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Abstract: Ponatinib is a tyrosine kinase inhibitor (TKI) directed against BCR-ABL1 which is successfully used in pa-
tients with BCR-ABL1T315I+ chronic myeloid leukemia (CML). However, BCR-ABL1 compound mutations may develop 
during therapy in these patients and may lead to drug resistance. Asciminib is a novel drug capable of targeting most 
BCR-ABL1 mutant-forms, including BCR-ABL1T315I, but remains ineffective against most BCR-ABL1T315I+ compound 
mutation-bearing sub-clones. We demonstrate that asciminib synergizes with ponatinib in inducing growth-arrest 
and apoptosis in patient-derived CML cell lines and murine Ba/F3 cells harboring BCR-ABL1T315I or T315I-including 
compound mutations. Asciminib and ponatinib also produced cooperative effects on CRKL phosphorylation in BCR-
ABL1-transformed cells. The growth-inhibitory effects of the drug combination ‘asciminib+ponatinib’ was further 
enhanced by hydroxyurea (HU), a drug which has lately been described to suppresses the proliferation of BCR-
ABL1T315I+ CML cells. Cooperative drug effects were also observed in patient-derived CML cells. Most importantly, 
we were able to show that the combinations ‘asciminib+ponatinib’ and ‘asciminib+ponatinib+HU’ produce syner-
gistic apoptosis-inducing effects in CD34+/CD38- CML stem cells obtained from patients with chronic phase CML 
or BCR-ABL1T315I+ CML blast phase. Together, asciminib, ponatinib and HU synergize in producing anti-leukemic 
effects in multi-resistant CML cells, including cells harboring T315I+ BCR-ABL1 compound mutations and CML stem 
cells. The clinical efficacy of this TKI combination needs to be evaluated within the frame of upcoming clinical trials.
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Introduction

Tyrosine kinase inhibitors (TKI) targeting BCR-
ABL1 are nowadays the standard of care in 
patients with chronic myeloid leukemia (CML). 
This treatment usually results in a long-lasting, 
deep molecular response and thus in normal-
ization of life expectancy [1-5]. However, treat-
ment failure may occur in CML patients due to 
TKI-resistance [4-10]. This phenomenon can in 
many cases be explained by BCR-ABL1 muta-
tions [4-10]. In other patients, activation of 

BCR-ABL1-independent signaling pathways su- 
pposedly mediate TKI resistance [4-10]. About 
10% of all BCR-ABL1 mutations detected in 
CML cells are threonine to isoleucine mutations 
at codon 315, resulting in the expression of 
BCR-ABL1T315I. This mutation prevents binding 
of most TKI to BCR-ABL1, and thus leads to 
multi-drug resistance [3-6]. To date, among all 
approved and widely available TKI, ponatinib 
can effectively suppress growth of CML sub-
clones expressing BCR-ABL1T315I [11, 12]. 
Ponatinib has indeed been associated with a 
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high response-rate in heavily pretreated pa- 
tients with BCR-ABL1T315I+ CML [12]. However, 
cardiovascular side effects have been docu-
mented in patients after exposure to relatively 
high doses of ponatinib. This observation im- 
plies that ponatinib should not be administered 
continuously in all patients, especially if cardio-
vascular risk factors or an overt cardiovascular 
disease were also reported [12-15]. Further- 
more, leukemic cells harboring BCR-ABL1 
variants with at least two mutations on the 
same allele (so called compound mutations) 
may develop during TKI therapy [16-21]. In- 
deed, compound mutations were found in a 
substantial portion of patients with relapsed 
BCR-ABL1+ leukemia who had been treated 
subsequently with two or more TKI [20]. 
Whereas non-T315I compound mutants usu-
ally retain sensitivity to at least one TKI (espe-
cially ponatinib), T315I-including compound 
mutations have been demonstrated to confer 
resistance against all available TKI, including 
ponatinib [18]. No established therapy is avail-
able in these cases, which remains a clinical 
challenge. Combinations of two or more TKI or 
of TKI and other drugs, such as hydroxyurea 
(HU), may be a promising approach to over-
come resistance in these patients [22-24].

Asciminib (ABL001) is a novel allosteric inhibi-
tor of BCR-ABL1 which has been successfully 
applied in clinical trials in advanced CML [25-
29]. Indeed, first reports suggest that asciminib 
is efficient in most patients with heavily pre-
treated CML and is moreover a safe drug [30]. 
Unlike other BCR-ABL1 TKI, asciminib does not 
target the ATP-binding site but the myristoyl-
binding site of the oncoprotein [25-27, 31]. 

However, resistance against asciminib may 
also occur [25, 32, 33]. With regard to BCR-
ABL1 mutations, asciminib has been shown to 
block BCR-ABL1T315I but fails to inhibit T315I-
including compound-mutants, at least when 
applied as single drug [25, 32]. Due to their  
different binding-sites and different mecha-
nisms leading to drug-resistance, combinations 
including asciminib and other BCR-ABL1 TKI 
have recently been considered as a new inter-
esting approach [32-34]. 

In this study, we examined cooperative effects 
of asciminib and ponatinib on primary human 
CML cells, human CML cell lines and cell lines 
exhibiting T315I-compound-mutant forms of 

BCR-ABL1. We have recently shown, that HU is 
efficacious in BCR-ABL T315I-transformed CML 
[22] and therefore asked, whether anti-leuke-
mic effects of asciminib and ponatinib can be 
further augmented by HU. In a last step, poten-
tial cooperative drug effects on CD34+/CD38- 
CML stem cells were examined. 

Patients and methods

Primary CML cells and cell lines

For this study, 11 CML patients gave peripheral 
blood (PB): 8 patients were in chronic phase 
(CP) and 3 were in blast phase (BP) at the time 
of blood sampling. In 2 patients with BP, BCR-
ABL1T315I was detected, in one patient with BP  
a BCR-ABL1V299L/F317L compound mutation was 
found. Patients’ characteristics are summa-
rized in Table 1. PB samples were prepared as 
described to isolate mononuclear cells (MNC), 
which were then used for in vitro experiments 
[22, 23]. Written informed consent was ob- 
tained from all patients prior to PB-sampling. 
An approval from the ethics committee of the 
Medical University of Vienna was obtained for 
this study (Nr: 1114/2021). In addition to pri-
mary cells, we used the human CML cell lines 
KU812, KCL22 and K562. Details concerning 
the origin of these cell lines are depicted in 
Table 2. Furthermore, BCR-ABL1T315I+ KCL22 
cells (KCL22T315I) were created by culturing cells 
in the presence of imatinib and dasatinib as 
described previously [35]. To study drug effects 
on cells harboring complex BCR-ABL1 muta-
tions, we used Ba/F3 cells expressing BCR-
ABL1T315I or T315I-based compound mutations 
(BCR-ABL1T315I/E255K, BCR-ABL1T315I/F311L, BCR-
ABL1T315I/F359V, BCR-ABL1T315I/G250E) (Table 2). 
The generation of these cell lines has been 
described recently [35, 36]. Native Ba/F3 cells 
(lacking BCR-ABL1) were cultured in 10 ng/ml 
interleukin-3 (IL-3) as described [23] and 
served as control. Culture of all cell types was 
performed using RPMI 1640 medium supple-
mented with 10% fetal calf serum (FCS) and 
antibiotics. In case of KCL22T315I, imatinib (5 
µM) was added to the medium (Table 2).

Reagents

Asciminib was ordered from Active Biochem 
(Kowloon, Hong Kong), ponatinib and imatinib 
from Chemietek (Indianapolis, IN, USA), and  
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HU from Sigma-Aldrich (St. Louis, MO, USA). 
Stock solutions of asciminib, ponatinib and 
imatinib were generated by dissolving in 
dimethyl sulfoxide (DMSO) (Merck, Darmstadt, 
Germany) (stock concentration: 10 mM) and 
HU by dissolving in distilled water (stock con-
centration: 100 mM). 3H-thymidine was pur-
chased from Perkin Elmer (Boston, MA, USA). 

Annexin V/FITC and Propidium Iodide (PI) were 
obtained from eBioscience (San Diego, CA, 
USA) and 4’,6-diamidino-2-phenylindole (DAPI) 
from Sigma-Aldrich. RPMI 1640 medium and 
penicillin+streptomycin were from Lonza (Ver- 
viers, Belgium), fetal calf serum (FCS) from 
Gibco life technologies (Gaithersburg, MD, 
USA), amphotericin from PAN Biotech (Aiden- 

Table 1. Patients’ characteristics: CML samples used for in vitro studies and response to 
‘asciminib+ponatinib’
Patient 
no.

Age
(years) Gender Source CML

phase
BCR-ABL1
mutations

Therapy before 
cell sampling ‘asciminib+ponatinib’

#1 54 f PB CP n.t. none Synergistic (p); Cooperative 
CD34+/CD38- (a-fc)

#2 27 m PB CP n.t. none Synergistic (p) Cooperative 
CD34+/CD38- (a-fc)

#3 19 m PB CP n.t. none Synergistic (p); Cooperative 
CD34+/CD38- (a-fc)

#4 34 f PB CP n.t. none Synergistic (p)
#5 36 m PB CP n.t. none Synergistic (p)
#6 25 f PB CP n.t. Imatinib (dis.) Synergistic (p)
#7 46 f PB CP n.t. none Synergistic (p)
#8 52 f PB CP n.t. none Cooperative (p)
#9 31 m BM BP T315I Imatinib (res.)

Dasatinib (res.)
Cooperative CD34+/CD38- (a-fc)

#10 48 f BM BP T315I Dasatinib (res.) Cooperative CD34+/CD38- (a-fc)
#11 43 m PB BP V299L/F317L Imatinib (res.)

Dasatinib (res.)
CHT+GO HSCT

Synergistic CD34+/CD38- (a-fc)

No., number; f, female; m, male; PB, peripheral blood; BM, bone marrow; CP, chronic phase; BP, blast phase; n.t.: not tested; 
dis: discontinued by the patient; res, resistant; CHT: polychemotherapy; GO: gemtuzumab ozogamycin; HSCT: hematopoietic 
stem cell transplantation. The in vitro response of leukemic cells to the combination ‘asciminib+ponatinib’ was assessed by 3H-
thymidine uptake experiments (cell proliferation: p) and/or by determination of apoptotic CD34+/CD38- stem-cells by Annexin 
V-FITC/DAPI staining and flow cytometry (a-fc).

Table 2. Cell lines and culture conditions
Cell line (Name) Provider/Origin Comments
K562 Provided by Dr. M. Deininger (University of Utah, Salt Lake City, UT, USA) -

KU812 Provided by Dr. K. Kishi (Niigata University, Niigata, Japan) Basophil-committed

KCL22 Purchased from the German Collection of Microorganism and Cell 
Culture (DSMZ, Braunschweig, Germany)

Complex karyotype; 2 Philadelphia Chromosomes

KCL22T315I Produced in our lab: Dr. K. Byrgazov and Dr. T. Lion (Children’s Cancer 
Research Institute (CCRI), Vienna, Austria)

Complex karyotype; 2 Philadelphia Chromosomes 
Imatinib-resistant; Kept in 5 µM imatinib.

Ba/F3 native Purchased from the German Collection of Microorganism and Cell 
Culture (DSMZ, Braunschweig, Germany)

Kept in 10 ng/ml IL-3

Ba/F3p210T315I Provided by Dr. M. Deininger (University of Utah, Salt Lake City, UT, USA) Imatinib-resistant; the generation of this cell line 
is described in reference 35

Ba/F3p210T315I/E255V Produced in our lab: Dr. K. Byrgazov and Dr. T. Lion (Children’s Cancer 
Research Institute (CCRI), Vienna, Austria)

Ponatinib-resistant; the generation of these cell 
lines is described in reference 36Ba/F3p210T315I/F311L

Ba/F3p210T315I/F359V

Ba/F3p210T315I/G250E

Human and murine cell lines expressing BCR-ABL1 were purchased or provided by cooperation partners as listed in the table. All cell lines were maintained in RPMI 
1640 medium with 10% FCS and antibiotics.



Synergistic effects of asciminib and ponatinib in BCR-ABL1T315I+ CML

4473 Am J Cancer Res 2021;11(9):4470-4484

bach, Germany) and murine IL-3 from Pepro- 
Tech (Rocky Hill, NJ, USA).

Measurement of 3H-thymidine uptake

To study cell proliferation, cell lines and primary 
cells were kept in control medium or in medium 
supplemented with various concentrations of 
drugs (asciminib, ponatinib, HU) alone or in 
2-drug or 3-drug combinations at fixed ratios  
of drug-concentrations at 37°C for 48 hours. 
Thereafter, 3H-thymidine-uptake was measured 
as described [22, 23]. 

Evaluation of apoptosis 

Do determined the percentage of apoptotic 
cells following drug-exposure, BCR-ABL1+ cell 
lines were cultured in standard medium or in 
medium supplemented with asciminib, pona-
tinib or a combination of both drugs for 48 
hours. Next, cells were stained by Annexin 
V-FITC and 4’,6-diamidino-2-phenylindole (DAPI) 
before apoptosis was quantified by flow cy- 
tometry as described previously [22, 23]. In 6 
patients (CP, n=3; BP, n=3), apoptosis was  
measured in drug-exposed CD34+/CD38- stem 
cells by multi-color flow cytometry as reported 
[23] using FlowJo software (BD Biosciences, 
San José, CA, USA). Analysis was performed on 
FACSCanto II (BD Biosciences).

Western blot analysis

To study whether cooperative anti-proliferative 
effects of ‘asciminib+ponatinib’ can be related 
to direct effects on BCR-ABL1, we determined 
expression of the phosphorylated CRK Like 
Proto-Oncogene (p-CRKL), a substrate of the 
BCR-ABL1 tyrosine kinase. For this purpose, 
proteins isolated from drug-exposed CML cell 
lines was analyzed by Western blotting. Cells 
were cultured in control medium or in medium 
supplemented with suboptimal concentrations 
(which per se failed to completely block p- 
CRKL) of asciminib and/or ponatinib. After 4 
hours, cells were harvested, lysed in lysing buf-

fer, and subjected to Western blot analysis as 
previously published [22, 23] using antibodies 
directed against p-CRKL or β-tubulin as loading 
control (Table 3). 

Statistical analysis

Drug-interactions (additive versus synergistic) 
were assessed by calculating CI values employ-
ing Calcusyn software [38]. Whereas a CI of 1 
stands for an additive drug-effect, CI values <1 
are indicating synergistic drug effects.

Results

Asciminib and ponatinib synergize in inhibiting 
growth and viability of BCR-ABL1+ cell lines, 
including cells harboring BCR-ABL1T315I or 
T315I-including compound mutations

It has recently been shown that asciminib aug-
ments the growth-inhibitory effects of pona-
tinib in Ba/F3 cells exhibiting BCR-ABL1T315I 
[32]. We confirmed these drug-effects and 
extended our studies to human CML cell lines 
(KU812, K562, KCL22, KCL22T315I). These cells 
were incubated with ponatinib and asciminib at 
suboptimal concentrations alone or in combi-
nation. We found that asciminib and ponatinib 
synergize in blocking growth of all human CML 
cell lines when applied at low concentrations. 
Synergism was also observed in KCL22T315I 
cells when using clinically relevant drug con-
centrations (Figure 1A). In these cells, as- 
ciminib and ponatinib concentrations required 
to induce growth inhibition were higher when 
compared to KCL22 or BCR-ABL1T315I+ Ba/F3 
cells (Figure 1A, 1B). This phenomenon may 
be best explained by the fact that KCL22T315I 
(a cell line generated from BP CML) harbor a 
complex karyotype and carry two Philadelphia 
chromosomes. These results suggest that the 
combination ‘asciminib+ponatinib’ may also 
have the potential to suppress sub-clones  
harboring complex genetic abnormalities in 
advanced CML. 

Next, Ba/F3 cells harboring BCR-ABL1T315I, 
BCR-ABL1T315I/E255V, BCR-ABL1T315I/F311L, BCR-
ABL1T315I/F359V or BCR-ABL1T315I/G250E were sub-
jected to the drug-combination ‘asciminib+ 
ponatinib’. We found that asciminib synergizes 
with ponatinib in blocking growth of all BCR-
ABL1-transformed Ba/F3 clones, whereas no 
effect was seen in untransfected (BCR-ABL1-
negative) Ba/F3 cells (Figure 1B). Synergistic 

Table 3. Antibodies used for Western blotting
Protein/Epitope Clone Source Dilution
p-CrkL (Tyr207) polyclonal rabbit 1:1000
β-Tubulin D2N5G mouse 1:1000
Both antibodies were purchased from Cell Signaling 
Technology (Berverly, MA, USA). p, phosphorylated; Tyr, 
tyrosine.
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Figure 1. Asciminib and ponatinib synergize in producing growth in-
hibition in BCR-ABL1+ cell lines. The human CML cell lines KU812, 
K562, KCL22 and KCL22T315I (A) and Ba/F3 cells expressing various 
BCR-ABL1-mutations (Ba/F3p210T315I, Ba/F3p210T315I/E255V, Ba/F3p-
210T315I/F359V, Ba/F3p210T315I/F311L, Ba/F3p210T315I/G250E) or untrans-
fected Ba/F3 cells supplemented with 10 ng/ml IL-3 (B) were kept in 
control medium or in the presence of asciminib (■-■), ponatinib (●-●), 
or a combination of both drugs at a fixed ratio (▲-▲) for 48 hours 
before 3H-thymidine-uptake was evaluated. Results are calculated as 
percent of control and represent the mean ± S.D. of triplicates. (C) 
The nature of drug interaction (additive versus synergistic) shown in 
(A) and (B) was determined for each experiment by calculating com-
bination index (CI) values using Calcusyn software. A CI value of 1 
indicates an additive effect, whereas CI values below 1 indicate syn-
ergistic drug effects. Examples are shown for K562 and KU812 as 
well as Ba/F3p210T315I and Ba/F3p210T315I/G250E cells as indicated. 

drug-interactions were confirmed by 
determining combination index (CI) 
values. Examples of synergistic drug 
effects are shown in Figure 1C. 
Asciminib and ponatinib also pro-
duced strong synergistic apoptosis-
inducing effects in KU812, K562  
and KCL22T315I cells (Figure 2A) as 
well as in BCR-ABL1-transformed 
Ba/F3 cells (Figure 2B). To investi-
gate whether drug-synergism is  
related to direct effects on BCR-
ABL1, we determined expression of 
phosphorylated CRKL (p-CRKL), a 
downstream-target of BCR-ABL1. 
Whereas suboptimal concentrations 
of asciminib or ponatinib failed to 
counteract p-CRKL expression, the 
combination of both drugs led to 
complete suppression of p-CRKL, 
suggesting that synergistic anti- 
leukemic effects of ‘asciminib+ 
ponatinib’ resulted from dual target-
ing of BCR-ABL1 (Figure 3). 

HU augments anti-neoplastic effects 
of ‘asciminib+ponatinib’ in TKI-resis-
tant CML cells

HU is prescribed for palliative cytore-
duction in advanced CML, often in 
combination with a TKI. We have 
recently shown that HU exerts strong 
antineoplastic effects on BCR-
ABL1T315I-mutated CML cells, pre-
sumably by interfering with CDK4/
CDK6 activity and thus cell cycle  
progression [22]. We therefore 
asked, whether addition of HU would 
augment the effects of the drug-
combination ‘asciminib+ponatinib’. 
To address this question, we exposed 
BCR-ABL1+ cells to low concentra-
tions of asciminib, ponatinib, or  
HU either alone or in 2- or 3-drug 
combinations. In these experiments, 
HU further enhanced the effects of  
a suboptimal ‘asciminib+ponatinib’ 
combination in all four CML cell  
lines tested, including BCR-ABL1T315I-
bearing KCL22 cells (Figure 4A). 
Drug synergism was also confirmed 
in Ba/F3 cells expressing compound 
mutations involving BCR-ABL1T315I 
(Figure 4B). 



Synergistic effects of asciminib and ponatinib in BCR-ABL1T315I+ CML

4475 Am J Cancer Res 2021;11(9):4470-4484



Synergistic effects of asciminib and ponatinib in BCR-ABL1T315I+ CML

4476 Am J Cancer Res 2021;11(9):4470-4484

Synergistic drug effects are also seen in pri-
mary TKI-resistant CML cells 

Next, we asked whether synergistic drug effects 
can also be demonstrated in primary patient-
derived CML cells. To address this question, 
leukemic cells from 8 patients with CP CML 
were exposed to asciminib and/or ponatinib 
and/or HU. Asciminib and ponatinib induced 
cooperative growth-inhibitory effects in primary 
CML cells in all CML samples tested (Figure 
5A). Moreover, HU was found to enhance the 
growth-inhibitory effects of a suboptimal com-
bination of ‘asciminib+ponatinib’ (Figure 5B). 

Asciminib and ponatinib synergize in produc-
ing apoptosis in CD34+/CD38- CML stem cells

Intrinsic and acquired resistance of leukemic 
stem cells (LSC) against TKI represents a ma- 

jor clinical challenge in CML [4, 6]. We asked 
whether the combination ‘asciminib+ponatinib’ 
induces apoptosis in primary patient-derived 
CD34+/CD38- CML stem cells. The gating strat-
egy applied to detect CML LSC is shown in 
Figure 6A. We found that asciminib promotes 
the apoptosis-inducing effects of ponatinib on 
CD34+/CD38- stem cells in all donors with CP 
CML (Figure 6B) and in all samples from 
patients with BCR-ABL1T315I+ or BCR-ABL1V299L/

F317L+ BP CML (Figure 6C). In one patient with 
BCR-ABL1T315I+ BP CML and one patient with 
BCR-ABL1V299L/F317L+ BP CML, we also added 
HU and found that the combination ‘asciminib+ 
ponatinib+HU’ exerts a strong cooperative ef- 
fect on survival of CD34+/CD38- LSC (Figure 
6D). 

Discussion

The management of TKI-resistant, advanced 
CML still represents a clinical challenge, espe-
cially when BCR-ABL1T315I is detected [4-6]. 
Ponatinib is to date the only available and wi- 
dely used TKI that is directed against BCR-
ABL1T315I. However, ponatinib should not be 
used for long-term treatment in all patients due 
to potential (vascular) side effects [16-19]. 
Moreover, T315I-including compound muta-
tions of BCR-ABL1 may occur during ponatinib 
treatment, resulting in a loss of response [12-
15]. In ponatinib-resistant CML or in ponati- 
nib-intolerant patients, other drugs, such as 
asciminib, which was tested successfully in 
clinical studies [25-31] and just received break-
through designation in CML by the FDA, may be 
considered. Asciminib appears to be a promis-
ing drug in heavily pretreated CML patients, 
which is especially due to the fact, that its bind-
ing site differs from binding sites interacting 
with other approved BCR-ABL1-TKI. However, 
resistance against asciminib may also occur 
[25, 32, 33]. Indeed, asciminib is unable to 
inhibit the growth of cells harboring T315I-
including compound mutations of BCR-ABL1 
[25, 32]. Furthermore, mutations concerning 
the myristoyl-binding pocket such as A344P, 

Figure 2. Asciminib and ponatinib synergize in producing apoptosis in BCR-ABL1+ cell lines. KU812, K562 and 
KCL22T315I (A) and Ba/F3 cells expressing various BCR-ABL1-mutations (Ba/F3p210T315I, Ba/F3p210T315I/E255V, Ba/
F3p210T315I/F359V, Ba/F3p210T315I/F311L, Ba/F3p210T315I/G250E) (B) were kept in control medium or in the presence of 
asciminib, ponatinib or a combination of both drugs as indicated for 48 hours before apoptosis was determined by 
Annexin V-FITC/DAPI staining and flow cytometry. One typical experiment (left panels) or the mean ± S.D. of three 
independent experiments .(right panels) are shown. Asterisk (right panels): P<0.05 compared to control. 

Figure 3. Asciminib and ponatinib synergize in inhib-
iting CRKL phosphorylation in human CML cell lines. 
KU812, K562, KCL22 and KCL22T315I were kept in 
control medium (Control) or in the presence of as-
ciminib (Asci), ponatinib (Pona) or a combination 
(Combi) of both drugs as indicated for 4 hours before 
expression of p-CRKL and β-tubulin (loading control) 
were analyzed by Western blotting. 
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Figure 4. Hydroxyurea (HU) augments anti-neoplastic effects of ‘asciminib+ponatinib’ in TKI-resistant CML cells. 
Human CML cell lines (A) and Ba/F3 cells expressing various BCR-ABL1-mutations (B) were kept in control medium 
or in the presence of a single drug (gray lines: asciminib (■-■); ponatinib (●-●); hydroxyurea (HU; ▲-▲), a two-drug 
combination (blue lines: ‘asciminib+ponatinib’ (▼-▼); ‘ponatinib+HU’ (♦-♦); ‘asciminib+HU’ (○-○) or the three-drug 
combination ‘asciminib+ponatinib+HU’ (red line; □-□) for 48 hours before 3H-thymidine-uptake was evaluated. Re-
sults are calculated as percent of control and represent the mean ± S.D. of triplicates. 
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P465S, and G671R, have been shown to com-
promise asciminib binding [32]. Finally, resis-
tance against asciminib may be mediated by 
other resistance mechanisms such as overex-
pression of the efflux transporters ABCB1 and 
ABCG2 [33]. All these observations suggest 
that responses to asciminib may not be durable 
in all patients with advanced CML. 

Combinations of anti-leukemic drugs including 
BCR-ABL1 TKI may represent an interesting 
therapeutic option in advanced CML as such 
drug combinations may suppress drug-resis-
tant subclones [22-24, 32-34]. For example, 
recent data suggest that asciminib cooperates 
with other BCR-ABL1-targeting TKI in counter-
acting the survival of BCR-ABL1+ cells [32-34]. 
In this study, we have confirmed cooperative 
drug effects and also provide evidence that 
these drug combinations are effective in hu- 
man CML cells, including TKI-resistant CML 
subclones in CML CP and CML PB. 

Several mechanisms may contribute to the  
synergistic anti-leukemic effects produced by 
combinations of drugs directed against BCR-
ABL1. To study these mechanisms, we per-
formed Western blot analysis and found that 
suboptimal concentrations of asciminib or po- 
natinib alone (as single agents) are unable to 
counteract CRKL phosphorylation in leukemic 
cells, whereas the drug combination resulted  
in complete suppression of p-CRKL. This obser-
vation suggests that synergistic anti-leukemic 
effects of ‘asciminib+ponatinib’ result primarily 

from dual targeting of BCR-ABL1 which is most 
probably due to the different BCR-ABL1 drug-
binding sites involved. An alternative explana-
tion could be additional drug targets (apart 
from BCR-ABL1) involved in synergistic drug 
interactions. Indeed, whereas asciminib has 
been postulated to be rather specific for BCR-
ABL1 [28], ponatinib reportedly binds to a num-
ber of additional target kinases that are critical 
for growth and survival of CML cells [16, 39]. 
However, so far, it remains unknown what pona-
tinib-targets may play a role in synergistic drug 
effects.

T315I-including compound mutations of BCR-
ABL1 represent a clinical challenge in CML, as 
these mutations cause resistance against all 
currently available TKI, including ponatinib and 
asciminib [12-15, 25, 32]. Therefore, current 
studies focus on the identification of strategies 
which lead to the elimination of CML-subclones 
carrying these mutations. We show that the 
combination ‘asciminib+ponatinib’ produces 
synergistic anti-proliferative effects in murine 
cell lines harboring BCR-ABL1T315I or ponatinib-
resistant T315I-including compound mutati- 
ons, hereby confirming previous observations 
[32]. Indeed, Eide et al. have recently shown 
that the combination ‘asciminib+ponatinib’ is 
able to prevent the outgrowth of drug-resistant 
Ba/F3p210 cells and can restore efficacy 
against highly-resistant BCR-ABL1 compound 
mutations. In our study, we have further investi-
gated this drug combination and found clear 
synergistic effects between asciminib and po- 

Figure 5. Asciminib, ponatinib and HU synergize in counteracting the growth of primary CML cells. Primary neoplas-
tic cells isolated from 3 patients with CP CML (A: Patients #1, #3 and #4; B: Patients #2, #6 and #7) were kept 
in control medium or in the presence of asciminib, ponatinib, HU, or drug-combinations as indicated for 48 hours 
before 3H-thymidine-uptake was evaluated. Results are expressed as percent of control and represent the mean ± 
S.D. of three patients. Asterisk: P<0.05 compared to control medium. Patients’ numbers refer to Table 1.
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Figure 6. Asciminib, ponatinib and HU synergize in inducing apoptosis in CD34+/CD38- CML stem cells. A. For the 
detection of Annexin+/DAPI- immature CD34+/CD45dim/CD38- stem cells in peripheral blood samples of CML pa-
tients, a step by step gating strategy was applied (steps I-IV) as indicated by pink arrows. After excluding DAPI-nega-
tive cells (gate I), immature cells were identified based on their CD34 expression (gate II) and further gated as CD45 
dim-positive cells (gate III). Next, cells were separated into progenitor cells (CD34+/CD38+; gate IVa) and stem cells 
(CD34+/CD38-; gate IVb) by their CD38 expression. Expression of Annexin was determined in stem cells as shown 
in gate V. The example shows peripheral blood cells from a patient with CML treated with control medium (upper 
panel) or the combination of ponatinib and asciminib (each 1 µM, lower panel) for 48 hours. B. Primary neoplastic 
cells isolated from 3 patients with CP CML (patients #1, #2 and #3) were kept in control medium or in the presence 
of asciminib, ponatinib, or a combination of both drugs as indicated for 48 hours before apoptosis in CD34+/CD38- 
stem cells was determined by Annexin V-FITC/DAPI staining and flow cytometry. One typical experiment (patient #1) 
is shown in the left panel; results shown in the right panel represent the mean ± S.D. of the percentage of apoptotic 
cells (after subtraction of apoptotic cell-counts in control medium) in each condition determined in three patients 
(patients #1, #2 and #3). C, D. Primary neoplastic cells isolated from 3 patients with BP CML (patients #9, #10 and 
#11) were kept in control medium or in the presence of asciminib, ponatinib, HU or drug-combinations as indicated 
for 48 hours before apoptosis within the CD34+/CD38- stem-cell fraction was determined by Annexin V-FITC/DAPI 
staining and flow cytometry. Results show one typical experiment after subtraction of apoptotic cell-counts in control 
medium. Patients’ numbers refer to Table 1.

natinib. In particular, both drugs, when applied 
together, were demonstrated to cooperate in 
producing growth inhibition in human CML cell 
lines, including TKI-resistant BCR/ABL1T315I+ 
KCL22 cells, and also Ba/F3p210 cells expr- 
essing BCR/ABL1T315I or various T315I-based 
compound mutations. Moreover, the drug com-
bination ‘asciminib+ponatinib’ was found to 
cooperate in suppressing the proliferation of 
primary CML cells, including leukemic cells ob- 
tained from patients with CP and BP. Together, 
this data suggest that ‘asciminib+ponatinib’ 
may be a powerful drug-combination in ad- 
vanced CML.

We next asked whether there are additional or 
even stronger drug combinations through which 
CML subclones bearing BCR-ABL1 compound 
mutations (involving T315I) can be suppressed 
or even can be eradicated. We have recently 
shown that HU exerts strong anti-neoplastic 
effects on BCR-ABL1T315I-mutated CML cells 
and synergizes with ponatinib in inhibiting cell 
proliferation [22]. These HU effects on CML 
cells may be caused by the suppression of 
CDK4 and CDK6 in leukemic cells. Since the 
cyclin-dependent kinases CDK4 and CDK6 are 
not among major targets of ponatinib and 
asciminib we asked whether additional sup-
pression of CDK4/CDK6 could augment the 
effects of the drug combination ‘asciminib+ 
ponatinib’ on growth of multi-mutated CML 
cells. Indeed, we were able to demonstrate that 
HU augments the anti-leukemic effects of the 
drug-combination ‘asciminib+ponatinib’ in all 
human BCR-ABL1+ cell lines evaluated, includ-
ing BCR-ABL1T315I-bearing KCL22 cells and  
Ba/F3 cells expressing various BCR-ABL1 com-

pound mutations. Simultaneous application of 
low doses of these 3 drugs may therefore be 
sufficient to control cell proliferation in CML 
cells, even in the presence of compound 
mutations. 

One limitation to the application of ponatinib (at 
least in a subset of patients) are severe cardio-
vascular side effects, especially if ponatinib is 
used at a daily dose of 45 mg [12-15]. Lower 
concentrations of ponatinib, such as 15 mg or 
30 mg/day, were demonstrated to have a more 
beneficial risk profile [40, 41]. We have shown, 
that substantially lower doses of ponatinib were 
needed to suppress growth and survival of 
BCR-ABL1+ cells in vitro when ponatinib was 
combined with asciminib. Hence, the applica-
tion of additional or alternative drug combina-
tions could allow the use of lower doses of 
ponatinib and thus may help avoid side effects. 
Of note, neither HU nor asciminib have been 
associated with cardiovascular side effects, 
arguing for a combination of these drugs with 
ponatinib. However, drug combinations may 
also lead to new or unexpected side effects due 
to simultaneous suppression of multiple ‘off-
targets’ that may play a role in non-neoplastic 
cells, such as endothelial cells or cardiomyo-
cytes. Concerning ‘HU+ponatinib’, a combina-
tion which is occasionally used in clinical prac-
tice in case of advanced or TKI-resistant CML, 
no increase of cardiovascular side effects has 
been reported so far. However, further in vivo 
experiments and clinical trials are warranted to 
carefully investigate whether the combinations 
‘asciminib+ponatinib’ and ‘asciminib+ponati- 
nib+HU’ would produce unexpected adverse 
events in patients. 
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