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Abstract: Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge 
for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-
omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions 
(proteogenomics, proteotranscriptomics or reproductomics), several new “-omics” approaches and exciting pro-
teomics subfields are contributing to basic and advanced understanding of these “multiple diseases termed breast 
cancer”: phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, 
chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degrado-
mics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and 
other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept 
(BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast can-
cer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and 
cancer-associated cells, that reflect the carcinoma’s progression from a “driving mutation” and formation of the 
breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor 
cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where 
each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic 
profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is 
created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated 
cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and in-
travasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation 
and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, 
prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome 
level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in hu-
man tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer 
subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and 
tissular level and can even identify new therapeutic target proteins in clinical studies.
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Breast cancer proteomics in the multi-omics 
era

Breast cancer is a highly heterogeneous malig-
nant disease with various functional pheno-
types [1] that create an extremely challenging 
puzzle of histo-morphologic, proteomic, and 
genomic features. Taken together, these fea-

tures will determine prognosis, predict tumor 
response to different targeted or immune ther-
apies and contribute towards deciding on the 
optimal method for follow-up [2]. The biology of 
breast cancer also depends on the complex 
tumor microenvironment (TME), where a pleth-
ora of cellular and tissular factors, such as  
epithelial and non-epithelial neoplastic cells, 
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tumor-associated stromal cells, infiltrating im- 
mune cells and other adjacent normal or abnor-
mal non-neoplastic cells connected by the vas-
cular network and extracellular matrix (ECM) 
interact and determine clinical behaviour [3]. 
As such, the resulting tumor will always have 
some individually unique characteristics [4], a 
feature of breast cancer that partly explains 
resistance to systemic treatment. 

Nowadays, as we are going through “emerging 
era of high-integrated precision diagnostics” 
[5], proteomics, the study of the large set of 
proteins expressed by an organelle, a cell type, 
a tissue or an organism at a given time [6], has 
become more and more important in both diag-
nosis and treatment. A protein is the basic unit 
of cell function and biological pathway [7]. 
Proteomics information is essential to classify 
the functional subtypes and stages of the 
breast cancer, to decipher its tumorigenesis 
mechanisms, cancer behaviour and aggres-
siveness, to predict recurrence, to assess and 
reduce the cancer cell resistance, to choose 
and monitor the most appropriate breast can-
cer treatment. Breast cancer proteomics com-
plements genomics [8], transcriptomics [9], 
metabolomics [10-13], and epigenomics [14-
16]. In recent years, several other research 
areas have emerged, many of which have been 
applied in breast cancer research: lipidomics 
[17-19], gut and breast metagenomics in order 
to understand the microbiome’s role in breast 
carcinogenesis [20-22], estrobolomics that st- 
udies the aggregate of estrogen-metabolizing 
enteric bacterial genes [23], toxicogenomics th- 
at studies the structure and the genome output 
as well as its responses to adverse xenobiotic 
exposure [24-26], pharmacogenomics that fo- 
cused on the study of the role of the genome  
in drug response [27-29], phylogenomics that 
studies evolutionary history of cancer [30], in- 
teractomics, which deciphers the complex in- 
teractions between tumor molecules, especial-
ly protein-protein interactions (PPIs) [31-33] 
and protein interaction networks (PINs), and it 
is involved in breast cancer prognostic model-
ing [33], and connectomics that studies the 
network interactions between the various com-
ponents of the TME [34]. Integrated proteotran-
scriptomics of breast cancer deciphers new 
disease characteristics [35], revealing the bio-
logical basis of intraoperative radiotherapy-
treated tumors [36], and subtyping of triple-

negative breast cancers (TNBC) [37]. Integrat- 
ed proteomics, transcriptomics and glycomics 
helps to elucidate the biological pathways 
involved in breast cancer metastasis [38]. Hi- 
stopathology, proteogenomics and transcrip-
tomics data integrate multiple biological infor-
mation from breast cancer samples in generat-
ing novel potential predictive biomarkers [39]. 
Proteomics can be situated downstream of 
genomics into an analytic flow that describes 
the translation from the genome characteris-
tics to the phenotypes and functions of breast 
cancer cells [40].

Several promising proteomics subfields also 
contribute to advanced understanding of these 
“multiple diseases that are termed breast can-
cer” [3] at a molecular level: secretomics that 
identifies the secreted proteins in the TME [41-
43]; matrisomics that studies the protein profil-
ing in the tumor ECM; exosomics that focuses 
on the nanostructures released by cells such 
as exosomes from human breast milk [44]; 
angiomics defined as vascular proteomics of 
angiogenesis [45]; phosphoproteomics that 
studies the phosphorylation-based post-trans-
lational modifications of proteins (PTMs) [46-
48]; metalloproteomics focused on the expres-
sion of metalloproteins from different metallo- 
proteomes, including the study of the therapeu-
tic role of matrix metalloproteinases (MMPs) in 
breast cancer [49]; ubiquitinomics that includ- 
es all ubiquitinated proteins [50]; chaperomics 
that studies the chaperones, co-chaperones, 
adaptors, and folding enzymes regulating the 
cellular homeostasis together with the pro- 
tein degradation systems [51]; epichaperomics 
based on epichaperomes involved in proteomic 
alterations associated with malignancy [52]; 
degradomics and terminomics dedicated to  
the protease degradome and terminome [53]; 
metadegradomics defined as the N-terminome 
analysis of proteases in tissues and organs 
[54]; adhesomics that focuses on the study of 
cell-to-cell and cell-to-ECM adhesion proteins 
[55]; stressomics that studies the protein 
expression in response to stress; microbiomics 
based on the composition and role of the gut, 
breast, milk [56], urogenital and skin microbi-
ome [57] as a risk factor in breast cancer. The 
next-generation of breast cancer “-omics” in- 
cludes immunomics [58], nutrigenomics [59], 
and other biomics approaches to explore the 
organism level [3]. For example, salivaomics 
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[60], tearomics, and milkomics could be se- 
veral promising fields that include proteomics 
technologies as a source of non-invasive bio-
markers in early detection, disease monitoring 
and prognosis assessment for breast cancer. 
While the single-level omics approaches have 
contributed to the identification of cancer-spe-
cific molecular aberrations or to the classifica-
tion of tumors, the onco-multi-omics approach-
es assess cancer cells and tissues in multiple 
ways which allow for the deciphering of molecu-
lar mechanisms involved in carcinogenesis and 
increases the likelihood of validating new bio-
markers that shape the field of personalized 
oncomedicine [61].

Protein separation technologies and mass 
spectrometry (MS) assessments, especially 
matrix-assisted laser desorption/ionization ti- 
me-of-flight mass spectrometry (MALDI-TOF 
MS), have become essential tools in this field 
[62], enabling the identification and quantifica-
tion of large sets of proteins that can be moni-
tored simultaneously in a single sample. MS- 
based proteomics analysis contributes to dem-
onstrate the intertumor heterogeneity across 
different breast cancers subtypes and com-
pared to healthy controls, which can impact 
cancer treatment [63], enhancing the precisi- 
on and accuracy in discovery and validation  
of candidate protein biomarkers. MALDI-mass 
spectrometry imaging (MSI) allows the analysis 
of heterogeneous tumor samples to differenti-
ate cancer from healthy regions, in order to 
remove the need for laser capture microdissec-
tion [64]. Thus, histology-directed MALDI-MSI 
may help to elucidate the molecular origins of 
cancer and the tissue transformation under 
breast oncogenic stress [65]. MALDI-TOF MS  
is also a good analytical tool to distinguish 
between specific plasma peptidome of breast 
cancer patients and healthy controls [66], but  
it is also suitable for molecular profiling of solid 
tumors [67]. MALDI-TOF and surface-enhanc- 
ed laser desorption/ionization (SELDI)-TOF MS 
offer proteomic-based profiling analyses of tu- 
mor for discovering and validating novel bio-
markers of breast cancer [9]. In order to detect 
and quantify cancer-related expression of pro-
teins and their isoforms, large-scale integration 
of genomic, bottom-up and top-down proteomic 
data for the comparative analysis of human-in-
mouse xenograft models of basal-like and lumi-
nal human breast cancer have been published 

[68]. Together, MS-based proteomics, the enzy- 
me-linked immunosorbent assay (ELISA) and 
immunohistochemistry (IHC) techniques are 
widely involved in plasma-, tissue- or cell-bas- 
ed investigation for enzymatic and non-enzy-
matic PTMs as biomarkers in breast cancer 
[69]. Thus, MS is the most flexible and general 
tool available today for the PTMs study, which 
can “open a window on a normally hidden 
cross-section of the proteome” [70]. A general 
proteomics experiment is presented in Figure 
1, while the principles of bottom-up and top-
down proteomics are presented in Figure 2. A 
workflow strategy for identification of two types 
of PTMs (glycosylation and phosphorylation) is 
shown in Figure 3. Finally, strategies for pro-
teins quantification in a proteomics experiment 
are shown in Figure 4.

Breast cancer subtypes

From an anatomical stand point, breasts  
are dynamic modified tubuloalveolar apocrine 
sweat glands [71], composed of skin, subcuta-
neous tissue, parenchyma, and stroma, which 
are considered vestigial organs in male [72]. 
Parenchymal architecture of the mammary 
gland involves a network of branching ducts 
and terminal secretory lobules. There are 15 to 
20 lobes radiating out from the breast nipple, 
and each lobe is made by 20 to 40 lobules, 
which consists of about 20 to 30 clustered 
alveoli or acini containing mammary secretory 
epithelial cells [71]. All acini that open into the 
same terminal duct form the terminal ductal 
lobulo-alveolar/lobular unit (TDLU) where most 
breast tumors arise [73]. Mammary lobules are 
the functional units of the breast, ensuring the 
synthesis of milk. A lactiferous duct drains each 
lobe. The preponderance of glandular tissue in 
the upper outer quadrant (UOQ) of the breast 
makes this anatomical region the most com-
mon site for the development of the breast  
carcinoma [74], while the lower inner quadrant 
(LIQ) was cited with a lowest frequency of 
tumorigenic process [75].

Histologically, both breast ducts and TDLUs are 
bilayered with two main breast cell populations, 
displaying specific patterns in their normal pro-
tein profiles [76]: an apically oriented luminal 
epithelial layer lining the lumen and ensuring 
the secretion of milk during lactation, with po- 
larized cuboidal cells expressing cytokeratin 8 
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(CK8), CK18, as well as the estrogen receptor 
(ER), progesterone receptor (PR), and human 
epidermal growth factor receptor-2 (HER2) 
[77], and an outermost contractile semi-con- 
tinuous and spindle-shaped myoepithelial/ba- 
sal layer/myoepithelium resting on the base-
ment membrane that separates the breast  
epithelium and the surrounding stroma [78], 
expressing p63 in the nuclei [79], and cyto- 
plasmic CK5, CK14, and smooth muscle actin 
(SMA) that sustains the contractile function 
allowing the milk ejection [77]. Compared with 
its more common female counterpart, in situ 
male breast carcinoma (MBC) is a rare malig-
nancy, emphasizing different histopathologic 
differences that reflect the gender-specific 
anatomy of the breast [80]. MBC express many 
of the same biomarkers as female breast can-
cer (FBC) [81], but the androgen receptor (AR) 
is expressed in the majority of MBC [82]. 

Breast cancer classification has been the focus 
of numerous worldwide efforts [63]. A recent 
integrative scheme for assessing breast can- 
cer subtypes has been published [2]. The main 
types of breast cancer are classified as in situ/
non-invasive (IS) and invasive or infiltrative car-

cinoma, both of which can have a ductal or a 
lobular origin: ductal carcinoma in situ (DCIS), 
lobular carcinoma in situ (LCIS), invasive lobu-
lar carcinoma (ILC), and invasive ductal carci-
noma (IDC). Based on discriminatory protein 
profiles obtained by MALDI MS analysis, breast 
cancers have been additionally divided into five 
main subtypes: luminal A (LA) and luminal B 
(LB), characterized by the expression of lumi-
nal/epithelial markers [83], showing positive 
estrogen receptor (ER+) and/or positive pro- 
gesterone receptor (PR/PgR+) expression [2], 
the HER2-enriched tumors, with a human epi-
dermal growth factor receptor 2 (HER2/neu 
tyrosine kinase receptor) overexpression, the 
normal breast-like group closest to the molecu-
lar profile of a normally mammary gland, and 
triple negative breast cancers (TNBC), that 
does not express ER, PR or HER2, character-
ized by poor prognosis, high recurrence, poor 
overall survival and no well-defined molecular 
targeted treatment [84]. Recent classification 
based on histopathology and gene expression 
additionally defines four TNBC subtypes: ba- 
sal-like 1, basal-like 2, mesenchymal-like, and 
luminal androgen receptor-like (LAR), without 
significant differences in prognosis [64]. TNBC 

Figure 1. Schematic of a general proteomic workflow. A sample can be fractionated (i.e., by electrophoresis) and 
then digested by trypsin (in-gel digestion), or digested in-solution by trypsin. The peptides mixture is then ionized 
(with or without separation by reversed phase chromatography). Peptides are then ionized and their corresponding 
m/z is measured in the MS mode under low collision energy, or fragmented and then measured in MS/MS mode 
under high collision energy. Data analysis using protemics software leads to identification of a peptide that is part 
of a protein, thus also identifying the protein.
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with basal-like features (TNBC-BL) is a subtype 
defined by a proteomic landscape similar to  
the basal/myoepithelial cells of the breast. This 
subtype is often associated with overexpres-
sion of tumor protein p53 as a biomarker of 
poor prognosis, due to several mutations in 
p53 gene that inhibit its function as a transc- 
riptional repressor of several oncogenes [85], 
and Ki67, an important proliferation biomarker 
[86]. Also, TNBC-BL is more aggressive and has 
higher rates of lymph node metastasis than the 
non-BL type [87]. A study based on sequential 
windowed acquisition of all theoretical frag-
ment ion spectra (SWATH) MS proteotype pat-
terns showed that the TNBC are the most het-
erogeneous [88]. Results obtained from the 
transcriptoproteomics approaches have sug-
gested another classification of TNBC: mole- 
cular apocrine (C1-characterized by luminal  
and androgen-regulated proteins), basal-like 
immune-suppressed (C2-associated with inva-

to be a “complex orchestra of proteins” [91] 
involved in many essential pathological path-
ways: tumour initiation and progression, neo-
angiogenesis, metabolic reprogramming, stem 
cell maintenance, response resistance to che- 
mo- and radiation therapy, apoptosis [92], and 
metastasis steps, such as the epithelial-mes-
enchymal transition (EMT), local tissue inva-
sion, intravasation, homing, mesenchymal-epi-
thelial transition (MET), extravasation, priming, 
licensing, initiation and progression at the pre-
metastatic niche level [93], and during meta-
static niche formation [94]. 

Breast cancer cell continuum concept 
(BCCCC) & breast cancer proteomic continu-
um concept (BCPCC)

During the whole extremely complex neoplas- 
tic process, a Breast Cancer Cell Continuum 
Concept (BCCCC) could be modeled based on 

Figure 2. Bottom-up and top-down proteomics. In bottom-up proteomics, 
the protein mixtures are digested and the peptide mixtures are analyzed by 
LC-MS and LC-MS/MS (shotgun approach) or separated by electrophoresis 
and then individual proteins are digested and analyzed by MALDI-MS in a 
method called peptide mass fingerprinting. In top-down proteomics, the in-
dividual proteins (or a mixture of proteins) are analyzed for molecular mass 
in MS mode or fragmented to provide partial fragments in MS/MS mode. 
Using this approach, the target protein’s mass is identified and its amino 
acid sequence confirmed by MS/MS fragmentation.

sion and ECM) and basal-like 
immune response (C3-asso- 
ciated with interferon pathway 
and immunoglobulins) [37]. 
Similarly, the “-omics” approa- 
ch has also identified a novel 
LA breast cancer subtype ch- 
aracterized by increased phos-
phoinositide 3-kinase (PI3K) 
signalling, a critical transduc-
tion system linking oncogenes 
and different receptor classes 
to many important cellular 
functions and considered one 
of the most activated signall- 
ing pathway in human cancer 
[89], highlighting the additional 
value of clinical proteomics in 
breast cancer to discover spe-
cific features not available by 
genomic approaches [63]. The 
majority of MBC are classified 
as luminal A subtype [82]; 
based on the differences in 
molecular profiles and outco- 
me, luminal M1 and luminal 
M2 stable subgroups have be- 
en characterized as different 
from the subgroups described 
in female breast cancer (FBC) 
[90]. 

Therefore, the tumour tissue 
proteome can be considered  
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Figure 3. General strategy for identification of two major PTMs: phosphorylation and glycosylation.

Figure 4. Examples of methods for quantitative proteomics using labeled tags. The samples labeled case and con-
trol are mixed at the protein level prior fractionation and digestion (e.g., using classical SILAC or ICAT methods) or 
first labeled at the protein level with a tag (i.e. with iTRAQ or TMT) for and then mixed and further fractionated and 
digested. In this case, more than one labeled condition can be used (e.g., case 1, 2, 3). In the last case, chemical 
labeling happens at the peptide level, i.e., after the samples were fractionated and digested. Note that this method 
can target all peptides (global acetylation and deuterated acetylation), or specific peptides, i.e. using absolute 
quantitation (AQUA) peptides. Note that AQUA is an internal standard peptide custom-built to quantify a particular 
peptide. Note that internal standard peptides (other than AQUA peptides) can be used and applied to all proteomics 
methods discussed in this figure.
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the idea that successively integrated popula-
tions of heterogeneous tumor and cancer asso-
ciated-cells progress from a “driving mutation” 
that leads to the primary tumor, toward the dis-
tant secondary tumors in different tissues and 
organs, via circulating tumor cell populations 
(CTCs) as an intermediate stage. The complexi-
ty of cancer is a consequence of the spatial and 
temporal genetic, epigenetic and phenotypic 
heterogeneity of tumor cells that compose the 
tumor tissue, and of the bidirectional relation-
ship with their surrounding tissue microenviron-
ment [95]. There are a multitude of data sug-
gesting that a plethora of extrinsic and intrinsic 
breast cancer risk factors [96] may influence 
the histo-molecular profile of the normal breast 
tissue even before cancer develops [97] or dur-
ing the neoplastic progression, resulting in pla- 
sticity of the tumor under stress: age [98], gen-
der [99], ethnicity [100], genetics [101], thorac-
ic irradiation [102], lifestyle and obesity [103], 
alcohol consumption [104] and cigarette smok-
ing [105], diet and environmental contaminants 
[106], exposure to oral contraceptives [107], 
hormonal replacement therapy and hormonal 
treatment in transgender people, especially in 
trans-women [108], breastfeeding [100], nulli-
parity [109] and time since last birth [110], 
height and early-life body size, menopausal  
status/later onset of menopause, menstrual 
phase, and personal history of breast atypical 
hyperplasia [111]. 

The BCCCC is useful for understanding the step 
by step differentiation pattern and the versatile 
behaviour of neoplastic cells and their adjacent 
cell-related and microenvironmental adapta-
tions. Most tumors originate in a unique cell, 
due to an aberrant genetic event that differen-
tially affects cellular functions by altering the 
expression and activity of normal proteins and 
their isoforms [112], according to their host  
cell characteristics [113]. During tumorigene-
sis, cancer cells acquire additional aberrations, 
each tumor becoming a puzzle of multiple sub-
clones as consequence of “passenger muta-
tions” [112]. Intratumoral heterogeneity is a 
consequence of these cell subpopulations wi- 
th different features, such as modified pheno-
types, adapted proteomic profiles, behaviour, 
tumorigenicity, treatment resistance and me- 
tastatic potential [112]. Proteomics datasets 
based on MS may highlight the complex rela-
tionship between genomic alterations and can-

cer cell phenotypes, being extensively involv- 
ed in “bridging the gap between genotype and 
phenotype” [40]. Thus, the BCCCC can be wide-
ly sustained by a Breast Cancer Proteomic 
Continuum Concept (BCPCC), whereas each 
phenotype of neoplastic and tumor-associated 
cells is characterized by a changing and adap-
tive proteomic profile detected in solid or liquid 
biopsies, by complex proteomics approaches, 
beginning with the proteomic landscape of dif-
ferent neoplastic and cancer-associated cells, 
followed by subsequent analysis of protein bio-
markers involved in epithelial-mesenchymal 
transition (EMT) and intravasation, circulating 
tumor cells (CTCs) proteomics, and finally by 
protein biomarkers that highlight the extrava- 
sation and distant metastatic invasion. Both 
BCCCC and BCPCC rely on the analysis of can-
cer cells and their microenvironment, which in 
turn is shaped by various cellular and non-cellu-
lar factors. This complex interaction is unique 
to each individual tumor and despite constant 
on-going research none of the current theories 
is universally accepted in the scientific commu-
nity. Even most breast cancers arise form a 
mammary ductal cell, available data suggest 
that any type of cell within the breast tissue is 
susceptible to neoplastic switch and that each 
individual type of non-cancer cell plays an im- 
portant role in shaping the future TME and, 
subsequently, cancer progression and metas-
tasis. In the following paragraphs, the key cel-
lular and non-cellular players involved in BCCCC 
and BCPCC will be discussed.

Cells of origin in breast cancer 

Stem cells 

Stem cells are able to self-renew and to differ-
entiate into any cell type of the organism [114]. 
The adult breast stem (BSCs) and progenitor 
cells disseminated among normal mature cells 
support the capacity of the mammary gland to 
structurally modify and functionally adapt dur-
ing menstrual cycle, pregnancy and lactation 
[115]. There is a multidirectional relationship 
between stem, progenitor and differentiated 
cells and any abnormality in these interactions 
could lead to differentiation of normal stem 
cells into cancer stem cells (CSCs) or to de-dif-
ferentiation of progenitor or mature epithelial 
cells into CSCs [116]. BSCs possess infinite 
proliferation, self-renewal, multi-directional dif-
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ferentiation, long-term survival and expansion 
[73], while progenitor cells are characterized by 
a high proliferative potential; both stem and 
progenitor cells have been proposed as cells of 
origin in breast cancers [73]. CSCs are a puta-
tive source of metastasis-initiating cell (MIC) 
subpopulations [117].

There are two theories that explain the origin of 
breast cancer stem cells (BCSCs). The first one 
is based on the fact that the BCSCs arise from 
either mammary stem cells (MaSCs) or progeni-
tor cells that retain their immortal proprieties 
through morphogenesis; the second hypothe-
sis suggests that the BCSCs are created 
through the reprogramming of mature cells that 
after being exposed to damaging environmen-
tal factors acquire genetic alterations, inducing 
their de-differentiation and regaining the stem-
like proprieties that lead to new generations  
of BCSCs [118]. Two additional hybrid models, 
wherein these two concepts merge, have been 
proposed to explain the tumor heterogeneity 
and plasticity: the BCSCs hypothesis suggests 
that only BCSCs are drivers of tumor growth 
with unlimited capacity for proliferation and 
metastasis, and the clonal evolution model is 
based on the concept that cancer arises from 
any differentiated cell of mammary tissue, 
which acquires BCSCs characteristics through 
various mutations, as an adaptive response to 
environmental stress mediated by the TME 
[116]. The cancer stem cell model sustains that 
the cellular diversity and tumor hierarchy are 
generated by the BCSCs [119], which are char-
acterized by a high heterogeneity, different 
breast cancers emphasizing distinct subtypes 
and frequencies of BCSCs, involving numerous 
cellular biomarkers and regulatory signal path-
ways, and contributing to tumorigenesis and 
treatment resistance [119]. BCSCs can self-
renew and asymmetrically divide to more differ-
entiated cancer cells [120] and almost all epi-
thelial tumors contain cancer stem-like cells 
[121]. A limited subpopulation of tumor-initiat-
ing cells (TICs), the CSCs also called tumor-
propagating cells, is recognized to drive tumori-
genesis, whereas they maintain a high self- 
renewal and differentiation potential during se- 
veral generations in xenotransplants and ma-
nifest the capability to remake the primary 
tumor intraheterogeneity by asymmetric divisi- 
on [122], and to induce the initiation, progres-
sion, metastasis and recurrence of tumor [123], 

also increasing colony formation and sphere 
forming ability [121]. Additionally, a recent work 
suggests that CSCs can also be the cells of ori-
gin for non-tumorigenic-differentiated stromal 
cells, such as cancer-associated fibroblasts 
(CAFs), tumor endothelial cells (TECs), tumor-
associated adipocytes (TAAs) and tumor-asso-
ciated macrophages (TAMs), into an experi- 
ment that used induced pluripotent stem cells 
(iPSCs), which were reprogrammed from nor-
mal cells [124].

Nevertheless, the eradication of BCSCs repre-
sents a promising insight in breast cancer mo- 
lecular-targeted therapy [125]. A comprehen-
sive review on the proteome of BCSCs empha-
sizes the main classes of specific protein bio-
markers [126]: cell surface proteins, such as 
cluster of differentiation CD24/CD44, CD90/
Thy-1 that was overexpressed in human malig-
nant breast cancer lines, while CD14 was high- 
ly expressed as a stem cell biomarker in a nor-
mal breast cell line [127], human cripto-1 (Cr-1), 
also known as teratoma/teratocarcinoma-de- 
rived growth factor 1 (TDGF-1) involved in stem 
cell maintenance and malignant progression 
[128], and the epithelial cell adhesion molecule 
(EpCAM), which also contributes to the promo-
tion of bone metastases [129]; signalling pa- 
thways proteins, such as those involved in the 
Notch pathway that has an important participa-
tion in BCSCs survival and self-renewal [130] 
as well as in breast cancer cells growth, migra-
tion, metastasis and angiogenesis [131], sonic 
hedgehog (Shh) and Wnt/β-catenin or Wnt/
CTNNB1 [132] pathways involved in maintain-
ing the stem characteristics of BCSCs [133], 
nuclear factor-κB (NF-κB) and phosphoinositide 
3-kinase/Akt/mammalian target of rapamycin 
(PI3K/Akt/mTOR) signalling pathways [134], 
Hippo tumor suppressor pathway [135], the 
Janus kinase and signal transducer and acti- 
vator of transcription (JAK-STAT) pathway that 
may represent a characteristic of BCSCs [136], 
and transforming growth factor (TGF)/SMAD 
pathway [137]; detoxifying proteins, such as 
ATP-binding cassette (ABC) transporters and 
aldehyde dehydrogenase (ALDH) that increa- 
se the cell resistance to anti-cancer drugs; 
communication proteins, such as connexines 
(Cx) involved in gap junctional communication 
[138], chemokine receptors like CXC chemo-
kine receptor type 4 (CXCR4/CD184), a speci- 
fic receptor for stromal-derived-factor-1 (SDF-
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1/CXCL12) involved in cell survival, prolifera-
tion, migration, and metastasis [139], different 
growth factor receptors, such as epidermal gr- 
owth factor receptor (EGFR), fibroblast growth 
factor receptor (FGFR) [140], insulin-like growth 
factor receptor (IGFR) [141], insulin receptor 
(IR) [142], platelet-derived growth factor re- 
ceptor (PDGF), transforming growth factor beta 
(TGF-β) receptor [137] or tyrosine kinase (c-Kit) 
receptors, and adhesion molecules, such as 
cadherins and integrins (ITGs); transcription 
factors, such as octamer-binding transcription 
factor 4 (OCT4), a stemness biomarker [143], 
SRY-box transcription factor 2 (SOX2) that pro-
motes cell proliferation and metastasis in TNBC 
[144], Nanog protein that acts in maintaining 
the undifferentiated characteristics of pluripo-
tent stem cells and can be used as a biomark- 
er for prognostic prediction in breast ductal car-
cinoma [145], Krűppel-like factor 4 (KLF4) that 
maintains stem-like characteristics and pro-
motes cell migration and invasion [146], and 
c-MYC protein that mediates cancer stem-like 
cells and EMT changes in TNBC [147].

In order to identify a stem cell niche residing in 
ducts and progenitor cells zones in lobules, two 
biomarkers have been used: cytokeratin CK14, 
that marks the myoepithelium, and CK19, a 
cytoskeletal protein that is overexpressed in 
breast cancer cells [148], which allows for the 
changeover of one type of cytoskeleton in the 
other [149]; the mammary stem cell activity 
could be also emphasized on the basis of sur-
face markers, such as CD49f/α6-integrin and 
EpCAM that is expressed in basal membrane  
of normal epithelial cells but is upregulated 
[150] and identified as a biomarker for CSCs 
[129]. The keratin profiles suggest that CK19+/
CK14+ stem cells reside in ducts [149]. The cell 
surface expression of the adhesion molecules 
CD44+ and CD24-/low Lineage- tumorigenic cells 
as well as phenotypically diverse populations of 
non-tumorigenic cells have been emphasized 
using a human breast cancer model, where the 
cells were grown in immunocompromised mice 
[151]. A high CD44+/CD24-/low ratio associated 
with cell proliferation and tumorigenesis, and 
ALDH1+, a strong indicator for cell migration 
and metastasis [117], are widely used as BC- 
SCs biomarkers, from primary tumors to CTCs 
and disseminated tumor cells (DTCs). Normal 
and neoplastic human breast epithelial cells 
with increased ALDH activity have stem/pro-

genitor proprieties [152]. The BCSCs are also 
involved in resistance to chemotherapy and 
radiotherapy [153]. The phenotypic plasticity 
enables BCSCs to switch between mesenchy-
mal and epithelial-like states; the BCSCs in 
EMT process express CD44+/CD24-/low, while 
during the MET state express ALDH1 as bio-
marker, this transition between these two afor-
mentioned states being essential for their abil-
ity to invade and grow at the metastatic primary 
and distant sites [154]. The overexpression of 
CD24, as a highly glycosylated mucin-like anti-
gen, was associated with a poor prognosis in 
LA and TNBC [155], and also in HER2-enriched 
and BL breast cancer [156]. Serum CD44 can 
be an independent prognostic biomarker in pri-
mary breast cancer [157]. Tumors with high 
expression of CD44+/CD24-/low were shown  
to quickly relapse through bone metastases 
[158]. Many other protein biomarkers have 
been discovered both on cell surface and in  
the cytoplasm of BCSCs [120]. Protein C re- 
ceptor (Procr) is a surface biomarker on MaSCs 
from the basal layer of the normal mammary 
gland and is expressed in some TNBC sub-
groups, where it is implicated in tumor progres-
sion [159] via stimulation of multiple signalling 
pathways such as Procr-dependent ERK and 
PI3k/Akt/mTOR through Src kinase and trans-
activation of IGF-1R [160]. A dysregulation of 
pathways of stemness and self-renewal involv- 
ed in cancer invasiveness, blood spreading  
and metastases, such as Wnt, PI3k/Akt/FOXO, 
TGF-β and Notch was also described [161]. 
Cells that express CD133+ or prominin 1 
(PROM1), a transmembrane glycoprotein found 
in epithelial and non-epithelial cells, have a 
greater colony-forming efficiency, higher prolif-
erative rate and greater ability to form non-in- 
vasive and invasive breast tumors, supporting 
CD133 as a suitable biomarker for the identifi-
cation of BCSCs in the most aggressive sub-
types of cancer [162]. In invasive breast can-
cer, CD133 expression was positively assoc- 
iated with proliferation biomarkers including 
p16, cyclin E and Ki67, correlated with higher 
expression of other BCSCs biomarkers, such as 
CD24/CD44, SOX10, ALDH1A3 and α6-integrin 
[163]. Stem-like and EMT-like breast cancer 
cells show the highest expression of SOX10, a 
member of family transcription factors that 
induce preferential differentiation [164]. In me- 
tastatic breast cancer models and cancer cell 
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lines, hypoxia-inducible factors (HIFs) are well 
known to be mediators of tumor growth, EMT 
and metastasis, as well as promoters in main-
taining of BCSCs activity; α6-integrin is directly 
regulated by HIFs and mediates interactions 
with ECM [165]. 

Luminal epithelial cells

The clonal evolution model is based on the con-
cept that cancer arises from any differentiated 
cell type of mammary tissue which acquires 
BCSCs characteristics via mutations and sig-
nals received from the TME [116]. Breast can-
cer can progress from non-neoplastic luminal 
cells through the epithelial hyperplasia, atypi-
cal ductal hyperplasia (ADH) and atypical lobu-
lar hyperplasia (ALH), ductal and lobular carci-
noma in situ (CIS) and ductal and lobular in- 
vasive carcinoma (IC) [166]. Most human solid 
tumors originate in epithelial cells that are in- 
terconnected by tight and adherens junctions 
and desmosomes [167], which minimize the 
epithelial cell mobility [168]. The desmosomal 
proteins play an essential role in neoplastic 
progression or suppression [169], the loss of 
cell-cell adhesion being an essential step in 
progression of metastatic cascade [170]. Dur- 
ing the EMT process, the epithelial cells dis-
solve cell-cell adhesions, reorganize their cyto-
skeleton, and transform into spindle-shape 
mesenchymal cells with migratory and invasive 
behaviour, emphasizing an overexpression of 
mesenchymal biomarkers, such as neural cad-
herin (N-cadherin), vimentin, fibroblast-speci- 
fic protein (FSP1), and smooth muscle α-actin 
(SMA) [168]. A poor relapse-free survival was 
associated with a high preoperative expression 
of N-cadherin in peripheral blood or breast 
tumor tissues [171]. In addition, two novel me- 
tastasis inducers in breast cancer, DnaJ homo-
log subfamily B member 4 (DNAJB4) and CD81 
have been identified, concluding that their sup-
pression results in decreased cell migration 
and reduces primary tumor growth, extravasa-
tion and lung metastasis [172].

The epithelial cadherin (E-cadherin) is normally 
expressed in adherens junctions of breast epi-
thelial tissue and it is downregulated in breast 
cancer, the absence of its expression being  
frequently observed [173]; additionally, a low or 
the loss of E-cadherin expression is associated 
with lymph node metastasis in IDC and a poor 

prognosis [174]. The E-cadherin-to-N-cadherin 
switch is a hallmark of EMT [168]. E-cadherin 
expression in lymph node metastases is lower 
than in primary sites [175]. β-catenin expres-
sion and location might serve as well as a bio-
marker in human [176] and mice [177] breast 
cancer. Perturbations in β-catenin proteasomal 
destruction result in its cytoplasmic accumula-
tion and translocation in the nucleus, where it 
promotes the transcription of many oncogenes 
[178], contributing to tumor growth, cell migra-
tion and metastasis. In TNBC, β-catenin expres-
sion was associated with poor survival [179]. 
Mucins (MUCs) are large transmembrane glyco-
proteins that are expressed on the apical sur-
face of almost all glandular epithelial cells and 
overexpressed in many adenocarcinomas, met-
astatic tissues, CTCs, and serum samples (as 
free or antibody-complexed mucin forms) from 
patients with breast cancer [180], where their 
abnormally high expression indicates a poor 
prognosis [181]. In cells that undergo tumori-
genic changes, mucins suffer glycosylation as 
the main PTM and are translocated in cyto-
plasm where, following a proteolytic cleavage 
and nuclear translocation of MUC1 cytoplasmic 
domain (MUC1-CD), they can drive transcription 
of pro-invasive genes [182]. Together, MUC1, 
β-catenin and proto-oncogen tyrosine-protein 
kinase Src initiate changes in cytoskeleton and 
adhesive capability of transformed cells and, 
furthermore, by its interactions with intercellu-
lar adhesion molecule 1 (ICAM-1/CD54) and 
EGFR, activate their pro-metastatic capacity 
[182].

Another relevant protein family for luminal cells 
are CKs. In healthy breast tissues, both myo-
epithelial and luminal epithelial cells express 
the high-molecular-weight keratin CK5/6 in dif-
ferent quantities [183]. In normal breast tissue, 
CK7, CK8, CK18 and CK19 are expressed in 
the ductal epithelium, CKs IHC playing a key 
role in diagnosis, classification and prognosti-
cation of breast carcinoma; CK7 and CK8 
showed the highest expression in all different 
subtypes of breast carcinoma, in particular for 
high-grade tumors [184]. Primary breast carci-
nomas showed changes in CK expression dur-
ing metastatic progression to lymph nodes 
[185]. CK5/6 and clone 34βE12 in conjunction 
with ER may be helpful for a correct diagnosis 
of various stages of breast cancer [186]. 
Syndecan-1 (SDC1) is involved in the differenti-
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ation and prognosis of breast cancer [187] and 
breast cancer metastasis in the brain, support-
ing breast cancer cells migration across the 
blood-brain-barrier (BBB) [188]. The aberrant 
expression of stromal fibroblast-derived SDC1 
stimulates breast carcinoma cells and induc- 
es stromal ECM fibers alignment, creating an  
invasive-permissive microenvironment [189]. 
Therefore, SDC1 is a novel molecular biomark-
er for inflammatory TNBC, modulating the can-
cer stem cell phenotype via IL6/STAT3, Notch 
and EGFR signalling pathways [190]. The major-
ity of claudin (CLDN)-low breast tumors are 
aggressive TNBC characterized by low expres-
sion of genes involved in tight junctions and 
epithelial cell-to-cell adhesion proteins, such  
as claudins (CLDN) 3, 4 and 7, occludin (OCLN) 
and E-cadherin [191], associated with mesen-
chymal and stemness cells features [192]. 
CLDN-low breast cancers are characterized by  
low to absent expression of luminal biomarkers 
and closely resembles MaSCs, that leads to the 
idea that the MaSCs could be the cell of origin 
for this breast cancer subtype [193]. CLDN 5 is 
expressed in tight junctions of both epithelial 
and endothelial cells, and its expression was 
associated with cell motility and metastasis of 
human breast cancer [194]. The subfamilies of 
WASP/WAVE family, WASP and WASP verprolin-
homologous protein (WAVE), are involved in 
control of actin polymerization through activa-
tion of the actin-related protein (Arp) 2/3 com-
plex, which is essential for the formation of the 
small specialized actin-based protrusions 
called invadopodia [195], necessary for breast 
cancer cell motility to provide migration and 
invasion [196]. The introduction of CLDN 20 in 
breast cancer cell lines MDA-MB-231 and 
MCF7 resulted in aggressive tumor cells and 
reduced the trans-epithelial resistance [197]. 
The expression of OCLN as well as CLDN is lost 
in human breast cancer and presents a rela-
tionship with bone metastasis, OCLN leading to 
complex changes in human cancer cells [198]. 
The abnormal localization of OCLN and CLDN in 
mammary epithelial monolayers leads to apop-
tosis [199]. On the other hand, the desmoglein 
2 (Dsg2) may act as a tumor suppressor [170], 
and human desmocollin 3 (Dsc3) shows a sig-
nificant downregulation in breast cancer cell 
lines and primary breast tumor [200]. p53 pro-
tein is a multifunctional transcription factor 
that controls a great number of genes involved 
in cell cycle control, apoptosis, DNA repair and 

angiogenesis [201]; p53 promotes tumor cell 
death, its down-regulation and mutations con-
tributing to tumorigenesis and cancer progres-
sion [201]. The serological high level of the 
mutant p53 is a promising biomarker for the 
assessment of the prognosis of breast cancer 
patients from early stages of malignancy [201]. 
Additionally, matrix metalloproteinases (MMPs) 
that degrade and modify cell-ECM and cell-cell 
adhesion junction proteins were found to be 
up-regulated in breast cancer and are currently 
associated with carcinogenesis, cancer cell 
invasion and metastasis. The tumor cells pro-
duce MMP enzymes and growth factors that 
may facilitate invasion of neoplastic cells [202].

Within normal breast epithelium of premeno-
pausal women there are only 3-7% ER+ cells, 
12-29% PR+ cells, and 3% Ki67+ cells [97]. ER 
and PR are expressed in approximatelly 80% 
and 60-70% of breast carcinoma respectivelly, 
while HER2 oncoprotein is overexpressed in 15 
to 20% of primary breast carcinoma [112]. LA 
and LB subtypes are defined by the ER positive 
expression that responds to the antiestrogen 
therapy, and TNBC (ussually basal-like) lacks 
expression of ER, PR, and HER2 [119]. Post- 
menopausal women have higher expression of 
ER and lower expression of Ki67 when com-
pared with premenopausal women [203]. Sig- 
nal transducer and activator of transcription 3 
(STAT3), an important member of the transcrip-
tion factors family, is aberrantly active in many 
breast cancers [204]. Mammary epithelial cells 
secrete and absorb nipple aspirate fluid (NAF) 
that could contain exfoliated epithelial cells 
from the ductal/lobular system [111]. The use 
of NAF analysis as a breast-specific liquid biop-
sy is necessary for the early detection of breast 
cancer by biomarker profiling [84]. The pres-
ence of epithelial cells within NAF as a conse-
quence of excessive growth and the exfoliation 
of epithelium is associated with breast cancer 
risk and could be a useful biomarker [205].

Myoepithelial cells

Basal/spindle/myoepithelial cells (MECs) are 
contractile hybrid of both smooth muscle cells, 
characterized by smooth muscle actin (SMA) 
and smooth muscle myosin (SMM) as biomark-
ers, and epithelial cells, with E-cadherin-me- 
diated cell-cell junctions, as well as epithelial 
CKs as intermediate filaments; the loss of MEC 
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layer marks the invasive cancer [206]. MECs 
and basement membrane reduce the invasion 
of tumor cells [202]. MECs are currently identi-
fied by IHC stains with numerous antibodies 
against SMA, high molecular weight cytokeratin 
(HMWCK), smooth muscle myosin heavy chain 
(SMMHC), the nuclear protein p63, CK5/6 [78], 
CK14, CK17, S100 protein [207], muscle-spe-
cific actin (MSA), the contractile protein cal-
ponin, p75 neutrophin receptor (nerve growth 
factor receptor), P-cadherin, mammary serine 
protease inhibitor (maspin), and CD10 [76]. 
p63 is normally expressed in the nuclei of 
breast MECs of normal ducts and lobules, 
strongly expressed in metaplastic carcinomas, 
and negative expressed in Phyllodes tumors 
and sarcomas [79]. CK5/6 appears to be more 
sensitive than CK14 for the basal subtype of 
breast carcinoma [184]. The normal MECs 
supress stromal invasion of tumor cells by the 
secretion of different anti-invasive and anti-
angiogenic molecules, while the disruption of 
the MEC layer is followed by a release of  
growth and angiogenetic factors such as the 
VEGF, which plays a key role in lymphangiogen-
esis [208]. Breast adenomyoepithelioma is a 
rare type of breast cancer characterized by 
both epithelial and myoepithelial proliferation. 
In spindle-cell lesions, HMWCK, CK5/6 and 
CK14 are overexpressed, while S100 is down-
regulated; on the contrary, in clear cell lesions, 
HMWCK showed significant lower IHC staining, 
with diffusely positive epithelial cells and com-
pletely negative MECs image, that could be 
useful in diagnosing of adenomyoepithelioma 
[207].

Breast tumor microenvironment (TME)

Mammary parenchyma is surrounded by a stro-
ma that contains fibrous and fat stromal pad, 
consisting of nutritional and supporting con-
nective tissue. Fibrous stroma is organized in 
suspensory Cooper ligaments, consisting of 
dense fibrous connective tissue, whose short-
ening combined with an inflammatory oedema-
tous skin gives rise to the histopathological 
“peau d’orange” appearance in breast carcino-
ma [209]. Fatty stroma consists of the adipose 
tissue of the breast and it is situated interlobu-
larly rather than intralobularly. 

Tumor tissue consists of tumor cells and stro-
mal cells that build the TME also infiltrated by 
immune and vascular cells. Thus, the TME be- 

comes an heterogeneous “ecosystem”, a veri-
table “fertilizing malignant tumor soil” allowing 
“the fast-growing tumor seeds” [210]. It is  
composed of mesenchymal cell populations, 
infiltrating immune cells, and matrix compo-
nents involved in neoplastic progression [211], 
and promoting tumor angiogenesis [212]. The 
normal tissue microenvironment acts a barrier 
to tumorigenesis, but a plethora of factors, 
such as a low pH, reactive oxygen species 
(ROS), chemokines, cytokines, and hypoxia can 
disrupt the local homeostasis, promoting proin-
flammatory signals [213]. In some conditions, 
the TME can switch the immune cells from an 
antitumor behaviour into a novel permissive 
phenotype, which supports tumor growth and 
progression [214]. ECM is a 3D scaffold made 
up of collagen I and III, proteoglycans, hyaluron-
ic acid, fibronectin, and tenascins [71] as well 
as cellular components, such as immune and 
inflammatory cells, endothelial cells, fibrobla- 
sts, adipocytes and bone marrow-derived ce- 
lls [215]. The ECM supports epithelial develop-
ment and survival by supressing apoptosis, and 
maintains the normal epithelial cells polarity, 
associated with low cell proliferation and tu- 
morigenesis [215]. The vascular and lymphatic 
vessels develop in association with the breast 
epithelial tree, providing essential pathways for 
dissemination of neoplastic cells [202]. Blood 
vessels in breast cancer may emphasize dila- 
tation, tortuosity, and abnormal perivascular 
coverage, partly due to the phenotypical and 
molecular alterations of pericytes [216].

Breast cancer is an inflammatory microenviron-
ment that is supported by infiltrating immune 
cells, such as natural killer cells (NK) and neu-
trophils or cytotoxic T cells as well as naïve and 
memory T cells [217]. Various cells identified  
in tumor tissue can increase tumorigenicity by 
inhibition of antitumor immune responses, can 
contribute to angiogenesis and can initiate the 
tumor cell extravasation via EMT [218]. Eosino- 
phils, monocytes, and B lymphocytes are asso-
ciated with a good prognosis. Macrophages, 
mast cells, and eosinophils regulate invasion in 
the breast fat pad and are necessary for duc- 
tal differentiation. Interactions between tumor 
cells and surrounding stroma contribute to car-
cinogenesis [112]. Thus, the TME plays a de- 
terminant role on tumor survival, proliferation 
and metastasis [218]. During the tumor pro-
gression, the BCSCs and cancer cells originat-
ing in abnormal luminal and/or contractile myo-
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epithelial cells break through the basement 
membrane; the BCSCs settle in a niche of 
tumor/cancer-associated macrophages (TAMs/
CAMs), tumor/cancer-associated fibroblasts 
(TAFs/CAFs) [138], tumor/cancer-associated 
mast cells (TAMCs/CAMCs) and cancer-associ-
ated adipocytes (CAAs) possibly originating, 
based on a recent hypothetical view, in BCSCs 
[124]. The cancer cells communicate with each 
other or with tumor stromal- and infiltrating-
associated cells, via gap junctions. Currently, 
two metastatic dispersion pathways are most 
often described: the hematogenic path, where 
the cancer cells and BCSCs enter the blood, 
process initiated by gap junction communica-
tion with endothelial cells that are themselves 
sealed by tight junctions and communicate by 
gap junctions, and the lymphogenic path where 
BCSCs or cancer cells enter lymphatic vessels 
directly at their open beginnings [138]. En- 
dothelial progenitor cells (EPCs), mature endo-
thelial cells, pericytes, fibroblasts, and immune 
mediators express a number of proinflamma-
tory cytokines, such as tumor necrosis factor 
(TNF), and growth factors that interact with 
each other or with ECM components to control 
the major events that occur during angiogene-
sis [219]. The tumor-stroma communication 
occurs directly between stromal cells or via the 
autocrine and paracrine secretome and con-
sists of several proteins that are secreted into 
ECM by tumor cells and cancer-associated stro-
mal cells [43]. In the following subchapters, the 
key cellular players involved in breast cancer 
TME will be discussed.

Tumor-associated mesenchymal stem cells 
(TAMSCs)

Mesenchymal stem cells, also named mesen-
chymal stromal cells (MSCs), are self-renewing 
multipotent progenitor cells, found in bone mar-
row, adipose and others connective tissues, 
that are capable to differentiating into meso-
dermal cells, such as adipocytes [220] and adi-
pose tissue-derived stem cells (ASCs) [221]. 
MSCs migrate towards the site of developing 
tumors and become integral components of 
the TME where they modulate the behaviour of 
other cells, actively supporting the tumor in- 
itiation, growth, metastasis and angiogenesis, 
especially under the stimulation of platelet-
derived growth factor (PDGF) isoforms [221] 
and regulating responses to chemotherapy and 

radiotherapy by producing growth factors, che-
mokines and cytokines [222]. MSCs have  
been considered as cells with “double-bladed 
effects”, emphasizing protumor and antitumor 
activity [223]. The interaction between breast 
cancer cells and MSCs results in an increased 
proliferation and metabolic activity of breast 
cancer cells [224]. TAMSCs are a putative 
source for cancer/tumor-associated fibroblasts 
(CAFs/TAFs) [225]. The paracrine signalling 
from breast cancer cells converts MSCs into 
TAMSCs; the aggressive breast cancer cells 
engulf MSCs, in contrast to non-cancerous 
cells, and this cannibalistic behavior generates 
tumor cells with increased stemness, invasive 
and metastatic potential [226]. ECM remodel-
ling by senescent MSCs has been associated 
with increased proliferation and motility of 
BCSCs, suggesting the role of this more inva-
sive phenotype in age-related cancer progres-
sion [227].

Breast cancer-associated fibroblasts (CAFs)

Fibroblasts constitute the major cellular popu-
lation of normal breast stroma and are respon-
sible for elaboration of most of the components 
of healthy connective tissue, such as fibronec-
tin and tenascin, which affect cell adhesion and 
proliferation, ECM deposition, MMPs produc-
tion, and growth factor synthesis. CAFs/TAFs, 
the predominant cell type in the TME of the 
most aggressive cancers [212], differentiate 
from fibroblasts, MSCs, epithelial cells, and 
other cell types; the blockade of the interac- 
tion between PDGFRβ and TGFβR is a putative 
strategy to prevent TGFβ-mediated differen- 
tiation of MSCs into CAFs [228]. A fibroblast 
heterogeneity is recognized in primary tumors 
[229]: reactive fibroblasts, peritumoral fibro-
blasts, myofibroblasts and CAFs. CAFs are  
spindle-shape, α-smooth muscle actin (SMA)-
positive fibroblasts, involved in neoplastic initi-
ation, proliferation, invasion and metastasis; 
CAFs have demonstrated an overexpression of 
α-SMA, p53, podoplanin (PDPN) that promot- 
es inflammation, cancer-associated thrombo-
sis and regulates proliferation, contractility, mi- 
gration, EMT of tumor cells, and remodeling of 
the ECM [230], CD10 that supports breast can-
cer dissemination and progression by its rela-
tionship with CSCs [231], fibroblast activation 
protein (FAP) often used as a pro-tumorigenic 
stromal biomarker in cancer [232], MMPs and 
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tenascin-C (TNC) that play an essential role in 
cell proliferation, migration and tumour cells 
invasion [233]. PDGFα/β and caveolin 1 (Cav-1) 
downregulation [234] induces breast cancer 
cells proliferation and inhibition of apoptosis 
[235]. The cooperation between neoplastic 
cells and their stroma, and the important role 
of active CAFs that support their cancer-pro-
moting function through paracrine effects are 
well-known [215]. Several CAFs subpopula- 
tions have been identified in metastatic lymph 
nodes: CAF-S1 stimulates neoplastic migration 
and initiates EMT through the chemokine 
CXCL12 and TGFβ pathways, and CAF-S4 induc-
es neoplastic cell invasion by Notch signalling 
[229]. Myofibroblasts synthetize some factors 
which may stimulate proliferation and infiltra-
tion of neoplastic cells, such as IGF-2 and hepa-
tocyte growth factor (HGF); the overexpression 
of Ki67 and HER2 within myofibroblasts from 
ductal breast cancer stroma is predictive for a 
worse prognosis [202]. The stromal expression 
of α-SMA in stromal myofibroblasts has been 
correlated with worse clinical outcome in inva-
sive breast cancer [236]. The stromal loss of 
CD34 expression and acquisition of SMA myofi-
broblastic profile may represent a signal for 
tumor invasiveness in IDC; TGF-β is involved in 
inhibition of epithelial cells growth, but it stimu-
lates the mesenchymal cell proliferation and 
activate the transformation of fibroblasts and 
CAFs into myofibroblasts, facilitating the breast 
neoplastic invasion [237]. CAFs are involved in 
recruitment of pro-angiogenic myeloid immune 
cells, such as macrophages and MDSCs, pro-
moting angiogenesis and metastasis [212].

Breast cancer-associated adipocytes (CAAs)

Adipocytes are considered to play a key role  
in the inflammatory TME; normal adipocytes 
acquire an altered phenotype by upregulation 
of their beige-brown characteristics [238], an 
increased catabolism and change functionality 
when they become cancer-associated adypo-
cytes (CAAs) under the influence of invasive 
cancer cells that intercommunicate with CAAs 
via exosomes [211]. Thus, the CAAs secrete 
inflammatory factors that modify the behaviour 
of breast cancer cells, promoting proliferation, 
invasion, metastasis and angiogenesis [211, 
239]. Adipocytes induce a transport-associat-
ed major vault protein (MVP)-related multi-drug 
resistant phenotype in breast cancer cells, 
which could contribute to obesity-related resis-
tance to chemotherapy [240]; additionally,  

they secrete VEGF and regulate angiogenesis  
in mammary gland [241]. Secretions of dys-
functional adipocytes can alter the gene 
expression profile, induce hypoxia, and inhibit 
apoptosis [91]. Adipocytes release adipokines 
that are strongly involved in obesity-related 
tumorigenesis [242]. A high serum level of adi-
ponectin, the only one adipokine that has  
demonstrated antitumor proprieties, might 
decrease the risk of postmenopausal breast 
cancer [243], and may serve as a risk biomark-
er in breast cancer [244]. Adiponectin has anti-
proliferative and proapoptotic effects in ERα-
negative cells, while in obese patients it acts as 
a growth factor in ERα-positive breast cancer 
cells [245]. The adipocyte-mediated prolifera-
tion and migration of breast cancer cells was 
observed to be supressed when an inhibition of 
the PI3K/AKT/mTOR signalling pathway occurs, 
supporting the importance of interactions 
between breast cancer cells and adypocytes in 
the TME [246, 247]. 

Breast tumor-associated macrophages (TAMs)

Macrophages are differentiated from monocy- 
tes recruited by tumor-derived cytokines [43]. 
Macrophages collaborate with B and T lympho-
cytes based on release of cytokines, chemo-
kines, reactive radicals and other proteins 
[217]. TAMs/CAMs play a key role in cancer-
induced lymphangiogenesis via upregulation of 
the VEGF-C expression that acts by the vascu-
lar endothelial growth factor receptor 3 (VEGFR-
3) on the surface of lymphatic endothelial ce- 
lls, contributing to their proliferation, lymphatic 
invasion and metastatic progression in breast 
cancer [248]. At the interface between peri-
cytes, endothelial cells and macrophages, the 
deficiency of neural/glial NG2 proteoglycan, a 
pericyte biomarker in myeloid-specific NG2 null 
mice, is associated with the lack of ability to 
recruit macrophages to tumor site and other 
sites of inflammation and this absence of mac-
rophages deprives pericytes of a signal that is 
essential for their propriety to interact with 
endothelial cells [249]. A new subpopulation of 
circulating cells that are not tumor cells but 
rather TAMs has been identified by use of CD45 
and CD68 hematopoietic biomarkers [250].

Breast tumor-associated mast cells (TAMCs)

Mast cells (MCs) are bone marrow-derived 
granulated immune cells that localize at the 
margins or infiltrate the stroma surrounding 
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solid tumors, including breast cancer [251], 
becoming tumor/cancer-associated mast cells 
(TAMCs/CAMCs). To promote the inflammation, 
inhibit tumor growth, and induce apoptosis of 
cancer cells, TAMCs secrete a wide variety of 
cytokines such as IL-1, IL-4, IL-8, IL-6, MCP-3, 
MCP-4, IFN-γ, LTB4, TGF-β, and chymase, while 
the IL-10, histamine, TNF-α, and adenosi- 
ne manifests immunosuppressive capabilities 
[252]. Also, MCs release proangiogenetic fac-
tors, such as VEGF, FGF-2, PDGF, NGF, TGF-β, 
IL-8, heparin, tryptase and chymase, directly 
associated with neovascularization [252]. TA- 
MCs stimulate other inflammatory cells to re- 
lease angiogenetic factors in TME from diverse 
breast cancer subtypes [217], and support 
tumor invasiveness and vascularization by re- 
leasing MMPs [252]. Hormone receptors (HR: 
ER and PR) and HER2 status strongly influence 
the MCs dynamics, the intratumoral MCs 
increasing as density and distribution in aggres-
sive tumors, as a worse prognostic factor [253]. 
In LA and LB breast tumors, significant high 
number of intratumoral chymase- and tryptase-
positive MCs were observed when compared  
to TNBC and HER2+ cancers; consequently, a 
higher infiltration of TAMCs was associated 
with lower tumor grade, higher ER and PR 
expression, lower proliferation rate as well as 
the failure of HER2 overexpression [254]. Their 
pro- or antitumorigenic functions are still con-
troversial [255]. 

Breast tumor-associated neutrophils (TANs)

Neutrophils, the most abundant circulating 
white blood cells, are immune cells that reflect 
a state of host inflammation as a hallmark of 
tumor; they participate, especially by attenuat- 
ing immune system, in tumor initiation, growth, 
proliferation and metastasis [256]. TANs, as 
significant cells of the TME, are present in most 
TNBC and are associated with aggressiveness 
and a poor prognosis [257]. Neutrophils are 
attracted at tumor site by CXCR2 ligands and 
release MMPs that mediate angiogenesis, ni- 
tric oxide synthase (iNOS), arginase 1 (ARG1), 
ROS, reactive nitrogen species (RNS), and pro-
teases that promote tumoral cell proliferation, 
EMT or modulate tumor cell lysis by T-lymphocy- 
tes [43]. There are evidences that the neutro-
phil to lymphocyte ratio (NLR) can be associat-
ed with adverse breast cancer prognosis and 
survival [258]. In cancer tissue, neutrophils are 
often associated with granulocytic myeloid-

derived suppressor cells (gMDSCs) that share 
similar phenotype and express the same cell 
surface biomarkers with mature neutrophils 
[259]. 

Breast tumor-associated myeloid-derived sup-
pressor cells (MDSCs)

MDSCs are myeloid cells, such as immature 
macrophages, granulocytes, dendritic cells 
(DCs), responsible for cancer-associated immu-
nosuppressive action on T cells, DCs, and NK 
cells [260], tumor growth, recurrence, and bre- 
ast cancer bone metastases [261]. MDSCs 
accumulate under influence of VEGF, TGFβ1, 
granulocyte-macrophage colony-stimulating fa- 
ctor (GM-CSF) [262], ILs and prostaglandin, 
and release iNOS, ARG1 and ROS, as well as 
TGFβ1 and MMPs when infiltrate primary can-
cer lesions, promoting angiogenesis and inva-
sion. The overexpression of VEGF, TGFβ1, and 
IL-10 secreted by the numerous MDSCs infil-
trated in TME induces EMT of tumor cells and 
promotes metastasis after the stress of surgi-
cal removal of the primary breast cancer [263]. 
MDSCs commonly express CD33 and CD11b 
as cell surface biomarkers and can be stimula-
tory to tumor-resident T regulatory (Treg) cells 
and TAMs [260]. 

Other stromal infiltrating immune cells

Stromal tumor-infiltrating lymphocytes (sTILs) 
are associated with a positive long-term prog-
nosis [264], being important prognostic and 
predictive biomarkers in TNBC and HER2+ 
breast cancers [265]. CD8+ and CD4+ T cells as 
well as Treg cells expressing the transcription 
factor Foxp3 (FOXP3

+) [266] have been better 
correlated with a favourable outcome [264]. 
Biomarkers of B cells are also associated with 
longer survival in all subtypes of breast cancer 
[267]. It seems that the metastatic breast 
tumors in lung showed more sTILs than other 
metastatic sites and matched primary tumors 
[268]. DCs can be exploited by immune-based 
therapies in breast cancer due to their ability 
for antigen-cross-presentation and activation 
of lymphocytes against cancer cells [269], sup-
porting the induction and maintenance of  
antitumor responses [214]. The accumulation 
of eosinophils in the TME, called tumor-associ-
ated tissue eosinophilia (TATE), was noted in 
32.5% luminal, 5% HER2+, and 15% TNBC sub-
types [270], TATE being reported as a putative 
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prognostic biomarker for a better outcome of 
cancer patients due to the regulatory functions 
of eosinophils towards other immune cells in 
the TME and their direct cytotoxic functions 
against tumor cells [271]. 

Breast tumor endothelial cells (TECs)

Endothelium plays a key role in metastasis for-
mation [272]. TECs stimulate expansion and 
activation of the pericyte precursor cell popula-
tion via the pericyte activating factors, such as 
PDGFβ, VEGF, TGF-β, and angiopoietins (An- 
gpts), as well as by signalling pathways involv-
ing Notch and ephrins [273]. The exocytosis 
mediated by Weibel-Palade bodies (WPBs), EC- 
specific organelles that contain the proangio-
genic factor Angpt-2, and angiopoietin secre-
tion are regulated during angiogenesis to limit 
pericyte coverage and blood vessels remodel-
ing [274]. The early metastasis in mouse was 
correlated with glycocalyx disruption and endo-
thelial inflammation; during the late metasta-
sis, alterations in hemostasis were emphasized 
by increased plasminogen activator inhibitor 
(PAI-1) and von Willebrand factor (vWF), as well 
as a rise in adrenomedullin (ADM) and signifi-
cant fall in adiponectin concentration [272]. 
The circulating endothelial progenitor cells 
(CEPCs) enter the blood stream from the bone 
marrow and subsequently migrate to sites of 
tumor vascularization [219]. The alterations in 
CEPCs counts could be a putative biomarker 
for monitoring response to chemotherapy 
[219].

Breast tumor vessels associated-pericytes

Pericytes are mural vascular smooth muscle 
cells surrounding the capillaries and post-capil-
lary venules, adjacent to endothelial cells [275]. 
Pericytes are capable of tumor homing and are 
key components of the TME [276]. They play  
an essential role in angiogenesis, due to their 
close connection and interaction with the en- 
dothelial cells, that stabilize the newly formed 
endothelial tubes, modulate blood flow and 
vascular permeability, and regulate endothelial 
proliferation, differentiation, migration and sur-
vival [277]. Aberrations in pericyte-endothelial 
cell signalling networks may be involved in 
tumor angiogenesis and metastasis [278]. In 
vivo, the mammary epithelial cells undergo a 
spontaneous type of EMT called epithelial-to-
pericyte transition (EPT), and consequently, the 

majority of EPT-resulting cancer-derived peri-
cytes express pericyte biomarkers, such as 
neural/glial antigen 2 (NG2) and SMA, exhibit 
close vascular association, and seem to consti-
tute a great population of tumor vessels associ-
ated-pericytes, necessary for vascular stabili-
zation and cancer growth [168]. NG2 controls 
pericyte proliferation and mobility, acting as  
an auxiliary receptor that enhances signalling 
through integrins (ITGs) and tyrosine kinase 
growth factor receptors; NG2 also activates 
integrin signalling in endothelial cells that leads 
to formation and maturation of endothelial cell 
junctions [249]. 

Disseminated breast cancer cells

Disseminated breast cancer cells are detect-
able in the peripheral blood of patients with dif-
ferent malignancies as circulating tumor cells 
(CTCs) and in the bone marrow or lymph nodes 
as disseminated tumor cells (DTCs) [279]. Ubi- 
quitous in epithelial malignancy, apoptosis re- 
sistant circulating tumor-associated cells (C- 
TACs) and their circulating ensembles of tumor-
associated cells (C-ETACs) that comprise fibro-
blasts, tumor emboli and immune cells are 
well-known for the thrombosis risk and aggres-
sive metastasis and could be considered as a 
systemic hallmark of cancer [280]. Single-CTC 
and CTC-clusters are rare, heterogeneous cells 
or bulk of neoplastic cells that detach from a 
primary solid tumor and metastatic sites and 
circulate in peripheral blood during cancer pro-
gression as an intermediate stage of metastat-
ic process [112]. CTCs are considered as a new 
generation of “liquid biomarkers” [281], serv- 
ing as a “liquid biopsy” that reflects the activity 
of the primary tumor [282]. Even if the spread 
of CTCs does not always lead to metastasis 
[282], the metastatic travel begins within the 
primary tumor with an EMT process that leads 
to mobilisation and intravasation of neoplastic 
epithelial cells and ends with a MET process, 
that leads to extravasation and invasion in dis-
tant tissues and organs, where, after a putative 
dormancy time, the tumor cells regain their epi-
thelial phenotype, grow and become detect-
able within secondary foci of disease [283]. 
CTCs can be detected in peripheral blood even 
during the early stages of the tumoral disease 
[161]. The detection, isolation, capture, and 
characterization of CTCs as “minimally invasive 
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multifunctional biomarkers” [284] have been 
correlated with an inferior prognosis, but they 
are also useful for assessing the effects of anti-
cancer therapies [285]. The CTC molecular fea-
tures highly interchange during invasion time 
[250]. In bloodstream, CTCs are exposed to 
immune system attacks, high oxygen level, high 
pressure and eventually anti-cancer therapeu-
tic molecules [95], such that most CTCs die in  
circulation [286]. CTCs interact and activate 
platelets, which contribute to cancer cell sur-
vival and proliferation, being also involved in 
the early metastatic niche formation by release 
of different growth factors and chemokines, 
such as VEGF, CXCL5 and CXCL7 [218]. A major 
proportion of CTCs of metastatic breast cancer 
patients shows EMT and BCSCs characteristics 
[287]. EMT has been related to the differentia-
tion of BCSCs that confers intratumoral hetero-
geneity and chemoresistance [288]. 

Among CTCs, it is possible to discriminate an 
epithelial CTC phenotype, mesenchymal CTCs, 
and a hybrid epithelial/mesenchymal bi-pheno-
type [161]. The CTC population can also com-
prise a subset of more dangerous cells, named 
circulating cancer stem cells (CSCs), endowed 
with self-renewal, multipotency and tumorigen-
ic features [250]. In breast cancer patients, 
CTCs and DTCs can be simultaneous detected 
in blood and bone marrow, respectively [289]. 
DTCs in the bone marrow microenvironment 
display a quiescent mesenchymal-, osteoblast- 
or osteoclast-like phenotype, their long-time 
dormant state being a source of cancer relapse 
after cancer therapy [286]. CTC-clusters aris- 
ing from oligoclonal groupings of primary tumor 
cells held together through plakoglobin-depen-
dent cell-to-cell adhesion and seem to possess 
23 to 50 fold increased metastatic potential 
and a shorter half-life in circulation [290]. Tar- 
geted single-CTC proteomics offers a unique, 
complementary understanding of CTCs biology 
and assesses their clinical impact [291]. The 
EMT may be induced by the TME, following the 
release of several growth factors or in response 
to hypoxia, leading to a local spread of cancer 
cells [289]. Several biomarkers are expressed 
by mesenchymal-like CTCs: oncogenic serine-
threonine kinase 2 (AKT2), phosphoinositide 
3-kinase (PI3Kα), and twist-related protein 1 
(TWIST1) [161]. AKT2 promotes cell migration 
and invasion via vimentin induction [292], the 
overexpression of AKT2 promoting lung metas-

tasis [293]. N-cadherin is also expressed in 
mesenchymal-like CTCs [250]. In breast can- 
cer patients, the main protein biomarkers for 
the epithelial phenotype of CTCs are EpCAM, 
E-cadherin, CK8, CK9, and CK19 [294], zonula 
occludens (ZO), and the epithelial splicing re- 
gulator 1 (ESPR1) proteins [250]. Normally ex- 
pressed in the basal membrane of epithelial 
cells, EpCAM is involved in cell adhesion, migra-
tion, proliferation and differentiation. It can 
also be found in DTCs and CTCs [150], CTCs 
being usually isolated from the blood by target-
ing the EpCAM as a biomarker [295]. The la- 
bel-dependent techniques used for isolation of 
CTCs also exploit other surface antigens, such 
as HER2 and MUC1 [282], normally secreted by 
the luminal surface of the glandular epithelia 
[296]. HER2+ CTCs were identified in all stages, 
even in early breast cancer, with a higher de- 
tection rate in metastatic breast cancer [297], 
where the HER2-targeted therapy could reduce 
the overall CTCs count [298]. The main bio-
markers for the stem-like CTCs (circulating- 
CSC population) are: ALDH1, CD44 and ABC 
transporters involved in chemoresistance [250, 
299]. A novel CTCs subpopulation that has both 
epithelial and hematopoietic cells characteris-
tics has been described by use of EpCAM and 
CKs as epithelial biomarkers, and CD45 and 
CD68 as hematopoietic biomarkers [295].

Pre-metastatic and metastatic breast cancer 
niches

Metastasis is the spread of neoplastic cells 
from primary tumors toward distant organs 
[283], based on the ability and adaptability of 
cancer cells to create new niches and survive 
within different secondary sites [300]. Breast 
cancer predominantly spreads to the lymph 
nodes, lung, brain, bone and liver [93]. Meta- 
stasis is a multistage process, during which 
neoplastic cells express chameleonic pheno-
types, continuously acquiring and adapting 
their specific proteomic profile to a precise 
stage during the cancer progression. The pre-
metastatic niche, a permissive microenviron-
ment prepared for colonization of tumor cells  
in specific organs [301], is defined based on 
molecular interaction between primary tumor 
that secrete primary tumor-derived factors, 
which partially directs the choice of organ for 
metastasis formation, and the distant tissues, 
by myeloid cells and local stromal players; the 
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metastatic niche results from the interaction of 
cancer cells with the local microenvironment 
when arriving in a distant organ [302]. Tumor 
and endothelial cells secrete chemokines, 
which are responsible for leukocytes attraction, 
contributing to tumor cell extravasation from 
the blood [218]. The local inflammatory micro-
environment stimulate tumor cells to produce 
tumor-derived secreted factors (TDSFs) (such 
as VEGF, TNF-α, TGF-β and IL) that attract the 
bone marrow-derived cells and stimulate their 
migration to pre-metastatic niche [301]. Thus, 
monocytes, macrophages and neutrophils are 
recruited to the early metastatic foci, increas-
ing cancer cell extravasation, preventing neo-
plastic cell destruction by NK cells or transmit-
ting survival signals to the tumor cells [218]. 
Primary tumors release exosomes responsible 
for cell-cell communication and that were found 
in bloodstream, urine, saliva and milk [303], 
expressing programmed death ligand 1 (PD-L1) 
and causing the immune escape of neoplastic 
cells [301]. Exosomes also transfer oncopro-
teins, attract macrophages and induce their 
reprogramming into the pre-metastatic niche 
[43]. ECM is a key component of metastatic 
niches. Homing of metastatic breast cancer 
cells within areas rich in osteoblasts and blood 
microvessels from trabecular regions of long 
bones is independent of their ER status [304]. 
The molecular profile of the ECM in distant 
organs supports cancer cell attachment, reac- 
tivates their survival signalling pathways, as- 
sures the nutrients availability and tumor me- 
tabolism, and coordinates the interaction with 
pro-tumor immune cells [302]. 

Tumor-tissue proteomics and cancer-associat-
ed biomarkers in breast cancer biopsies

Proteome profiling of fresh frozen (FF) or for- 
malin-fixed paraffin-embedded (FFPE) breast 
tumor samples obtained by invasive surgical 
removal (lumpectomy or mastectomy) is useful 
for detecting and validating novel biomarkers  
in breast cancer diagnosis, staging and progno-
sis [305]. Among tumor-associated biomarkers 
currently in clinical use, the expression of hor-
mone receptors (ER, PR, HER2), and urokina- 
se-type plasminogen activator (uPA) that is an 
ECM-degrading protease involved in cancer 
invasion and metastasis interacting with its 
inhibitor plasminogen-activator type-1 (PAI-1) is 
essential and can be determined especially by 
ELISA and IHC detection [84]. Both uPA and 

PAI-1 are validated as prognostic biomarkers 
available for lymph node-negative breast can-
cer [306]. Cysteine-rich intestinal protein 1 
(CRIP1) expression was proposed as a biomark-
er in HER2+ breast cancer patients [307]. 
PA28α/β proteins that are involved in breast 
cancer cell migration, invasion and metastasis 
[308, 309], and a cleaved form of thymosin  
β-4 (TMSB4) specific to tumor-associated stro-
ma have been identified using a MALDI MSI 
approach. Additionally, TMSB10 was overex-
pressed in breast cancer cells and tissues, pro-
moting proliferation and migration of breast 
cancer cells; consequently, TMSB10 could be a 
diagnostic biomarker and a potential therapeu-
tic target for breast cancer therapy [310]. For 
TNBC, MALDI-TOF MSI has identified many pro-
tein expression as potential prognostic bio-
markers: pleckstrin homology domain-contain-
ing family G member 2 (PLEKHG2), ubiquitin 
protein ligase E3 component N-recognin 4 
(UBR4)/p600, aminoimidazole carboxamide ri- 
bonucleotide transformylase/inosine mono-
phosphate cyclohydrolase (ATIC), MUC4 [311], 
collagen type I alpha 1 chain (COL1A1) [312] 
and COL1A2, both upregulated in invasive 
breast cancer, and cytoplasmic and nuclear 
SRY-box transcription factor 11 (SOX11) in- 
volved in cell growth and invasion, used as a 
biomarker of poor prognosis in BL breast can-
cers [64]; the nuclear SOX11 could be a poten-
tial target for breast cancer therapy [313]. The 
tumor cells cytokeratin profile is quite versatile, 
the tumors often ceasing to express CKs which 
are normally present in their cells of origin 
[314]; however, the basal CK5/6, CK14, and 
CK17 are often used as positive biomarkers in 
classifying TNBC-BL [315]. In FFPE biopsies 
from TNBC patients, the expression of CK5/6 
and HER1 was shown to predict poor survival 
and unfavourable response to chemotherapy 
[316]. CKs expression has been also assessed 
in human hair follicles [317]. Hair proteome  
has been investigated using a 2D LC-MS/MS 
approach, highlighting the PTMs of keratins 
[318], which can be manifested in response to 
cancer [319]. Specific hair CKs, such as cyto-
keratin 81 (KRT81) that was expressed in 
breast cancer cells, were shown to contribute 
to their migration and invasion [320]. Inositol 
polyphosphate 4-phosphatase type II (INPP4B) 
[321], an emerging tumor suppressor in breast 
cancer [322, 323], and cyclin-dependent 
kinase 1 (CDK1) [324] have been found as  
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relevant for breast cancer classification; the 
downregulation of CDK15 expression also pro-
motes breast cancer cell invasion and metasta-
sis [308]. Surprisingly, COL1A1 changes its ori-
entation from parallel to perpendicular aligned 
straight fibers at the tumor-stromal boundary 
as a predictor of poor patient outcome, while 
tenascin C (TNC) and thrombospondin 2 (TSP-
2) significantly co-localized with aligned colla-
gen fibers in IDC tissues [325]. TSP-1 has been 
identified as an inhibitor of angiogenesis and 
metastasis, but it also manifests an opposite 
prometastatic role, i.e., in lung, depending on 
the molecular characteristics of the TME [326, 
327] or mediates in vitro cell mobility within 
mouse mammary tumor cells [328]. Apolipo- 
protein A1 (APOA1) and ApoB are risk factors 
for intraocular metastasis in patients with 
breast cancer [329]. Gelsolin (GELS) was down-
regulated in breast cancer tissues and was 
linked with metastasis and death [330]. Heat 
shock protein 90-beta (HSP90B), elongation 
factor 1-alpha 1 (EF1A1) that is significantly 
downregulated in invasive breast carcinoma 
[331], Na+/H+ exchange regulatory cofactor 
(NHRF1) and peroxiredoxin-1 (PRDX1), which 
downregulation significantly impaired the gr- 
owth of breast cancer cell lines, have been also 
investigated as biomarkers [332]. Other most 
relevant proteomic signatures were: lysosomal 
protease cathepsin D (CTSD), a biomarker of 
poor prognosis in breast cancer [333], calretic-
ulin (CALR) that was found to be upregulated 
mainly in ERα-breast cancer [334], ATP syn-
thase subunit beta (ATPB) and HSP60/CH60 
positive expression that was found to be signifi-
cantly correlated with advanced stage of the 
tumor, lymph node metastasis and older pa- 
tient’s age [335]. Coronin 1c and F-actin pro-
teins are highly expressed in breast cancer tis-
sues; F-actin protein expression was upregu-
lated in patients with lymph node metastasis 
[336]. The ubiquitin binding protein SHARPIN 
belonging to the linear ubiquitin assembly com-
plex (LUBAC), which consists of three potential 
diagnostic biomarkers for breast cancer [337], 
is highly express in human breast cancer [338], 
facilitating p53 protein degradation; p53 acts 
as a tumor suppressor and could be a prognos-
tic biomarker for breast malignancy [339]. 
S100 calcium-binding protein P (S100P) pro-
motes the aggressive features of breast cancer 
cells and can be used to predict the therapeu-
tic effect of chemotherapy in HER2+ patients 

[340]; a novel truncated form of S100P was 
positively associated with larger tumor size and 
higher histological grade [341]. The epithelial 
calcium-binding protein S100A8 [342] may be 
associated with lymph node metastasis of 
breast cancer and could be considered as a 
biomarker for breast cancer progression [343, 
344]. The overall survival of breast cancer 
patients with positive expression of nucleobin-
din-2 (NUCB-2) was shorter [345]. The alphaB-
crystallin (CRYAB/HSPB5) expression was up- 
regulated in solid epithelial cancers and was 
also identified in DTCs and CTCs [150], sug-
gesting that this protein could be used as  
a predictor of breast cancer metastasis to the 
lymph nodes [346] and the brain [347]. The 
prevalence of ALDH1A2+/CD44+ tumor cells is 
significantly associated with worse prognosis 
and poor clinical outcome in breast cancer pa- 
tients [348]. The phosphoglycerate kinase-1 
(PGK1) overexpression is a predictor of poor 
survival and a new prognostic biomarker of 
chemoresistance to paclitaxel [349], and stro-
mal analysis of galectin expression has showed 
this contribution to cell survival after chemo-
therapy [350] and heterogeneity of breast can-
cer [351]. The hypoxic breast cancer TME in- 
duces an increasing activity of the hypoxia-
inducible factors (HIFs), HIF-1 and HIF-2 [83], 
that are involved in EMT, angiogenesis and cell 
proliferation [94]. Several exosomal proteins 
were also identified as potential breast can- 
cer biomarkers: glucose transporter 1 (GLUT1) 
[352, 353], glypican 1 (GPC-1) and GPC-4 that 
act as tumor suppressors [354], a disintegrin 
and metalloproteinase domain-containing pro-
tein 10 (ADAM10) that when co-expressed with 
the amyloid precursor protein (APP) predicts a 
worse survival in patients with non-luminal 
breast cancers [355], and ADAM29, whose ex- 
pression and mutations significantly influenc- 
ed proliferation, migration and invasion of in 
vitro breast cancer cell lines [356]. Caveolin-1 
(Cav1), a constituent protein of caveolae, plays 
a critical role in carcinogenesis, tumor progres-
sion through oxidative stress modulation [357], 
and chemotherapy or radiotherapy resistance 
[235], even though some authors reported con-
tradictory results concerning the downregula-
tion of stromal Cav-1 that promotes tumor sur-
vival and predicts a poor tumor prognosis, ac- 
cording to the TME characteristics [358]. Us- 
ing an IHC approach applied to FF samples of 
male breast cancer (MBC), the N-acetyltrans- 
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ferase-1 (NAT1) was identified as possible prog-
nostic biomarker for MBC, its positivity being 
correlated with a better outcome [90]. 

Liquid biopsies proteomics and humoral bio-
markers in breast cancer 

Serological protein biomarkers

Plasma testing is extensively used for pro-
teomic analysis. It is relatively non-invasive, 
has low costs and does not require special 
equipment, even though the levels of tumour-de- 
rived proteins detected in plasma are often 
much lower than that those of tissues [359]. 
There are more than 8000 estimated proteins 
in the plasma proteome [360], and several 
tumor-derived proteins have been identified 
even during the first stages of tumorigenesis. 
The most commonly used current proteomic 
technologies for plasma proteome profiling are: 
sample fractionation and separation, such as 
dye, metal and antibody affinity chromatogra-
phy, MALDI-TOF MS, liquid chromatography  
tandem mass spectrometry (LC-MS/MS), and 
multiplex protein quantitation [361]. A plasma 
peptidome-degradome profile from breast can-
cer patients and healthy controls was obtained 
via tandem Fourier transform mass spectrom-
etry (FT-MS/MS) [362]. Additionally, a SER-
ological Proteome Analysis (SERPA) was per-
formed by 2D electrophoresis separation, im- 
munoblotting, image analysis, and MS in order 
to multiply affinity protein profiling (MAPPing) 
into a breast cancer immunomics approach to 
identify autoantibody signatures produced in 
response to the tumoral process [58]. Recently, 
a plasma label-free Nano-LC-MS/MS approach 
identified several systemic molecular features 
and possible plasma biomarkers for LA, LB, 
HER2+ and TNBC patients [363]. The integra-
tion of proteomic profiles from mouse models 
of breast cancer and from human breast can-
cer cell lines may help isolate proteins released 
by tumor cells into the blood [364]. Using quan-
titative seroproteomics, four panels of serum 
proteins involved in the immune response, li- 
pid metabolism, platelet degranulation, fibrino-
lysis, blood coagulation, glycolysis and cancer 
signalling pathways, with specificity for afore-
mentioned subtypes of breast cancer have 
been identified [365].

MS-based serum proteomics, antibody detec-
tion and IHC techniques are essential for iden-

tifying enzymatic and non-enzymatic PTMs as 
potentially useful biomarkers for breast cancer 
[69]. Glycosylation, one of the most common 
PTMs in breast cancer [366], changes the 
expression of tumor-associated carbohydrate 
antigens (TACAs) that are involved not only in 
cell-cell and cell-ECM adhesion, but also in 
migration, proliferation, neoplastic growth and 
cancer aggressiveness [367]. Glycosylated-
proteins and their specific glycoforms repre-
sent more than half of the cancer biomarkers 
and MS-based N-glycoproteomics techniques 
have developed an important contribution in 
this field [366]. MUC1 is the most intensively 
researched tumor-associated antigen [181]. 
Normally, its expression is detectable on the 
apical surface of the glandular epithelial cells 
and ductal epithelium but, when cells undergo 
tu-morigenic changes, they can produce gly- 
cosylated mucins that lose their localization 
emphasized by IHC staining [180], and be- 
come localized throughout the cell [182]. The 
transmembrane glycoprotein MUC1 is aber-
rantly glycosylated and overexpressed in differ-
ent epithelial tumors; tumor-associated MUC1 
participates in intracellular signal transduction pa- 
thways and controls the expression of target 
genes at transcriptional and post-transcription-
al levels [368], and it has been shown to be 
involved in metastatic progression [181]. In 
breast cancer patients, the MUC1 overexpres-
sion was detected both in breast cancer tissue 
samples by IHC staining as well as free and 
antibody-complexed forms in serum samples 
by ELISA assay, the expression of free IgG and 
IgM antibodies against MUC1 being also con-
comitantly identified [369]. Currently, there are 
two soluble forms of MUC1 that are used in 
breast cancer clinical practice: the carbohy-
drate/cancer antigens CA 27.29 and CA 15-3 
[296]. Additionally, circulating truncated extra-
cellular HER2 is used for the detection of breast 
cancer [84]. The preoperative serum levels of 
carcinoembryonic antigen (CEA), the cancer as- 
sociated carbohydrate antigen CA 125, and CA 
15-3 were significantly higher in patients with 
breast cancer than controls subjects, the high 
level of serum CA 125 being a predictive mark-
er for breast cancer outcomes and correlates 
with aggressive molecular subtypes [370]. CEA 
and CA 125 showed benefit over CA 15-3 alone 
in metastatic breast cancer (MBC) and all three 
biomarkers should be considered in MBC [371]. 
Two serum/soluble CK fragments, the tissue 
polypeptide antigen (TPA) and the tissue poly-
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peptide-specific antigen (TPS), combined with 
CEA or not, have been suggested as biomark-
ers in the detection of distant metastasis [372]; 
TPA and TPS were found to be better as mark-
ers for monitoring chemotherapy response in 
metastatic breast cancer than CA 15-3 [373]. 
The serum specific antigen for CK19 fragments, 
CYFRA 21-1, was shown to be indicator of recur-
rence and treatment efficacy in breast cancer 
patients [374]. Serum CA 15-3, HSP90A and 
PAI-1 could be considered as early prognostic 
biomarkers [375]. THBS1 and bromodomain 
and WD repeat-containing protein 3 (BRWD3) 
were shown to be increased in plasma from 
breast cancer patients [376]. Apolipoproteins 
(APOs) are involved in autophagy, oxidative 
stress, and drug resistance [377]. In early and 
advanced stages of breast cancer, APOA2 over-
expression were detected in plasma; APOC3 
was detected in patients with early and inter-
mediate stages of breast cancer, while clus- 
terin (CLU/APOJ) was present at higher levels  
in intermediate stages of breast cancer [378]. 
The expression of TMSB10 is also significantly 
elevated in serum of breast cancer patients as 
a consequence of its upregulated expression  
in breast cancer cells and tissues and can be 
used as a serum biomarker for the diagnosis of 
breast cancer [310]. Apoptosis disruption is  
an important feature of cancer [296]; cellular 
byproducts from tumor cells that undergo apop-
tosis arrive in the systemic circulation at low 
concentrations, where they can be assessed  
in serum or plasma as soluble biomarkers of 
apoptosis [379]. Fas/APO1/CD95/TNFRSF6 
and Fas Ligand (FasL) [380] act as major regu-
lators of apoptosis by activation of caspase ca- 
scade involved in tumor cell death [381, 382]. 
The soluble form of FAS (sFas) shows signifi-
cantly higher serum concentrations in metas- 
tasized breast cancer patients [383], and the 
FasL could be used as a circulating apoptos- 
is prognostic biomarker in breast carcinoma 
[379]. Circulating granzyme B and cytochrome 
c that increase following chemotherapy were 
also cited as apoptosis biomarkers in breast 
cancer [384]. Survivin (Sur) is an important 
member of the inhibitors of apoptosis protein 
(IAP) family, present in nucleus, cytoplasm, mi- 
tochondria and TME as an exosome-bound sur-
viving protein [385]. Sur overexpression in neo-
plastic tissue is linked to lower survival rates in 
breast cancer patients [386], suggesting it as  
a potential cancer biomarker [387]. 

Proteomic profiles of cancer-derived exosom- 
es (EVs) secreted by various breast cancer cell 
lines may be present in body biofluids such as 
blood, urine, saliva and breast milk, being in- 
dicative of cancer molecular subtype; their use 
as non-invasive biomarkers for diagnosis and 
management of breast cancer could be fea- 
sible thanks to the MS-based proteomics that 
enable an accurate EVs proteome profiling 
[388]. 10000 phosphopeptides and more than 
100 phosphoproteins as candidate biomark- 
ers from human plasma EVs were detected in 
higher quantities in breast cancer patients, 
using label-free quantitative proteomics [389]. 
A complex proteomic approach of two repre-
sentative breast cancer lines led to the iden- 
tification of 270 proteins, of which EGF-like 
repeats and discoidin I-like domain-containing 
3 (EDIL-3) protein involved in cancer progres-
sion and metastatic breast cancer are of par-
ticular interest; fibronectin (FN) was also se- 
lected as a candidate biomarker due to its 
increased presence on the surface of EVs se- 
creted by breast cancer cells, and it decreases 
after tumor surgical removal [390]. Develop- 
mental endothelial locus-1 (Del-1) on circulat-
ing EVs is a candidate biomarker for identifica-
tion of breast cancer patients with early-stage 
breast cancer; also, it has been suggested that 
it can distinguish breast carcinoma from non-
cancerous and benign breast lesions [391]. 
Macrophage migration inhibitory factor (MIF), a 
small protein secreted by tumor [392], T cells, 
macrophages, endothelial and other epithelial 
cells [393] inhibits the migration of macro-
phages. MIF and its main extracellular recep- 
tor CD74 or its co-receptor CXCR4 are overex-
pressed in breast cancer cells and TME, pro-
moting breast cancer cells survival, inhibition 
of autophagy or protection of tumor cells from 
apoptosis; neo-angiogenesis, breast cancer 
endothelial transmigration and prevalence of 
immune suppressive cells in the TME are also 
promoted by MIF [393]. The aza-derivatives of 
resveratrol, a natural polyphenolic compound 
found in grape skin and wine, were found to be 
inhibitors of MIF tautomerase, MIF biological 
activity and cell growth into MCF-7 breast carci-
noma line, using a MALDI-TOF MS approach 
[392]. A quantitative proteomic MS immunoas-
say (MSIA) was developed and validated for dis-
covery and quantification of different proteo-
formes of MIF in serum samples [394].
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Angiogenesis is a significant process involved 
in tumor development and metastasis. Sever- 
al signalling pathways, such as NF-κB, STAT3, 
PI3K/Akt, and p38 MAPK, have been associat-
ed with the interrelated inflammatory TME and 
angiogenesis process [395]. Neo-vasculariza- 
tion requires EpCAMs, such as cadherins, in- 
tegrins (ITGs), selectins, immunoglobulin and 
CD44 molecules [396]. The endothelial selec-
tin (E-selectin) induces MET and stem cells 
traits in DTCs in the bone and lung metastasis 
of breast cancer [397]. Intracellular adhesion 
molecule-1 (ICAM-1) is a transmembrane pro-
tein belonging to the immunoglobulin super-
family, which also has also a soluble isoform 
(sICAM-1) derived by proteolytic cleavage of 
membrane-bound ICAM-1 [398]. Normally pres-
ent in endothelial cells, leukocytes, macro-
phages, monocytes and other immune cells, 
but also on the surface of cancer cells, CAMs 
mediate the adhesion on the surface of the 
vascular endothelial cells and transendothelial 
migration of activated leukocytes. The levels  
of soluble vascular cell adhesion molecule 
(sVCAM-1) and sICAM-1 in the serum of breast 
cancer patients were significantly higher than 
in healthy controls, suggesting that the soluble 
forms of these adhesion proteins may be use- 
ful serum biomarkers in clinical setting [396]. 
Platelet endothelial cell adhesion molecule-1 
(PCAM-1), a CAM expressed on platelets, leu- 
kocytes and endothelial cells, has been impli-
cated in the late progression of metastatic 
tumors, its activity appearing to be modulated 
by the TME and tumor cell proliferation [399]. 
The vimentin expression in peripheral blood 
was also higher in metastatic breast cancer 
[171]. A recently published study demonstrat- 
ed that the abnormal levels of circulating throm-
botic biomarkers, such as prothrombin frag-
ment 1+2 (F 1+2), D-dimer and fibrinogen, may 
represent novel non-invasive factors for improv-
ing prediction of breast cancer recurrence risk 
in resected breast cancer patients [400]. The 
plasma fibrinogen level could be a possible bio-
marker for assessing the clinical response to 
chemotherapy and metastasis after surgery in 
advanced breast cancer patients [401].

Urinary protein biomarkers

Human urine is one of the most interesting bio-
fluids for clinical proteomic studies, advances 
in MS leading to the identification of thousands 
of proteins and peptides in urine [402]. Urine 
peptidomics and uroproteome alterations study 

represent alternative approaches for discover-
ing candidate biomarkers, especially in early 
cancer diagnosis [403], discriminating betwe- 
en breast cancer patients from healthy controls 
[404]. Urinary zinc-alpha2-glycoprotein (ZA2G), 
leucine-rich alpha2-glycoprotein (LRG), retinol-
binding protein A4 (RBP4), also emphasizing 
significant higher serum levels in patients with 
breast cancer [405], annexin A1 (ANXA1), gan-
glioside GM2 activator (SAP3/GM2A), Src sub-
strate cortactin (SRC8/CTTN), gelsolin (GELS/
GSN), kininogen-1 (KNG1), CO9, clusterin (CL- 
US) that when overexpressed might be a pre-
dictive factor for recurrence [406], whereas 
ceruloplasmin (CERU), and α1-antitrypsin (A1- 
AT) have been proposed as candidate biomark-
ers that could discriminate HER2-enriched  
subtype breast cancer from the healthy con-
trols [404]. Circulating plasma gelsolin (pGSN), 
which is carried by exosomes [407], is a se- 
creted iosoform of GSN that was identified in 
urine and other biofluids and it was recognized 
as a putative biomarker of the inflammatory 
environment [408]. A label-free LC-MS/MS 
approach was used to detect some urine pro-
tein biomarkers, such as extracellular matrix 
protein 1 (EMP1), microtubule associated ser-
ine/threonine kinase member 4 (MAST4), and 
filaggrin (FLG), correlating the urinary proteomic 
profiles with different stages of breast cancer 
or early detection and monitoring progression 
in invasive breast cancer; leucine-rich repeat-
contain protein 36 (LRC36), MAST4 and un- 
characterized protein CI131 were associated 
with preinvasive DCIS, dynein heavy chain 8 
(DYH8), hemoglobin subunit alpha (HBA), pep-
sin A (PEPA), FLG and multimerin-2 (MMRN2), 
which is required for blood vessels homeosta-
sis and stabilization, its upregulation being cor-
related with an increased endothelial cell per-
meability [409], were associated with early in- 
vasive breast cancer, while AGRIN that promo- 
tes cell proliferation, migration and oncogenic 
signalling [410], neuronal growth regulator 1 
(NEGR1) that is downregulated in various can-
cers and its overexpression significantly reduc-
es the tumorigenicity in some cancer lines 
[411], fibrinogen alpha chain (FIBA) and kera- 
tin KIC10 have been associated with metastat-
ic breast cancer [402]. 

Salivary protein biomarkers

Saliva is an easily accessible biofluid that as- 
sesses the presence and characteristics of 
cancer in real-time health monitoring and high-
impact preventive medicine [412]. In saliva, 
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more than 2300 proteins and peptides have 
been identified, which represents only 30% of 
the blood proteome; furthermore, salivaomics, 
including human salivary proteomics, is widely 
involved in biomarker discovery [413]. In IDC, a 
catalogue of altered salivary proteins includes: 
genomic integrity related proteins, molecular 
chaperones/HSPs, cell growth and apoptosis 
related proteins, immunity related proteins, 
cytoskeleton, membrane and calcium binding 
related proteins, metabolism related and oral 
anti-microbial related proteins [414]. VEGF, EGF 
and CEA are useful in breast cancer salivary 
detection [415]. Usually, saliva contains all bio-
markers present in blood, but in lower quanti-
ties [416]. CA 125 level in saliva was higher 
than in serum, but serum and salivary levels 
were significantly higher in women with untreat-
ed breast cancer [417]. Salivary expression of 
the HER2 protein receptor may not be yet a 
viable alternative to breast cancer tissue as- 
sessment because of the lack of a statistically 
significant difference between the HER2-po- 
sitive and HER2-negative groups, and between 
case and control groups [418]. The presence of 
CA 15-3 in human saliva was performed using 
an Au/ZnO thin film surface plasmon resonan- 
ce (SPR)-based biosensor immunoassay [419]. 
Autoantibodies against HER2 and MUC1 de- 
tected both in serum and saliva could be useful 
in breast cancer screening [420]. Additionally, 
proteomic profiling by 2D-DIGE and protein im- 
munoblotting revealed that the carbonic anhy-
drase VI (CA6) and psoriasin (S100A7) expres-
sion was significantly different between breast 
cancer patients and control samples [421]; 
S100A7 is highly and more frequent expressed 
in DCIS than in invasive breast carcinomas 
(IBC), is associated with poor prognostic in bo- 
th DCIS and IBC [422], promoting aggressive 
features in breast cancer [423].

Tear fluid protein biomarkers 

Almost 2000 tear proteins have been reported 
in human by tearomics approach; approximate-
ly 500-600 plasma proteins were also identi-
fied in tear fluid, this overlap allowing detection 
of systemic diseases through tear proteomics 
[360]. A SELDI-TOF MS approach identified se- 
veral non-invasive protein biomarkers within 
tear fluid, allowing the discrimination between 
breast cancer patients and heathy controls 
[424], and a MALDI-TOF/TOF-driven semi-quan-

titative proteomic study compared tear protein 
levels in primary IBC with healthy controls 
[425]. In breast cancer patients, several pro-
teins involved in immune response, such as 
inflammation-related protein S100A8 and com-
plement factor C1Q1, and in different metabol-
ic processes, such as ALDH3A and triosephos-
phate isomerase (TPI) [426], have modified ex- 
pression.

Peritoneal, pleural and pericardial fluid bio-
markers

Cytopathological investigation of malignant 
pleural, peritoneal and pericardial effusions 
occurs in different clinical settings; in females, 
the most common metastatic tumors detected 
in pleural effusions were breast primary tumors, 
most commonly IDC, followed by ILC; among 
peritoneal effusions, most commonly was ILC, 
followed by IDC, and for pericardial effusions, 
the most commonly was IDC [427]. Malignant 
pleural effusion (MPE) occurs in 2-11% of 
patients with breast cancer, the tumor cells dis-
seminating into the pleural cavity via lymphatic 
vessels; the presence of nuclear antigen Ki-67 
as a cellular proliferation biomarker in MPE  
predicts a worse outcome [428]. MMP-2 and 
MMP-9 expression was investigated and might 
be used as novel and additive diagnostic bio-
marker in peritoneal and pleural fluid of pa- 
tients with metastatic breast cancer, by zymog-
raphy and ELISA assays [429]. The peritoneal 
fluid can be also used for determining primary 
tumor sites; large clusters of cells correlated 
with only CK7 positivity could indicate a malig-
nancy originating from the breast [430]. 

Breast-specific liquid biopsies

Nipple aspirate fluid (NAF), a secretome origi-
nating in mammary ductal cells that contains 
proteins associated with the TME [42], and duc-
tal lavage (DL) fluid, in contrast to a breast biop-
sy, are non-invasive, inexpensive and feasible 
sources of biomarkers that in combination with 
proteomic profiling technology are highly spe-
cific to breast cancer [430]. Proteins are impor-
tant constituents of NAF and are often ex- 
pressed in higher concentrations than in plas-
ma [84]. The NAF proteome was described 
using 2D-PAGE followed by a MALDI-TOF MS 
approach [432]. ELISA was used to emphasize 
some proteins in NAF, such as SOD-1, CRP, chi-
tinase-3-like protein 1 (YKL40), cathepsin D 
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(CTSD), basic fibroblast growth factor (bFGF) 
[433], gross cystic disease fluid protein (GC- 
DFP)-15, ApoD and α1-acid glycoprotein (AAG) 
[432]. Differential NAF proteomic expression 
was detected by SELDI-TOF and MALDI-TOF MS 
between healthy and breast cancer patients, 
with identification of a β-casein-like peptide 
associated with breast cancer [434]. A proteo-
lytic fragment of alpha1-antitrypsin (A1A/AAT) 
has been shown to be elevated in NAF of breast 
cancer patients [435]. NAF containing antibod-
ies against tumor-specific MUC1 peptide de- 
rived from the MUC1-ECD can be a potential 
biomarker to predict tumor aggressiveness in 
breast cancer [436]. CA2, catalase, and PRDX2 
have been identified in serum samples and in 
nipple discharge (ND) and proposed as new 
candidate breast cancer biomarkers, following 
a 2D nano-LC/ESI-MS/MS coupled with Wes- 
tern blot analysis and sandwich ELISA approa- 
ch [437]. Significant overexpression of PAI-1, 
also detected in plasma, have been reported in 
NAF of women with breast cancer [84].

There are several studies based on SELDI-MS 
that have performed a comparative proteomic 
analysis of NAF from healthy and breast can- 
cer patients [438, 439], and detected several 
breast cancer biomarkers in NAF [440, 441]. 
Thus, the NAF proteome composition is widely 
related to breast cancer behaviour, based on a 
higher glucose consumption, oncogene activa-
tion, silencing of tumor suppression genes, in- 
nate immune system activation or ECM re- 
modeling and degradation, and can be corre-
lated with invasiveness, aggressiveness and 
metastatic potential [42]. By 2D-LC and gel-
based proteomic methods, 151 proteins were 
identified in the aqueous phase of human 
colostrum [442]. HPLC and LC-MS techniques 
have contributed to purify the lactoferrin (Lf), 
an iron-binding protein from different sources 
of bovine colostrum, in order to treat with Lf the 
triple negative MDA-MB-231 and the ER-positive 
MCF-7 breast cancer cell lines; results showed 
that Lf has the capacity to inhibit the in vitro 
growth of aforementioned cell lines, induc- 
ing cytotoxicity, reduction in cell proliferation, 
apoptosis and changes at transcriptional level 
[443]. The soluble TNF-related apoptosis-in- 
ducing ligand (sTRAIL), a member of the TNF 
protein superfamily of cytokines from human 
colostrum and milk, is present at really high lev-
els, mediating the antitumor activity of human 

milk by apoptosis and cell proliferation control 
[444]. Human breast milk contains a lot of bio-
logically active components, including milk pro-
teome made by proteins, enzymes/proteases, 
glycoproteins, and endogenous peptides [115], 
a diverse microbiome, and a heterogeneous po- 
pulation of epithelial and immune cells [445]. 
Breast milk is an appropriate cancer microenvi-
ronment for identifying breast cancer biomark-
ers; MS-based proteomics on human breast 
milk may offer a novel perspective to identify 
an increased risk of developing breast cancer 
[446]. A comparative proteomic analysis of hu- 
man milk samples from breastfeeding mothers 
with cancer, who were diagnosed either before 
or after milk donation, and from healthy wo- 
men, has been published based on combinato-
rial electrophoresis and MS-based proteomics 
[447]. Alternatively, the fine-needle aspiration 
biopsy guided by ultrasonography (US-FNAB) 
can be used to detect axillary lymph node 
metastasis; CYFRA 21-1 levels in FNAB repre-
sent an important marker in detecting meta-
static deposits of breast cancer that comple-
ments cytology and CK19 IHC as diagnostic 
tool [448].

Conclusions and perspectives

In this review, we have proposed a synthetic 
Breast Cancer Cell Continuum Concept (BCCCC) 
based on a Breast Cancer Proteomic Concept 
(BCPCC) to reach a better understanding of the 
breast cancer tumorigenic cascade at a histo-
molecular level, from a driving mutation to met-
astatic foci development by the help of classic 
methods (i.e., ELISA and IHC) and advanced 
proteomics technologies, such as MS-based 
approaches. The BCCCC comprises many suc-
cessively integrated populations of heteroge-
neous neoplastic and non-tumorigenic-associ-
ated cells, such as breast cancer stem cells 
(BCSCs) and/or de-differentiated mammary tu- 
mor cells, tumor-associated mesenchymal 
stem cells (TAMSCs), tumor-associated fibro-
blasts (TAFs), tumor-associated macrophages 
(TAMs), tumor-associated mast cells (TAMCs), 
tumor-associated neutrophils (TANs), cancer-
associated adipocytes (CAAs), other stromal 
infiltrating immune cells, circulating tumor ce- 
lls (CTCs), disseminated breast cancer cells 
(DTCs), circulating ensembles of tumor-associ-
ated cells (C-ETACs), and distant cell popula-
tions driving the metastatic breast niches. The 
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Breast Cancer Proteomic Continuum Concept 
(BCPCC), whereas each phenotype of neoplas-
tic and tumor-associated cells is characterized 
by a changing and adaptive proteomic profile 
detected in solid or liquid, non-invasive biop-
sies by complex proteomics approaches, be- 
gins with the proteomic landscape of different 
neoplastic and cancer-associated cells, fol-
lowed by subsequent analysis of protein bio-
markers involved in epithelial-mesenchymal 
transition (EMT) and intravasation, CTCs pro-
teomics, and finally by protein biomarkers that 
highlight the extravasation and distant meta-
static invasion. Both BCCCC and BCPCC rely  
on the analysis of cancer cells and their TME, 
which is shaped by various cellular and non-
cellular factors. Targeted proteomics and its 
related subfields validate and monitor proteins 
and their proteoforms as diagnostic, prognostic 
or predictive biomarkers that lead to a high-
integrated precision diagnostic and personal-
ized oncomedicine for this challenging cancer 
characterized by a remarkable intraindividual 
and interindividual.
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