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Abstract: Metaplastic breast cancer (MBC) constitutes a rare but unique histologic entity with poor prognosis. We 
hypothesized that MBC possesses unique genetic profile and tumor immune microenvironment. MBC cases were 
identified from a total of 10827 breast cancer entries in the Cancer Genome Atlas Data Set (TCGA) and the AACR-
GENIE (Genomics Evidence Neoplasia Information Exchange) cohorts. Tumor infiltrated immune cells were esti-
mated by xCell. Baseline clinical characteristics were compared, and gene set enrichment analysis (GSEA) was per-
formed. MBC comprised 0.66% of the cohorts (1.2% of TCGA and 0.6% of GENIE). MBC cases were predominantly 
triple-negative (TNBC) (8 (61.5%) vs 151 (14.4%), P<0.001), and high Nottingham histological grade (8 (61.5%) 
vs 222 (21.1%), P=0.02) compared to non-MBC in the TCGA cohort. Increased infiltration of M1 macrophages 
(P=0.012), dendritic cells (P<0.001) and eosinophils (P=0.036) was noted in the MBC cohort however there was no 
difference in cytolytic activity (P=0.806), CD4 memory (P=0.297) or CD8 T-cells (P=0.864). Tumor mutation burden 
was lower in the MBC compared to the non-MBC, median: 0.4 vs 1.6/Mb in the TCGA-TNBC cohort (P=0.67) and 3.0 
vs 4.0/Mb (P=0.1) in the GENIE-cohort. MBC had increased intratumor heterogeneity (P<0.001), macrophage regu-
lation (P=0.008) and TGF-beta response (P<0.001). Disease-specific survival was decreased in MBC (P=0.018). 
Angiogenesis and epithelial-to-mesenchymal transition pathways were enriched in triple-negative MBC by GSEA 
(P=0.004 and P<0.001, respectively). Our results suggest that high intratumor heterogeneity, enriched angiogen-
esis and EMT pathway expression represent possible mechanisms leading to worse disease-specific survival found 
in metaplastic breast cancer.
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Introduction

Metaplastic breast cancer is a distinct but  
rare pathologic subtype characterized by an 
aggressive tumor biology, comprising 0.25-1% 
of all invasive breast cancers [1, 2]. Some of 
the attributes that explain its aggressiveness 
include the resistance to conventional sys- 
temic therapies and the more common hema-
togenous spread as opposed to lymphatic dis-
semination seen with invasive ductal carcino-

ma. Furthermore, it poses a challenge for the 
pathologists due to its significant heterogene- 
ity containing squamous cells and/or mesen-
chymal tissue that can be markedly atypical  
or bland, resembling fibromatosis. A recent, 
matched analysis from our institution com-
pared metaplastic breast cancer with triple 
negative breast cancer cases and found worse 
disease-free and overall survival for the meta-
plastic subtype [3]. The heterogeneity in phe- 
notype poses a question regarding underlying 
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0.25 was used to define statistical significan- 
ce as recommended by the Broad Institute 
[27]. Comparison between the non-metaplastic 
breast cancer group and the metaplastic group 
as well as a subgroup analysis for the triple-ne- 
gative subtype was performed using the Hall- 
mark gene set collection of The Molecular 
Signatures Database (MSigDB) [37] similar to 
prior work by our group [11, 30-32, 34, 38-43].

Statistical analysis

Statistical analysis of the group comparison 
was calculated by one-way ANOVA or Fisher’s 
exact test. Survival analysis was performed 
using Kaplan-Meier plots with log-rank test. All 
statistical analyses were performed using R 
software v. 4.0.1.

Results

Metaplastic breast cancer clinicopathologic 
characteristics

Out of 10827 breast cancer cases, 72 (0.66%) 
were identified to be metaplastic carcinomas, 
13/1064 (1.2%) and 59/9763 (0.6%) in the 
TCGA and GENIE cohorts, respectively. In the 
TCGA cohort, estrogen receptor (ER) status  
was positive in 3 (23.1%) vs 776 (73.8%), 
(P<0.001), progesterone receptor (PR) status 
was positive in 2 (15.4%) vs 671 (63.8%), (P< 
0.001), human epidermal growth factor recep-
tor 2 (HER2) status was positive in 1 (7.7%) vs 
174 (16.6%), (P=0.48) in the metaplastic ver-
sus non-metaplastic group (Table 1). 

Multidimensional scaling plot designed bas- 
ed on pairwise genetic distances among the 
different PAM50 (based on the 50-gene classi-
fier) intrinsic subtypes [44] including metaplas-
tic breast cancer demonstrated clustering of 
the metaplastic cases between the HER-2 and 
the basal subtypes (Figure 1). The majority of 
metaplastic tumors were triple negative (by 
immunohistochemistry) compared with the 
other subtypes, 8 (61.5%) vs 151 (14.4%), 
respectively (P<0.001). The distribution of 
metaplastic vs non-metaplastic breast cancer 
cases based on American Joint Committee on 
Cancer (AJCC) Cancer Staging 8th edition [45] 
was: 2 (15.4%) vs 271 (25.8%) Stage I, 6 
(46.2%) vs 594 (57.8%) Stage II, 3 (23.1%) vs 
239 (22.7%) Stage III, 0 vs 18 (1.7%) Stage IV, 
respectively (P=1). Node positive disease was 

genomic and transcriptomic profiles that are 
not well defined.

The genomic and transcriptomic analysis of 
metaplastic breast cancer subtypes is not  
completely elucidated in the literature with 
some studies reporting high PD-L1 gene am- 
plification as opposed to a low rate in others  
[4, 5]. A Surveillance, Epidemiology, and End 
Results (SEER database) study of metaplastic 
breast cancer has shown that human epider-
mal growth factor receptor 2 (HER2) status  
was associated with improved survival and 
postulated engagement of the innate and ad- 
aptive immune systems related to the HER2-
antibodies [6]. However, the exact immune cell 
composition and expression has not been 
investigated.

We hypothesized that there is a unique tran-
scriptomic profile that explains the phenotype 
of metaplastic breast cancer using an in silico 
translational research approach.

Materials and methods

Patient cohort

The Cancer Genome Atlas Data Set (TCGA) 
breast cancer cohort [7] and the American 
Association of Cancer Research (AACR) Ge- 
nomics Evidence Neoplasia Information Ex- 
change (GENIE) project were utilized to obtain 
clinicopathologic and genomic data through  
the cBioportal as previously described [8-14].  
A total of 10827 breast cancer cases, 1064 
from TCGA and 9763 from AACR-GENIE, were 
analyzed. Metaplastic breast cancer was iden-
tified by the pathological description in each 
dataset. Institutional review board approval 
was waived as both TCGA and AACR-GENIE 
cohorts are publicly accessible, de-identified 
databases.

Immune cell composition and gene set 
enrichment analysis (GSEA)

We used an online computational algorithm, 
xCell [15, 16], to estimate the immune cell  
composition based on gene expression data, 
as previously described [9-12, 14, 17-26].  
Gene set enrichment analysis (GSEA) [27] was 
conducted using publicly available software 
provided by the Broad Institute [22-24, 28- 
36]. False discovery rate (FDR) of less than 
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noted in 2 (15.4%) metaplastic cases vs 538 
(51.2%) non-metaplastic cases, P=0.01. There 
were 0 vs 76 (7.2%) Nottingham histological 
grade I, 1 (7.7%) vs 259 (24.6%) grade II, 8 
(61.5%) vs 222 (21.1%) grade III in the meta-
plastic vs non-metaplastic groups respectively, 
P=0.02.

Metaplastic breast cancer has increased infil-
tration of dendritic cells, eosinophils, M1 mac-
rophages and regulatory T-cells

There was no difference in lymphocyte infiltra-
tion in metaplastic breast cancer, including 

CD8 T-cells (P=0.864), CD4 memory T-cells 
(P=0.297), type 1 helper T-cells (P=0.485), 
type 2 helper T-cells (P=0.149), gamma delta 
T-cells (P=0.844) and B-cells (P=0.902), ex- 
cept for regulatory T-cells (P=0.001). In terms 
of innate immunity, M1 macrophages (P= 
0.012), dendritic cells (P<0.001) and eosino-
phils (P=0.036) were highly infiltrated in the 
metaplastic group, however, cytolytic activity, 
that depicts the overall cell killing activity by 
immune cells, was comparable between the 
two groups (P=0.806). Figure 2 depicts the 
complete results in boxplots.

Metaplastic breast cancer has increased leu-
kocyte fraction, macrophage regulation, TGF-
beta response and intratumor heterogeneity 
compared to other subtypes

Thorsson et al. published a comprehensive list 
of pre-calculated values of many computation-
al algorithms of all the patients in TCGA [46]. 
Among the algorithms are leukocyte fraction, 
tumor infiltrating lymphocyte (TIL) regional  
fraction, macrophage regulation, lymphocyte 
infiltration signature, interferon (IFN)-gamma 
response, TGF-beta response, silent and non-
silent mutation rate, single-nucleotide vari- 
ation and insertion and deletion neoantigens, 
intratumor heterogeneity, and cell proliferation 
scores. When metaplastic was compared with 
others, there was a statistically significant  
higher proportion of leucocyte fraction (P= 
0.004), TGF-beta response (P<0.001), more 
macrophage regulation (P=0.008) and higher 
intratumor heterogeneity (P<0.001) in the 
metaplastic group. There was no difference in 
lymphocyte infiltration signature score (P= 
0.605), tissue-infiltrating lymphocytes (TIL) 
regional fraction (P=0.971), silent and non-
silent mutation rates (P=0.597 and P=0.654, 
respectively) or proliferation scores (P=0.165) 
(Figure 3).

Metaplastic breast cancer was associated with 
worse disease-specific survival (DSS), but not 
progression-free survival (PFS), disease-free 
survival (DFS), or overall survival (OS)

In a comparison between the metaplastic and 
non-metaplastic breast cancer in the TCGA 
cohort there was no difference in progression-
free survival (P=0.237), disease-free survival 
(P=0.616) or overall survival (P=0.111). How- 
ever, the metaplastic breast cancer was as- 

Table 1. Clinicopathologic data from the TCGA 
clinical data resource (TCGA-CDR) of the meta-
plastic and non-metaplastic cohorts

Metaplastic
n=13

Non-metaplastic
n=1051 P value

ER positive 3 (23.1) 776 (73.8) <0.001
PR positive 2 (15.4) 671 (63.8) <0.001
HER2 positive 1 (7.7) 174 (16.6) 0.481
Triple-negative 8 (61.5) 151 (14.4) <0.001
T stage
    T1 2 (15.4) 271 (25.8) 0.134
    T2 6 (46.2) 607 (57.8)
    T3 4 (30.8) 133 (12.7)
    T4 1 (7.7) 37 (3.5)
Node positive 2 (15.4) 538 (51.2) 0.01
AJCC stage
    Stage I 2 (15.4) 176 (16.7) 1.00
    Stage II 8 (61.5) 594 (56.5)
    Stage III 3 (23.1) 239 (22.7)
    Stage IV 0 18 (1.7)
Tumor grade
    Grade 1 0 76 (7.2)
    Grade 2 1 (7.7) 259 (24.6) 0.021
    Grade 3 8 (61.5) 222 (21.1)
Mitotic score
    1 1 (7.7) 246 (23.4)
    2 2 (15.4) 149 (14.2) 0.037
    3 6 (46.2) 162 (15.4)
Nuclear score
    1 0 33 (3.1)
    2 0 262 (24.9) 0.008
    3 9 (69.2) 262 (24.9)
Tubular score
    1 0 24 (2.3)
    2 0 110 (10.5) 0.379
    3 9 (69.2) 423 (40.2)
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sociated with worse disease-specific survival 
(P=0.018) (Figure 4).

Metaplastic breast cancer has lower mutation 
burden and frequent p53 mutations

In the GENIE cohort, the median mutation 
count for metaplastic subtypes was 3 vs 4 for 
non-metaplastic subtypes (P=0.1) and 0.4 vs 
1.6/Mb in the TCGA-TNBC cohort (P=0.67).  
p53 mutations were more frequently obser- 
ved in metaplastic tumors, 37/59 (55.9%) vs 
3805/9763 (38%) in the GENIE cohort and  
5/8 (62.5%) vs 348/1059 (32.9%) in the TCGA 
cohort (Figure 5). 

Despite the fact that we used a massively larg-
er cohort, we observed similar mutations as 
previously reported, albeit at a higher fre- 
quency. No new MBC-specific mutations were 
identified.

Significant enrichment of angiogenesis-related 
and epithelial-mesenchymal transition gene 
sets in metaplastic triple-negative breast can-
cer

GSEA analysis revealed enrichment in angio-
genesis (Normalized Enrichment Score (NES) 

and microvascular endothelial cells (P=0.018) 
in metaplastic triple-negative breast cancer, 
which is in agreement with enhanced angio- 
genesis (Figure 7).

Discussion

Amongst 10827 breast cancer cases in GENIE 
and TCGA cohorts, 72 (0.66%) cases were  
identified by pathology to be metaplastic carci-
nomas. Similar to prior reports in the literature, 
metaplastic breast cancer was predominantly 
ER, PR negative, node-negative and predomi-
nantly high-grade [1, 2, 47]. Computational 
analysis showed higher infiltration of regula- 
tory T-cells, M1 macrophages, dendritic cells 
and eosinophils in the metaplastic tumors  
while the cytolytic activity was not statistically 
different. There was no difference in mutation 
rate or neoantigens, but higher intratumor het-
erogeneity and higher TP53 mutation rate was 
associated with metaplastic tumors. Epithe- 
lial-mesenchymal transition and angiogenesis 
gene sets were enriched in the MBC cohort as 
well as signaling gene sets such as androgen, 
estrogen response and TGF-beta. 

Similar to prior studies, the majority of meta-
plastic cases were triple negative compared to 

Figure 1. Multidimensional scaling plots (MDS) obtained on pairwise ge-
netic distances between the different PAM50 intrinsic subtypes including 
metaplastic breast cancer in TCGA cohort. Open circles are color coded with 
PAM50 subtypes as the following; Basal: grey, HER2: blue, Luminal A: red, 
Luminal B: orange, Normal: green. Closed black circles represent metaplas-
tic breast cancer.

=1.81, False discovery rate 
(FDR) =0.14, P=0.004) and 
epithelial-mesenchymal tran-
sition gene sets (NES=1.88, 
FDR=0.017, P<0.001) for me- 
taplastic triple-negative ver-
sus non-metaplastic triple-ne- 
gative breast cancer (Figure 
6). 

In a subset analysis of  
the triple-negative metaplas-
tic subgroup, intratumor het-
erogeneity (P<0.001) as well 
as TGF-beta response (P= 
0.04) remained high. How- 
ever, the lymphocyte infiltra-
tion score was decreased 
(P=0.04) and there was de- 
creased expression of CD4 
memory T-cells (P=0.034) in 
the metaplastic triple-nega-
tive subgroup. Finally, there 
was increased number of fi- 
broblasts (P<0.001), lymphat-
ic endothelial cells (P=0.019) 
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Figure 2. Tukey boxplots of fractions of immune cells and cytolytic activity (CYT) in metaplastic (M) versus non-metaplastic (BC) breast cancer using xCell algorithm 
in TCGA cohort. Y-axis shows the fraction of cells. Boxes depict medians and interquartile ranges. Depicted P-values were calculated using one-way ANOVA.
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Figure 3. Association between metaplastic (M) versus non-metaplastic (BC) breast cancer and immune cell fraction and function scores, neoantigen expressions, 
mutation rates, intratumor heterogeneity and proliferation score in the TCGA cohort. Each score was previously calculated on every patient in TCGA by Thorsson et 
al. (22). One-way ANOVA test was used to calculate the P values.
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Figure 4. Survival curves of the metaplastic (M) versus non-metaplastic (BC) breast cancer in the TCGA cohort. Kaplan-Meier survival plots comparing patients with 
M (blue line) and BC (red line) along with log-rank test P-values are shown for disease-free survival, progression-free survival, disease-specific survival, and overall 
survival.
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non-metaplastic and were noted to have a  
basal-like phenotype [2, 6]. TP53 mutations 
were noted frequently in the metaplastic group 
[48-51]. However, there is great variability in 
the extent of lymphocyte infiltration and the 
immune cell composition in metaplastic breast 
cancer. In a recent study of 75 metaplastic 
cases, PD-L1 (Programmed death-ligand 1) 
expression was detected more frequently in 
metaplastic tumors (46%) compared to the 
other subtypes by immunohistochemistry [4]. 
Another case report has documented a dra- 
matic response with pembrolizumab and nab-
paclitaxel in a stage IV metaplastic breast can-
cer [52]. In our study, there was increased ex- 
pression of the leukocyte fraction in the meta-
plastic subgroup however there was no statis- 
tical significance in terms of the expression of 
tissue-infiltrating regional fraction or the lym-
phocyte infiltration signature score. This might 
be related to the low tumor mutational burden 
as shown in a recent genomic profiling analysis 
of 192 MBC tumors, where tumor-infiltrating 
lymphocytes were more commonly observed in 
high mutational burden MBC [5]. 

Our findings provide a possible explanation of 
the chemotherapy resistance in MBC since 
there is no difference in the expression of cell 
proliferation gene-sets as seen in other can- 
cer types such as pancreatic adenocarcinoma 
[53]. Interestingly, in our cohort, triple negative 
metaplastic breast tumors were noted to have 
enriched expression of angiogenesis gene-sets 
as well as epithelial-to-mesenchymal transition 
pathways. Mutations in the mTOR pathway 
have been shown to be rare in triple negative 
MBC [54]. Despite the low tumor mutational 

that a single genetic alteration, notwithstand-
ing the prevalence of loss of PTEN expression 
or mutations affecting PIK3CA, could define 
any of the defined metaplastic subtypes. 

A large percentage of breast cancer cases have 
been known to possess a “cold” tumor micro-
environment and not being responsive to novel 
immunotherapy agents. With the exception of 
regulatory T-cells, MBC cases did not show any 
difference in lymphocyte infiltration compared 
to non-MBC cases. However, there was signifi-
cant activation of the innate immune system 
with a higher infiltration of M1 macrophages, 
dendritic cells and eosinophils. Plasmacytoid 
dendritic cells have shown affinity to the tumor 
microenvironment and contribute to an immu-
nosuppressive response [55]. TGF-beta activa-
tion is also important to mediate immunosup-
pression, further impeding antitumoral effects.

The current study has several limitations inclu- 
ding the small number of metaplastic breast 
cancer cases analyzed as well as the absence 
of details regarding the particular histopatho-
logic subtype within the metaplastic group. 
Recent data suggests significant heterogene- 
ity amongst different metaplastic tumors that 
is reflected on the World Health Organization 
(WHO) classification [49, 54]. Therefore, even 
though our data represents a subset from  
large validated datasets, extrapolations might 
be limited. There is limited information on the 
immune composition of metaplastic breast 
cancer and our data is a significant contribu-
tion towards better understanding of the  
immunopathology of this subtype. Given the 
lack of CTLA-4 in the cohort analyzed, we are 

Figure 5. Mutation distribution in the entire breast cancer cohort and the 
metaplastic subgroup in GENIE cohort.

load, MBC cases carried mul-
tiple mutations including the 
PIK3CA 33.9%, PTEN 6.8%, 
NF1 11.1% and TERT 12.5% 
similar to prior reports [4, 49, 
54]. In a recent genomic and 
transcriptomic analysis of 17 
metaplastic breast carcino-
mas, Piscuoglio et al. demon-
strated the significant vari- 
ability of mutations present  
as well as differences at the 
genetic level that character- 
ize histologically distinct sub-
groups of metaplastic breast 
cancer [54]. The authors also 
conclude that it is unlikely  
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Figure 6. Hallmark gene sets with significant enrichment to metaplastic breast cancer in TCGA cohort. Gene set 
enrichment (GSEA) plots along with normalized enrichment score (NES) and false discovery rate (FDR) are shown for 
epithelial-mesenchymal transition and angiogenesis gene sets. The statistical significance of GSEA was determined 
by FDR<0.25.
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awaiting the results of the phase II DART study 
(NCT02834013) that is actively enrolling par-
ticipants with rare tumors, including MBC to 
receive nivolumab and ipilimumab (anti-CTLA-4 
antibody).

Despite its rarity, metaplastic breast cancer 
represents a significant challenge in the multi-
disciplinary treatment given its preponderance 
for triple-negative, higher grade tumors. In this 
computational analysis, we demonstrated a 
significant infiltration of eosinophils, dendritic 
cells, M1 macrophages and regulatory T-cells  
in MBC. However, cytolytic score, CD8 T-cell 
and type 1 helper T-cell expression were no  
different between metaplastic and non-meta-
plastic subtypes. Furthermore, significant in- 
tratumor heterogeneity and TGF-beta respon- 
se was noted in the metaplastic cohort. When 
we analyzed the triple-negative metaplastic 
subgroup, intratumor heterogeneity and TGF-
beta response was noted to be significantly 
higher, which aligns with a previous report by 
Lien HC et al. [56]. We demonstrated that MBC 
significantly enriched Hallmark EMT gene set, 
composed of 200 EMT-related genes, which 
validate the findings by Zhang Y et al. that sev-
eral EMT markers were highly expressed in 
MBC [57]. Moreover, MBC enriched angiogene-
sis, but not cell proliferation-related gene sets.

MBC is associated with enrichment of EMT 
pathways as well as angiogenesis gene sets, 
but the lack of enrichment in cell-proliferation 
gene-sets renders it less sensitive to tradition- 
al cytotoxic chemotherapy [50, 56]. Further- 
more, the low tumor mutational burden and  
the inconsistent PD-L1 expression make it 
challenging to treat with immunotherapy des- 
pite some interesting case reports in the litera-
ture. These factors highlight potential mecha-
nisms rendering MBC resistant to chemothera-
py and provide insight into its tumor microen- 
vironment. 
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