed with pre-existing diabe-
tes before breast cancer com-
pared with those who did not 
have pre-existing diabetes we- 
re linked to poor breast can- 
cer DFS [31]. Diabetic breast 
cancer patients had signifi-
cantly larger tumors, a higher 
rate of lymph node involve-
ment and higher overall mor-
tality as compared with non-
diabetic breast cancer pati- 
ents [32]. There are putative 
shared metabolic changes be- 
tween the progression toward 
diabetes and breast cancer 
that include dyslipidemia, hy- 
perinsulinemia and hypergly- 
cemia [33]. These shared met-
abolic mechanisms, which in- 
clude insulin resistance [34], 
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potential confounder, because of incomplete 
data for our study participants. As breast can-
cer is the most common female cancer in the 
world, treatment protocols based on different 
subtypes and tumor stages have been well-
standardized. Therefore, patients included in 
this study should have received similar treat-
ments. Consequently, the inability to control  
for treatment in our analyses is non-differen- 
tial and should tend to be biased toward the 
null, and, therefore, the estimation of the rela-
tionship between exposure (BMI and T2D) and 
breast cancer progression would be conserva-
tive. As a second limitation, the IVs of our stu- 
dy may have missed some information from 
important SNPs. For instance, we did not in- 
clude the SNPs in the gene FTO (a well-known 
gene that affects BMI) in our IVs. Because the 
BCAC population was genotyped using iCOGS 
and OncoArray, both of which are specifically 
designed for studying hormone-related can-
cers, including breast, ovarian and prostate 
cancer and so on [38, 39], information for  
other relevant SNPs may have been lost. How- 

ever, the F statistic for BMI was 86.88, which 
strongly indicates the adequate strength of  
our IVs. The third limitation is an absence of 
T2D status data for our study participants. 
Without this information, we could not exam- 
ine the strength of T2D IVs with the F statistic 
[17] and could not perform the survival an- 
alysis for breast cancer and T2D. We utilized 
the external weights from the BBJ, which 
ensured the representativeness of these IVs  
in our study population and provided more  
precise effect sizes of exposure owing to the 
large population. A possible fourth limitation, 
the small sample size may have resulted in 
inadequate statistical power to identify BMI-
associated SNPs in ER-negative breast cancer 
patients. However, our MR results are consis-
tent with the previous finding [25]. As a fifth 
limitation, we didn’t examine whether BMI and 
T2D was one of the risk factor of breast can- 
cer. Our study population is all breast cancer 
patients. To recruit the non-breast cancer 
women as the controls is needed for further 
examination to address this important ques-

Table 3. Mendelian randomization (MR) analyses testing the prognostic effect of body mass index 
(BMI) and type 2 diabetes (T2D) on breast cancer
Trait Method Number of IVs Estimate HR (95% CI) P
BMI Weighted median 33 1.745 5.73 (2.43-13.50) 6.6E-05
BMI IVW 33 1.809 6.11 (3.10-12.01) 1.6E-07
BMI Intercept (from MR-Egger) 33 0.055 0.72995
BMI MR-PRESSO 33 1.890 6.62 (6.13-7.15) 8.2E-31
BMI IVW Radial 33 1.815 6.14 (5.68-6.64) 0
BMI (ER+) Weighted median 25 1.536 4.65 (1.28-16.92) 0.01983
BMI (ER+) IVW 25 1.714 5.55 (1.96-15.70) 0.00123
BMI (ER+) Intercept (from MR-Egger) 25 -0.095 0.77704
BMI (ER+) MR-PRESSO 25 1.756 5.79 (5.37-6.24) 6.1E-25
BMI (ER+) IVW Radial 25 1.755 5.78 (5.37-6.23) 0
T2D Weighted median 86 0.389 1.48 (1.27-1.72) 6.1E-07
T2D IVW 86 0.209 1.23 (1.10-1.38) 0.00024
T2D Intercept (from MR-Egger) 86 -0.127 0.00102
T2D MR-PRESSO 86 0.209 1.23 (1.14-1.58) 3.42E-06
T2D IVW Radial 86 0.210 1.23 (1.14-1.34) 2.45E-06
T2D-outlier removed Weighted median 45 0.394 1.48 (1.24-1.77) 1.7E-05
T2D-outlier removed IVW 45 0.358 1.43 (1.24-1.65) 6.3E-07
T2D-outlier removed Intercept (from MR-Egger) 45 -0.103 0.12116
T2D-outlier removed MR-PRESSO 45 0.358 1.43 (1.38-1.49) 5.4E-22
T2D-outlier removed IVW Radial 45 0.358 1.43 (1.37-1.49) 9.3E-73
Abbreviations: BMI: body mass index; ER: estrogen receptor; ER+: patients with estrogen receptor positive tumor; HR: hazard 
ratio; 95% CI: 95% confidence interval; IVW: inverse-variance weighted; MR-PRESSO: Mendelian randomization pleiotropy 
residual sum and outlier; IVW Radial: inverse-variance weighted Radial regression.
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Figure 4. Results of MR analyses testing the breast cancer prognostic effect of BMI and type 2 diabetes. A. Scatter plot of the log odds ratio of genetic association 
with BMI versus the log hazard ratio of genetic association with breast cancer disease-free survival (DFS). The line of simple median is almost overlap with the line 
of IVW for BMI. B. Scatter plot of the log odds ratio of genetic association with type 2 diabetes versus the log hazard ratio of genetic association with breast cancer 
DFS. The line of simple median is almost overlap with the line of weighted median for T2D.
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tion. Finally, it must be mentioned that several 
genetic variants in our study were not directly 
genotyped. However, we imputed only variants 
with high information quality scores (iCOGS: 
mean r2 = 0.97, range = 0.61-1.00; OncoArray: 
mean r2 = 0.99, range = 0.88-1.00) to reduce 
the false probability rate.

Our study is novel in that it investigated po- 
tential prognostic factors for breast cancer in 
Asia, which are distinct from those associated 
with breast cancer among Western popula-
tions. Studies have consistently confirmed a 
striking difference in the age-specific inci- 
dence of Western and Asian breast cancer. 
Specifically, early onset (< 50 years old) breast 
cancer has increased markedly in Asia as  
compared with Western countries [40, 41].  
The average age of subjects was 48.30 years  
in the present study, which reflects the early 
onset of breast cancer in Asian women. 
Approximately half of Asian breast cancer 
patients are premenopausal women, whereas 
only 15-30% of Western women with breast 
cancer are premenopausal [42]. Discrepancies 
in the pathophysiologic factors and biological 
mechanisms of breast cancer between Asian 
and Western women have attracted great at- 
tention in recent years. Breast cancer is preva-
lent in Western women who are 60 years or 
older, and the incidence rate of breast cancer 
increases among Western women aged 50 to 
84 years. Apart from this, there was an  
upward trend in breast cancer incidence for 
Asian women before the age of 40 years and a 
concave downward trend among Asian women 
aged 50 years and older [29]. Recently, multi-
omics studies have highlighted differences in 

the molecular signature of the tumor immune 
microenvironment between Asian and West- 
ern patients [29, 30]. Asian patients harbor 
more tumor-infiltrating immune cells than do 
Western patients [43], which may be linked  
to a favorable prognosis of breast cancer [30, 
44, 45]. However, the composition of infiltrat- 
ing immune cells did not significantly differ 
between Asian and Western breast cancer 
patients [30]. In addition, the relatively high 
probability of ER-positive breast cancer among 
Asian women who are < 50 years old as com-
pared with Western women suggests the 
importance of hormone exposure [46, 47]. In 
summary, population-specific differences in 
the biology possibly indicate different environ-
mental variations, molecular signatures and 
tumorigenic mechanisms underlying breast 
cancer onset and prognostic patterns.

Given strong causal evidence from MR, we  
suggest that BMI and T2D may be clinicopa- 
thological breast cancer progression predic-
tors. The pathological mechanisms between 
BMI and T2D and breast cancer progression 
are certainly worthy of future exploration.
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Supplementary material

The main assumptions of MR

When a MR is conducted, there are three assumptions that must be met [48]. (i) The relevance assump-
tion states that genetic variants with well-known effects of exposure must be used as the instrumental 
variables (IVs) (i.e., BMI and T2D in this study). (ii) The exclusion restriction assumption states that the 
IVs are related to the outcome (i.e., breast cancer progression) solely via exposure. (iii) The indepen-
dence assumption states that the IVs should be independent from any other risk factors that affect 
outcome.

Study population

The study participants were from the Breast Cancer Association Consortium (BCAC) [49]. We included 
8,766 women of East Asian ancestry to carry out the study in a genetically homogenous population. 
Each of the participants had had breast cancer and had been enrolled in one of the six studies in the 
BCAC-Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC), Hong Kong 
Breast Cancer Study (HKBCS), Korean Hereditary Breast Cancer Study (KOHBRA), Shanghai Breast 
Cancer Genetic Study (SBCGS), Seoul Breast Cancer Study (SEBCS) and Taiwanese Breast Cancer Study 
(TWBCS).

Genotyping and imputation information for the BCAC

Genotyping was conducted using iCOGS and OncoArray; the 1,000 Genomes Phase 3 reference panel 
was used for imputation after quality control. The iCOGS is an Illumina array specifically designed for 
studying hormone-related cancers, including breast, ovarian and prostate cancer [50], and the OncoArray 
is also an Illumina array specifically designed for multiple cancer types, including breast, ovarian, pros-
tate, colorectal and lung cancer [51]. Genotyping and quality control procedures have been described 
elsewhere [51, 52].

Standard quality-control procedures

Standard and stringent quality control procedures were performed to eliminate errors that could lead to 
spurious associations. These included the removal of individuals with discordance of genetically inferred 
sex versus self-reported sex, individuals with an extreme rate of heterozygosity, individual relatedness 
and individuals with an excess (> 5%) of missing genotype calls. For quality control of single-nucleotide 
polymorphisms (SNPs), we removed SNPs with low genotype call rates (missing rate of > 5%), SNPs 
violating the Hardy-Weinberg equilibrium and SNPs with a minor allele frequency of < 5%.

Assessing the relationship between BMI and breast cancer disease-free survival by stratifying based 
on estrogen receptor (ER) status

Among all of the IVs related to BMI that both identified in Taiwan Biobank and Biobank Japan Project, we 
performed a linear regression of these IVs to identify BMI-associated SNPs specific in individuals with 
ER-positive or ER-negative breast cancer tumours from the BCAC cohort. These IVs were then used in 
the MR analysis to investigate the causal effect between BMI and breast cancer disease-free survival 
among individuals with ER-positive or ER-negative breast cancer.

Data harmonization for MR

Data harmonization is a necessary process when two or more independently generated datasets are 
combined. In this two-sample MR analysis, two non-overlapping sets of individuals are used. 
Inappropriate data harmonization could distort the results of such an analysis. In this study, we harmo-
nized our data to comply with the guidelines developed by Fortier [53, 54]. First, we standardized the 
direction of all IVs to ensure that all were positively associated with the exposure (which means the 
exposure-increasing allele is the effect allele) in individual SNP-exposure datasets. Second, we con-



Causal relationship between BMI and T2D with breast cancer disease-free survival

2 

firmed that the exposure-increasing alleles and the reference alleles in the SNP-exposure dataset and 
SNP-outcome dataset were coded identically. If the variant was not coded in the same direction, we 
then transformed the effect allele into the reference allele and vice versa. To do this, the regression 
coefficient was multiplied by -1, and the effect allele frequency was subtracted from 1. After data har-
monization, the direction of IVs was positively associated with increased BMI and higher risk of having 
T2D.
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Table S1. Description of Breast Cancer Association Consortium studies from which participants were enrolled
Study 
acronym Full study name Country Study design Case definition Sample size 

in our study
Age 

(years) Reference

HERPACC Hospital-based 
Epidemiologic Research 
Program at Aichi Cancer 
Center

Japan Hospital-based 
case-control study

Incident breast cancer cases that first 
visited Aichi Cancer Center between 
2001 and 2013 and were diagnosed 
within 1 year from the first visit. No  
previous history of any type of cancer.

793 23-79 Kawase T, Matsuo K, Suzuki T, Hiraki A, Watanabe M, Iwata H, 
Tanaka H and Tajima K. FGFR2 intronic polymorphisms interact with 
reproductive risk factors of breast cancer: results of a case control 
study in Japan. Int J Cancer 2009; 125: 1946-1952.

HKBCS Hong Kong Breast 
Cancer Study

Hong 
Kong

Hospital-based 
case-control study

Genetic screening of breast cancer 
patients at high risk from all Hong Kong 
hospitals. Incidence cases classified as 
high-risk group: 1) first-degree relative 
with breast and/or ovarian cancer, 
2) cases where age is ≤ 45 years, 3) 
bilateral breast cancer, 4) triple-negative 
breast cancer, 5) family history of breast 
and/or ovarian cancer. Cases were 
recruited 2006-2014.

547 18-82 1) Kwong A, Ng EK, Law FB, Wong HN, Wa A, Wong CL, Kurian AW, 
West DW, Ford JM and Ma ES. Novel BRCA1 and BRCA2 genomic  
rearrangements in Southern Chinese breast/ovarian cancer  
patients. Breast Cancer Res Treat 2012; 136: 931-3. 
2) Kwong A, Ng EK, Wong CL, Law FB, Au T, Wong HN, Kurian AW, 
West DW, Ford JM and Ma ES. Identification of BRCA1/2 founder 
mutations in Southern Chinese breast cancer patients using gene 
sequencing and high resolution DNA melting analysis. PLoS One 
2012; 7: e43994.

KOHBRA Korean Hereditary 
Breast Cancer Study

Korea Population-based 
case-control study

Breast cancer patients at high risk were 
recruited from nationwide University 
Hospitals from May 2007 to May 2012. 
High-risk status means 1) familial breast 
cancer, 2) early-onset breast cancer (age 
< 40 years), 3) breast and past/current 
ovarian cancer, 4) past/current double 
primary cancers, 5) bilateral breast  
cancer, 6) male breast cancer cases.

1432 19-81 Han SA, Park SK, Ahn SH, Lee MH, Noh DY, Kim LS, Noh WC, Jung 
Y, Kim KS and Kim SW; Korean Breast Cancer Study Group. The 
Korean Hereditary Breast Cancer (KOHBRA) study: protocols and 
interim report. Clin Oncol (R Coll Radiol) 2011; 23: 434-41.

SBCGS Shanghai Breast  
Cancer Genetic Study

China Population-based 
case-control 
study, cohort 
study

Newly diagnosed breast cancer cases 
recruited from 1996 to 2009. Cases 
were identified mostly from the Shanghai 
Cancer Registry. Some cases were 
identified from the Shanghai Women’s 
Health Study.

1243 25-80 Zheng W, Long J, Gao YT, Li C, Zheng Y, Xiang YB, Wen W, Levy S, 
Deming SL, Haines JL, Gu K, Fair AM, Cai Q, Lu W and Shu XO. 
Genome-wide association study identifies a new breast cancer 
susceptibility locus at 6q25.1. Nat Genet 2009; 41: 324-8.

SEBCS Seoul Breast Cancer 
Study

Korea Hospital-based 
case-control study

Consecutive incident cases from two 
hospitals in Seoul recruited 2001-2005.

2123 19-89 1) Lee KM, Choi JY, Park SK, Chung HW, Ahn B, Yoo KY, Han W, 
Noh DY, Ahn SH, Kim H, Wei Q and Kang D. Genetic polymorphisms 
of ataxia telangiectasia mutated and breast cancer risk. Cancer 
Epidemiol Biomarkers Prev 2005; 14: 821-5.
2) Han S, Lee KM, Choi JY, Park SK, Lee JY, Lee JE, Noh DY, Ahn SH, 
Han W, Kim DH, Hong YC, Ha E, Yoo KY and Kang D. CASP8  
polymorphisms, estrogen and progesterone receptor status, and 
breast cancer risk. Breast Cancer Res Treat 2008; 110: 387-93.

TWBCS Taiwanese Breast 
Cancer Study

Taiwan Hospital-based 
case-control study 

Incident cases diagnosed & treated at 
two major teaching hospitals in Taiwan. 
Cases recruited between March 2002 
and August 2005.

504 18-90 1) Hsu HM, Wang HC, Chen ST, Hsu GC, Shen CY and Yu JC.  
Breast cancer risk is associated with genes encoding the DNA 
double-strand break repair Mre11/Rad50/Nbs1 complex. Cancer 
Epidemiol Biomarkers Prev 2007; 16: 2024-32.
2) Ding SL, Yu JC, Chen ST, Hsu GC, Kuo SJ, Lin YH, Wu PE and Shen 
CY. Genetic variants of BLM interact with RAD51 to increase breast 
cancer susceptibility. Carcinogenesis 2009; 30: 43-9.
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Table S2. Instrumental variables for BMI

SNP CHR Position Related gene EA in 
BBJ

OA in 
BBJ

Effect estimate 
(IV-exposure) SE (IV-exposure) P-value EA in 

BCAC
Effect estimate 

(IV-outcome)
SE  

(IV-outcome)
rs10946398 6 20661034 CDKAL1 C A -0.03685 0.00531 3.96E-12 A 0.05068 0.07049
rs2206734 6 20694884 CDKAL1/RPL36AP25 T C -0.03766 0.00546 5.30E-12 C 0.06204 0.06979
rs2328529 6 20631953 CDKAL1 A C -0.03399 0.00558 1.08E-09 C 0.06339 0.07278
rs2328545 6 20653550 CDKAL1 C G -0.03667 0.00532 5.60E-12 G 0.07109 0.06912
rs2328548 6 20716958 CDKAL1/RPL36AP25 A G -0.03114 0.00525 2.99E-09 A -0.06062 0.06873
rs4710940 6 20658012 CDKAL1 C A -0.03691 0.00531 3.69E-12 A 0.07360 0.06945
rs4712522 6 20656800 CDKAL1 G C -0.03692 0.00531 3.64E-12 C 0.07095 0.06944
rs4712525 6 20662966 CDKAL1 T C -0.03683 0.00532 4.20E-12 C 0.05977 0.07015
rs4712526 6 20663035 CDKAL1 A T -0.03684 0.00532 4.19E-12 T 0.05977 0.07015
rs6456367 6 20659587 CDKAL1 A T -0.03690 0.00531 3.80E-12 T 0.06045 0.07016
rs6456368 6 20659806 CDKAL1 C T -0.03689 0.00531 3.82E-12 T 0.06044 0.07016
rs6906327 6 20659459 CDKAL1 A G -0.03690 0.00531 3.77E-12 G 0.06317 0.07017
rs742642 6 20665081 CDKAL1 A G -0.03664 0.00533 6.44E-12 G 0.06232 0.07002
rs7751957 6 20638009 CDKAL1 G C -0.03145 0.00542 6.60E-09 C 0.06829 0.07028
rs7752780 6 20666022 CDKAL1 A G -0.03723 0.00536 3.67E-12 G 0.05977 0.07015
rs7768642 6 20633907 CDKAL1 A G -0.03147 0.00542 6.48E-09 G 0.05730 0.07038
rs7774594 6 20661143 CDKAL1 A T -0.03684 0.00531 4.00E-12 T 0.05977 0.07015
rs9295474 6 20652717 CDKAL1 G C -0.03838 0.00529 4.07E-13 C 0.06168 0.06902
rs9350271 6 20683164 CDKAL1/RPL36AP25 A G -0.03793 0.00544 3.20E-12 G 0.06838 0.06966
rs9356747 6 20725007 CDKAL1/RPL36AP25 A T -0.03220 0.00527 9.83E-10 T 0.07832 0.06923
rs9356748 6 20725097 CDKAL1/RPL36AP25 A T -0.03204 0.00527 1.20E-09 T 0.07400 0.06912
rs9358355 6 20654897 CDKAL1 C T -0.03668 0.00532 5.58E-12 T 0.07855 0.06924
rs9358356 6 20667382 CDKAL1 C T -0.03778 0.00541 2.89E-12 T 0.06411 0.07046
rs9358357 6 20719145 CDKAL1/RPL36AP25 G A -0.03089 0.00525 4.03E-09 G -0.06164 0.06880
rs9358358 6 20719393 CDKAL1/RPL36AP25 C A -0.03071 0.00525 4.93E-09 C -0.05997 0.06873
rs9368216 6 20655110 CDKAL1 G A -0.03669 0.00533 5.58E-12 A 0.07592 0.06923
rs9368219 6 20674691 CDKAL1/RPL36AP25 T C -0.03780 0.00551 6.70E-12 C 0.06645 0.07014
rs9460544 6 20661529 CDKAL1 T G -0.03683 0.00531 4.05E-12 G 0.05977 0.07015
rs9460545 6 20661550 CDKAL1 C T -0.03683 0.00531 4.06E-12 T 0.05977 0.07015
rs9460550 6 20719561 CDKAL1/RPL36AP25 A G -0.03088 0.00525 4.08E-09 A -0.06157 0.06880
rs9465837 6 20624179 CDKAL1 G C -0.03223 0.00546 3.63E-09 C 0.05541 0.07120
rs9465847 6 20634428 CDKAL1 T G -0.03146 0.00542 6.54E-09 G 0.05689 0.07039



Causal relationship between BMI and T2D with breast cancer disease-free survival

6 

Table S3. Instrumental variables for T2D

SNP CHR Position Related gene EA in 
BBJ

OA in 
BBJ

Effect estimates 
(IV-exposure)

SE (IV-
exposure) P-value EA in 

BCAC
Effect estimates 

(IV-outcome) SE (IV-outcome)

rs4481184 3 185505787 IGF2BP2/MIR548AQ C T 0.120618 0.014223 2.25E-17 C -0.00269 0.07968
rs7646518 3 185514931 IGF2BP2/MIR548AQ T C 0.120414 0.014226 2.57E-17 T -0.00291 0.07970
rs4686696 3 185516520 IGF2BP2/MIR548AQ G A 0.120500 0.014227 2.46E-17 G -0.00291 0.07970
rs9465837 6 20624179 CDKAL1 C G 0.152245 0.013805 2.79E-28 C 0.05803 0.07142
rs9356741 6 20625100 CDKAL1 T C 0.073012 0.013328 4.30E-08 C 0.01621 0.07431
rs7768642 6 20633907 CDKAL1 G A 0.150770 0.013649 2.28E-28 G 0.06091 0.07058
rs9465847 6 20634428 CDKAL1 G T 0.150743 0.013648 2.31E-28 G 0.06053 0.07059
rs9295474 6 20652717 CDKAL1 C G 0.154258 0.013403 1.18E-30 C 0.06647 0.06916
rs2328545 6 20653550 CDKAL1 G C 0.165541 0.013501 1.47E-34 G 0.07639 0.06930
rs9358355 6 20654897 CDKAL1 T C 0.165816 0.013502 1.15E-34 T 0.08378 0.06940
rs9368216 6 20655110 CDKAL1 A G 0.166044 0.013515 1.08E-34 A 0.08094 0.06940
rs4712522 6 20656800 CDKAL1 C G 0.166469 0.013494 5.76E-35 C 0.07622 0.06961
rs4710940 6 20658012 CDKAL1 A C 0.166697 0.013495 4.74E-35 A 0.07907 0.06961
rs6906327 6 20659459 CDKAL1 G A 0.167856 0.013515 2.04E-35 G 0.06908 0.07033
rs6456367 6 20659587 CDKAL1 T A 0.167934 0.013522 2.06E-35 T 0.06614 0.07033
rs6456368 6 20659806 CDKAL1 T C 0.167999 0.013524 1.98E-35 T 0.06614 0.07032
rs10946398 6 20661034 CDKAL1 A C 0.168528 0.013553 1.69E-35 A 0.05632 0.07067
rs7774594 6 20661143 CDKAL1 T A 0.168360 0.013532 1.55E-35 T 0.06550 0.07031
rs9460544 6 20661529 CDKAL1 G T 0.168427 0.013533 1.48E-35 G 0.06550 0.07031
rs9460545 6 20661550 CDKAL1 T C 0.168435 0.013534 1.48E-35 T 0.06550 0.07031
rs4712525 6 20662966 CDKAL1 C T 0.168796 0.013542 1.17E-35 C 0.06550 0.07031
rs4712526 6 20663035 CDKAL1 T A 0.168822 0.013543 1.15E-35 T 0.06550 0.07031
rs742642 6 20665081 CDKAL1 G A 0.169795 0.013603 9.34E-36 G 0.06790 0.07019
rs7752780 6 20666022 CDKAL1 G A 0.169947 0.013572 5.67E-36 G 0.06550 0.07031
rs9358356 6 20667382 CDKAL1 T C 0.172022 0.013627 1.57E-36 T 0.06954 0.07062

rs9465871 6 20717255 CDKAL1/RPL36AP25 C T -0.03138 0.00525 2.32E-09 C -0.05877 0.06906
BMI: body mass index; SNP: single-nucleotide polymorphism; CHR: chromosome; BBJ: Biobank Japan Project; BCAC: Breast Cancer Association Consortium; EA in BBJ: effect allele 
of exposure-associated variant from the BBJ; OA in BBJ: other allele of exposure-associated variant from the BBJ; Effect estimate (IV-exposure): the effect estimate of the association 
of the exposure-associated variant and exposure from the BBJ; SE (IV-exposure): the standard error of the association of the exposure-associated variant and exposure from the BBJ; 
P-value: the genome-wide P-value of the exposure-associated variant from the BBJ; EA in BCAC: the effect allele of the exposure-associated variant from the BCAC; Effect estimate 
(IV-outcome): the effect estimate of the association of the exposure-associated variant and breast cancer disease-free survival from the BCAC; SE (IV-outcome): the standard error of 
the association of the exposure-associated variant and breast cancer disease-free survival from the BCAC.
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rs9368219 6 20674691 CDKAL1/RPL36AP25 C T 0.180110 0.013568 3.25E-40 C 0.07065 0.07030
rs9350271 6 20683164 CDKAL1/RPL36AP25 G A 0.180108 0.013491 1.18E-40 G 0.07313 0.06981
rs2328548 6 20716958 CDKAL1/RPL36AP25 G A 0.153592 0.013203 2.80E-31 A -0.06807 0.06897
rs9465871 6 20717255 CDKAL1/RPL36AP25 T C 0.153930 0.013205 2.11E-31 C -0.06668 0.06930
rs9358357 6 20719145 CDKAL1/RPL36AP25 A G 0.152544 0.013202 7.03E-31 G -0.06864 0.06903
rs9358358 6 20719393 CDKAL1/RPL36AP25 A C 0.152246 0.013203 9.16E-31 C -0.06700 0.06896
rs9460550 6 20719561 CDKAL1/RPL36AP25 G A 0.152597 0.013203 6.72E-31 A -0.06856 0.06903
rs62481355 7 127201664 CDKAL1/RPL36AP25 C T 0.086969 0.014236 1.00E-09 T 0.00381 0.07579
rs11558471 8 118185733 SLC30A8 A G 0.111946 0.013346 4.94E-17 A 0.01214 0.07056
rs11774700 8 118220270 SLC30A8 T C 0.107908 0.014330 5.07E-14 T 0.00796 0.07274
rs11187007 10 94214580 MARK2P9/IDE A G 0.116861 0.014190 1.79E-16 G -0.01464 0.08040
rs11187033 10 94262359 IDE T A 0.120688 0.014077 1.01E-17 A -0.02993 0.07617
rs10509645 10 94277866 IDE C A 0.121433 0.014073 6.19E-18 A -0.02828 0.07595
rs10882074 10 94281685 IDE T G 0.122650 0.014222 6.48E-18 G -0.01933 0.07541
rs2421943 10 94311815 IDE G A 0.121901 0.013991 2.97E-18 A -0.01719 0.07542
rs7076966 10 94325511 IDE C T 0.121408 0.013979 3.79E-18 T -0.01418 0.07548
rs12778642 10 94464307 KIF11 G T 0.151447 0.015259 3.24E-23 T -0.03899 0.08492
rs10748582 10 94477219 EIF2S2P3 T A 0.143743 0.016688 7.07E-18 A -0.03441 0.09154
rs7923837 10 94481917 HHEX G A 0.142074 0.016619 1.24E-17 A -0.03208 0.09096
rs7923866 10 94482076 HHEX C T 0.142117 0.016622 1.23E-17 T -0.03208 0.09096
T2D: type 2 diabetes; SNP: single-nucleotide polymorphism; BBJ: Biobank Japan Project; BCAC: Breast Cancer Association Consortium; CHR: chromosome; EA in BBJ: effect allele 
of the exposure-associated variant from the BBJ; OA in BBJ: other allele of the exposure-associated variant from the BBJ; Effect estimate (IV-exposure): the effect estimate of the 
association of the exposure-associated variant and exposure from the BBJ; SE (IV-exposure): the standard error of the association of the exposure-associated variant and exposure 
from the BBJ; P-value: the genome-wide P-value of the exposure-associated variant from the BBJ; EA in BCAC: the effect allele of the exposure-associated variant from the BCAC; 
Effect estimate (IV-outcome): the effect estimate of the association of the exposure-associated variant and breast cancer disease-free survival from the BCAC; SE (IV-outcome): the 
standard error of the association of the exposure-associated variant and breast cancer disease-free survival from the BCAC.


