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Abstract: Identification of circulating tumor cells (CTC) in liquid biopsies opens a window of opportunities for the 
optimization of clinical management of oncologic patients. In ovarian cancer (OC), which involves atypical routes of 
metastatic spread, CTC analyses may also offer novel insights about the mechanisms behind malignant progression 
of the disease. However, current methodologies struggle to precisely define CTC number in the peripheral blood of 
OC patients, and the isolation of viable cells for further characterization is still challenging. The biggest limitation is 
the lack of methodological standardization for OC CTC detection, preventing comprehensive definition of their clini-
cal potential required for the transfer to practice. Here we describe and compare methods for CTC analysis that have 
been implemented for OC thus far, discussing pros, cons and improvements needed. We identify biophysical separa-
tion approaches as optimal for CTC enrichment. On the other hand, the identification of specific tumor antigens or 
gene transcripts, despite displaying drawbacks related to tumor heterogeneity, still remains the best approach for 
OC CTC detection. 
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Liquid biopsy for circulating tumor cell analy-
sis in ovarian cancer 

Obtaining diagnostic and prognostic informa-
tion by simply performing a blood test has long 
been the holy grail in oncology. Today, liquid 
biopsy is used for clinical evaluation in several 
cancer contexts, mainly by detecting circulat- 
ing tumor-derived cell free material (DNA, RNA, 
proteins, metabolites, exosomes) [1]. In addi-
tion, peripheral blood may also contain circulat-
ing tumor cells (CTCs) that are shed from the 
primary tumor, but escape anoikis, i.e. death  
of anchorage-dependent cells when detached 
from the tissue of origin. These rare entities 
(<10 per mL) survive in circulation for long peri-
ods, eventually nesting in distant tissues and 
forming metastases. Having a longer life span 
than cell-free material, CTCs may provide addi-
tional clinical benefit, aiding patient follow-up. 
Moreover, CTC detection may be used for a 
non-invasive early diagnosis, which would be 
particularly ground-braking in the context of 

ovarian cancer (OC), where screening protocols 
are still lacking and 70% of patients is diag-
nosed at the advanced stages of the disease, 
resulting in high mortality [2]. Finally, it is clear 
that the information held in CTCs is of great 
value to understand biological mechanisms of 
metastasizing, which in OC involves atypical 
routes still to be elucidated. Nevertheless, the 
actual clinical significance of CTC analysis has 
been somewhat contested in OC, since the 
metastatic spread of this malignancy is consid-
ered to occur predominantly locally, via direct 
transcoelomic dissemination to the omentum, 
while the peripheral hematogenous route, whi- 
ch would involve the presence of CTCs, is less 
common [3]. Thus, it was initially assumed OC 
is not the optimal context for the use of CTCs 
for diagnostic/prognostic purposes. The emerg-
ing evidence reports primary tumor shedding to 
peripheral blood even in patients diagnosed 
with early-stage OC [4, 5], and shows that de- 
velopment of omental metastases may actually 
be the result of both transcoelomic and hema-
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togenous spread [6-8]. Concordantly, the last 
decade has witnessed a vast number of works 
reporting relatively high rates of CTC-positive 
OC patients (60-98%), implying correlations 
may be drawn with various clinical parameters, 
such as monitoring disease and drug resis-
tance [9-13]. In addition, several meta-analy-
ses have been conducted, mainly concluding 
that the presence of OC CTCs correlates with 
worse overall and progression-free survival [14, 
15]. However, the comprehensive definition of 
OC CTC clinical potential required for the trans-
fer to practice is still lacking, mainly due to the 
scarce methodological standardization for their 
detection. 

Here we discuss methods for CTC analysis that 
have up to date been implemented in OC, dis-
tinguishing enrichment from detection appro- 
aches, to recognize pros and cons of available 
protocols and understand which directions to 
follow for future technological optimizations. 
Among other, we compare capture rate efficien-
cies estimated with golden standard samples 
generated by spiking known cancer cell num-
bers into healthy donor blood (Table 1). 

Starting point: sample enrichment is the most 
efficient when exploiting circulating tumor cell 
biophysical properties 

Identification of CTCs in the patient’s peripheral 
blood is technically challenging on one hand 
due to their low absolute numbers and on the 
other because of blood cells abundance. At late 
cancer stages, CTCs were reported at frequen-
cies of 1-10 per mL of whole blood [5, 16], while 
the same volume contains also 5 × 109 of 
erythrocytes and 107 of white blood cells. Thus, 
the majority of investigations require an enrich-
ment step to increase CTC concentration before 
detection. Separation can be based on distinct 
biophysical properties between blood cells and 
CTCs, as the latter display aberrant cytological 
features including low deformability, altered 
density, larger cellular size and heterogenous 
nuclear shape. Alternatively, antibodies can be 
used to either label immune cells for depletion 
or bind cancer specific markers for positive 
selection. In this chapter we discuss pros and 
cons of various enrichment procedures used  
in the context of OC. We recognize methods 
based on biophysical properties as the current-
ly most promising approach, especially when 
samples are processed on microfluidic devices, 

since they allow recovery of heterogeneous 
populations of intact CTCs, which is crucial for 
confident functional characterization and mole- 
cular profiling.

Microfiltration

Based on differences in morphology and size 
between cancer cells (15-40 μm in diameter) 
and leukocytes (≤10 μm in diameter), microfil-
tration offers a simple and rapid enrichment,  
by processing large blood volumes within min-
utes, with minimal pre-handling. Of note, CTC 
detection is often possible directly on the filtra-
tion membrane. Several small-format microfil-
tration devices have been developed, some of 
them applied for OC CTCs recovery. In particu-
lar, one group used the CanPatrol system, 
based on vacuum filtration through a mem-
brane with 8 µm diameter pores [17]. When 
spiking 10-200 cancer cells in 5 mL of blood, 
CanPatrol has been reported to provide recov-
ery rates ranging from 80 to 89% [18] (Table 1). 
However, the approach does not allow retrieval 
of vital CTCs, since they are formaldehyde-fixed 
before filtering. Alternatively, obtaining viable 
CTCs is possible when using the small bench 
instrument MetaCell™ whose absorbent poly-
carbonate membrane allows capillary-action 
driven passage of the plasma, whereas the 
blood cells are filtered through the 8 μm di- 
ameter pores. The CTC fraction is observable 
immediately after isolation and can be cultur- 
ed in vitro for further enrichment [19, 20], or 
subjected to cytomorphological evaluation and 
gene expression analysis for molecular charac-
terization [19-21]. To the best of our knowledge, 
there is no literature reporting evaluation of 
MetaCell™ recovery rates. A similar techno- 
logy called ISET (Isolation-by-Size-of-Epithelial-
Tumor), which also captures CTCs on a polycar-
bonate 8 μm pore membrane, was shown to 
present with high recovery rates (83-99%) 
when 1-100 breast cancer cells were spiked 
per mL of blood [22] (Table 1). Even though 
ISET seems to be frequently used for CTC en- 
richment in other tumor types [23-25], to the 
best of our knowledge only one published study 
applied the technology in OC [26]. 

Another filtration approach, used by Kim and 
colleagues for the CTC isolation from OC pa- 
tients, is the tapered-slit filter (TSF) which con-
tains either 6 or 8 μm pores, wide at the 
entrance and narrowing with depth to minimize 
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Table 1. Recovery rates of spiked cancer cells captured by different enrichment/detection methods. When available, studies using ovarian can-
cer cell lines were preferably cited
Method cells/mL blood Recovery rate Tumor model Reference 
CanPatrol 2-40 80 to 89% HepG2 cell line (hepatocellular carcinoma) [50]
ISET 1-100 83 to 99% MCF7, SKBR3, and MDA-MB-231 cell lines 

(breast cancer)
[22]

Tapered-slit membrane filter (TSF) 2000 82% H358 cell line (lung carcer) [27]
OncoQuick™ 2.7 × 105 87% HT-29 cell line (colorectal carcinoma) [35]

5000 21% KB cell line (nasopharyngeal cancer) [16]
RosetteSep™ 5000 62.5% KB cell line [16]

2-50 40% MDA-MB-231 cell line [36]
Negative leukocyte depletion using CD45 magnetic beads 40 32% to 77% CAL-54 and A-498 cell lines (renal and kidney 

carcinoma, respectively)
[38]

Automatic CD45 depletion 100 40% to 82% BG-1 cell line (ovarian cancer) [39]
3D-printed microfluidic device for CD45 depletion 3 × 103-4 × 103 90% HeyA (ovarian cancer), LNCaP (prostate cancer) 

and MDA-MB-231 cell lines 
[40]

CD-PRIMETM 13-50 85-87.5% SKOV3 and OVCAR3 cell lines (ovarian cancer) [48]
ParsortixTM 5 28-72% TOV21G and CaOV3 cell lines (ovarian cancer) [84]

7 69% MDA-MB-468 cell line (breast cancer) [53]
3D-printed microfluidic chip <10 56% SKOV3ip1 (ovarian cancer) [54]
IsoFlux 3-40 57-83.5% SKOV3 cell line [45]
CellSearch® 1 80-82% SKBR3 cell line (breast cancer) [71]

1-67 42-75% SKBR3 (high EpCAM) and CAL-120 (low EpCAM) 
cell lines (breast cancer)

[46]

Biotin-doped Ppy-deposited Microfluidic Device 10-100 >65% HCT116 (EpCAM-positive) and T24 (EpCAM-
negative) cell lines (colon and bladder cancers, 
respectively)

[79]

AdnaTest Ovarian Cancer Detect 1-5 100% OvCar3 cell line (ovarian cancer) [62]
Microfluidic glass chip 50, 100 and 1000 

cells in 500 µl
88% OvCar3 cell line [90]
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cell stress [13, 27] (Figure 1). When using 6 μm 
filter and by spiking 2000 cells/mL of blood 
diluted with PBS (1:4), 82% recovery rate was 
obtained (Table 1) [27]. 

In theory, microfiltration is a simple and rapid 
enrichment approach, without requirement for 
sample preparation steps, allowing the capture 
of both single CTCs and oligocellular clusters 
with relatively high recovery rates. However, it 
must be noted the healthy donor’s blood used 
in spiking experiments harbors lower immune 
cell numbers than what is found in cancer 
patients, whose samples more easily cause 
clogging in filtration systems. Moreover, the 
shear pressure of the flowing cell suspension 
can damage trapped cells, reducing CTC via- 
bility [28], which is sometimes furthermore 
compromised by difficult detachment from the 
filtration membrane. Finally, when staining is 

performed directly on the filter, the background 
signal may limit subsequent detection. 

Density gradient centrifugation

The high nucleus to cytoplasm ratio results in  
a specific sedimentation coefficient of cancer 
cells, allowing their enrichment from whole bl- 
ood by density gradient centrifugation. In par-
ticular, CTCs and monocytes (density <1.077 g/
mL) are separated from other blood cells (den-
sity >1.077 g/mL) [29]. It is a fast and inexpen-
sive procedure, which is why it has initially been 
used widely for CTC enrichment, also in studi- 
es analyzing OC patients [9, 30, 31]. However, 
samples obtained by density gradient centrifu-
gation result in high leukocyte contamination 
[32]. To increase cell purity, systems such as 
OncoQuick™ were designed, where a porous 
barrier is positioned above the density gradient 
for additional separation by filtration [33, 34]. 

Figure 1. An overview of CTC enrichment approaches. In the upper panel, microfilters and microfluidic chips are rep-
resented which discriminate CTCs based on their biophysical properties by using various types of “traps” to reduce 
cell stress and clogging during flow-through: tapered-slit filter system consists of conical pores, Parsortix™ cassette 
uses wide separation walls, while Guo and colleagues [54] developed a chip with three-column traps. Red arrows 
indicate the direction of the blood sample flow-through. Immunoaffinity methods are represented in the lower panel, 
which include either the negative CTC selection via depletion of CD45-positive leukocytes, or the positive immuno-
capture by binding CTC-specific antigens, such as EpCAM or mucins. 
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Even though a high recovery rate (87%) has 
been initially reported with such system, it mu- 
st be noted the study used a disproportionally 
high number of spiked cancer cells (>2 × 106 in 
10 mL) [35] (Table 1). Indeed, when the spiking 
numbers are lowered, the resulting recovery is 
much less efficient (21%) [16]. Alternatively, 
immunolabelling of blood cells with the Rose- 
tteSep™ kit may be performed to crosslink leu-
kocytes and erythrocytes, altering their sedi-
mentation coefficient for more efficient CTCs 
separation during density gradient centrifuga-
tion. He and colleagues compared nine differ-
ent density gradient procedures (Ficoll-Plaque, 
A23187 treatment plus Ficoll-Plaque, Rosette- 
Sep™-Ficoll, Ammonium chloride lysis, Histo- 
paque 1077, 1083 or 1119, OncoQuick and 
LeucoSep tube with Ficoll), and found that app- 
lying RosetteSep™ procedure yields the high-
est OC CTC recovery efficiency (62.5%) [16]. 
However, these data are to be considered with 
caution since the authors used high cancer cell 
concentrations (5000 cells/mL) for the evalua-
tion of enrichment efficiency. Studies using 
more appropriate numbers, similar to the real-
istic conditions found in cancer patients (2-50 
cells/mL), report RosetteSep™-Ficoll recovery 
rates of 40% [36]. 

Taken together, density gradient approaches 
currently remain relatively inefficient for enrich-
ment of samples containing low CTC numbers 
(<10/mL), as cells are lost during the proce-
dure, either due to the cytotoxicity of the medi-
um, or due to the aggregate formation alter- 
ing the sedimentation coefficient. Consequent- 
ly, CTC clusters recovery is also not effective by 
density gradient separation. 

Negative immunoaffinity for CD45 antibody

Negative immunoaffinity enrichment methods 
imply the depletion of unwanted immune cells 
from the blood by targeting leukocyte-specific 
antigen CD45 that is not expressed by the CTCs 
(Figure 1). The approach is usually preceded by 
either red blood cell lysis or gradient separa- 
tion to remove erythrocytes. Next, the sample 
is incubated with anti-CD45 tethered to mag-
netic particles and exposed to a magnet which 
retains the labelled leukocytes. CTCs are found 
in the eluate and may be further purified for 
downstream applications such as RT-qPCR 
assays [37]. Recovery rates reported for nega- 
tive leukocyte depletion using CD45 magnetic 

beads show considerable variability, ranging 
from 32% to 77% depending on the cell type 
[38] (Table 1). Automated versions of th- 
is approach have been developed to allow one 
step enrichment. For example, Tsai and col-
leagues validated an integrated microfluidic sy- 
stem capable of simultaneous red blood cells 
lysis, CTC enrichment via CD45 leukocyte de- 
pletion, and even subsequent detection of OC 
CTC [39]. The average recovery rates reported 
for this system range from 40% to 82%, for 
samples with 100 cancer cells per mL [39] 
(Table 1). Apart from the most commonly app- 
lied magnetic separation, custom-made plat-
forms have been developed where CD45 anti-
bodies are immobilized to the device surface, 
retaining the leukocytes as the sample passes 
through. In particular, Chu et al developed a 
3D-printed microfluidic system functionalized 
with the CD45 antibody to deplete white blood 
cells and integrated with a 3 μm micropore fil-
ter downstream of the immunodepletion to cap-
ture CTCs [40]. The device has been tested with 
spiked samples, including OC cells, with prom-
ising results reporting 90% recovery rate [40] 
(Table 1). However, recovery of low CTCs num-
bers (< 3000/mL) has not been tested. 

The main advantage of the CD45-based nega-
tive selection methods is that they are not 
biased for specific CTC populations, allowing 
enrichment of heterogeneous CTC types, irre-
spective of their size or density. On the other 
hand, purity of CD45 negative enrichment is 
relatively low, because even though the deple-
tion rates reach 99%, this still leaves up to 
three million unwanted cells, especially in can-
cer patient samples that harbor particularly 
high leukocyte numbers [41]. Moreover, CD45 
negative selection may reduce recovery, since 
CTC clusters containing immune cells risk to be 
depleted [42]. Lastly, few reports indicate that 
even cancer cells themselves may express the 
CD45 antigen [43].

Positive immunocapture

Instead of labelling immune cells for deple- 
tion, enrichment via positive immunocapture  
is based on targeting CTC specific markers 
(Figure 1). In OC, this is most often achieved  
by using antibodies against epithelial cell adhe-
sion molecule (EpCAM) generally expressed  
in epithelial neoplasia. Several EpCAM enrich-
ment systems are commercially available. For 
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example, CellSearch® uses ferrofluid nanopar-
ticles functionalized with EpCAM antibody for 
the magnetic separation of labelled cells [44]. 
Moreover, IsofluxTM combines a microfluidic te- 
chnology with immunomagnetic beads precon-
jugated with EpCAM antibody for the separa-
tion of CTCs while passing through a flow ch- 
annel traversing a magnetic field [45]. These 
systems may be integrated with automated 
CTC enumeration by immunostaining addition- 
al markers, but in circumstances when other 
specific downstream applications are required, 
the elution of the CTC enriched sample is  
possible, with reported recovery rates varying 
between 40-75% if 10-500 cells were spiked  
in 7.5 mL of healthy donor blood [45, 46]. To 
increase enrichment efficiency, more than one 
antibody may be used for immunocapture, as is 
the case in AdnaTest Select system which, for 
OC, apart from EpCAM, labels Mucine 1 (MUC1) 
and Mucine 16 (MUC16). Of note, AdnaTest 
offers kits specialized for various cancer types 
and, instead of immunostaining, combines 
gene expression analysis for CTC detection [45, 
46]. 

Even though the purity of positive immunocap-
ture is usually higher than that of other enrich-
ment methods, the most relevant limitation is 
the inability to capture CTCs with low or no 
expression of epithelial markers, which is the 
case in certain OC subtypes [47].

Label-free microfluidic-driven separation

In recent years, several microfluidic devices 
have been developed, in which a precisely con-
trolled pressure is applied to process liquid 
biopsy through miniaturized analytic systems 
containing submillimetric traps made of cham-
bers or tunnels (Figure 1). CTCs are captured 
based on their larger size and lower deforma- 
bility, compared to the unwanted blood cells 
which are flushed through. Flow rate fine-tun- 
ing ensures minimal cell stress, maintaining 
CTC viability. Of note, similarly to microfiltration, 
these enrichment procedures often allow “on 
the spot” labelling for immediate subsequent 
detection and enumeration of CTCs, reducing 
cell loss during elution steps. For example, 
CD-PRIMETM, a commercially available centri- 
fugal microfluidic disc exploits fluid-assisted 
separation technology (FAST) to capture CTCs 
on a 8 µm pore polycarbonate membrane, 

where direct immunofluorescent staining is 
possible [48]. The disk is loaded with 3 mL of 
the sample and spun in a table-top centrifu- 
ge-like instrument (CD-OPR-1000TM), allowing 
rapid processing of whole blood (3 mL/min). 
The centrifugal force combined with the specif-
ic disk design results in tangential flow filtration 
and uniform pressure drop applied across the 
whole membrane, minimizing clogging and CTC 
damage. This system showed a mean capture 
efficiency of 84.7-87.5% when analyzing 40- 
150 spiked cancer cells per 3 mL of blood 
(Table 1). Contrariwise from the pore-based 
microfluidic separators, the Parsortix™ system 
uses a microscope slide-sized disposable cas-
sette, which contains a series of stair-like walls 
ending with a wide channel of specific height 
(6.5-10 µm) (Figure 1), where CTCs are trapped 
due to their large size and low deformability [9, 
49, 50]. While passing through the Parsortix™ 
cassette, cancer cells are submitted to a negli-
gible flow restriction due to the width of the 
channel, preventing the elevated shear stress 
typical of pore-filtration methods. This gentle 
capture maintains structure and viability of 
CTCs, and has been shown to preserve CTC 
clusters [51]. After the procedure, blood cells 
are not completely eliminated, but their num-
bers are reduced by 106-fold [9], leaving 200-
5000 unwanted leukocytes [52]. Captured 
CTCs may be stained in the cassette and visu- 
alized under the microscope for enumeration. 
Alternatively, the cells can be flushed either 
with lysis buffer for subsequent molecular anal-
ysis or with PBS to allow viable CTC recovery for 
culturing. Up to date, one study reported sepa-
ration of OC CTCs from both spiked samples 
and OC patients liquid biopsies using Par- 
sortix™, showing that such enrichment approa- 
ch allows downstream detection of as few as 5 
OC cells in mL of blood [9]. Importantly, higher 
recovery rates are observed when cassettes 
with smaller gap height are used (69% with 6.5 
µm compared to 34% with 10 µm gap), indicat-
ing size heterogeneity (Table 1) [53]. Another 
microfluidic device that captures CTC based on 
their size and deformability has been devel-
oped by Guo and colleagues [54]. In their sys-
tem, a 3D-printed microfluidic chip consists of 
8 chambers, each containing about 700 cap-
ture sites of different sizes (8, 10 and 15 µm), 
which serve as CTC traps (Figure 1), while 
smaller red blood cells and most leukocytes 
pass through [55]. The device contains also a 
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pre-filter that prevents clogging by large de- 
bris. Compared to CD-PRIMETM and ParsortixTM, 
which allow direct blood processing, Guo and 
colleagues apply plasma removal and dilution 
of the cellular blood fraction in 1 mL of buffer 
solution. Their procedure of combining the mi- 
croscopic traps with the application of fine-
tuned flowrates was capable of detecting <10 
OC cells/mL of blood, with an average capture 
efficiency of 55.7%.

Apart from being capable to detect heteroge-
neous CTCs from the molecular profile point of 
view, the microfluidic enrichment offers a few 
additional advantages. For instance, it is char-
acterized by automation capability and high 
flexibility to accommodate downstream tech-
nologies. In addition, the possibility for fine-tun-
ing the flowrate contributes to minimizing clog-
ging and, most importantly, allows gentle se- 
paration, maintaining CTC viability and integrity. 
Thus, it is somewhat unexpected to find lower 
recovery rates for microfluidic devices com-
pared to microfiltration (Table 1). It is impor- 
tant to note the two approaches have not been 
directly compared and recovery rate evaluation 
by spiking into healthy donor blood is generally 
limited due to the lower amount of white blood 
cells in such samples than that usually found  
in oncologic patients. The purity of the sample 

plasms, this mainly involves recognition of Ep- 
CAM, and other epithelial markers such as cy- 
tokeratin (CK) (Figure 2) [56, 57]. However, 
despite the high sensitivity of such approach-
es, their main drawback remains the necessity 
of the a priori knowledge about the CTC molec-
ular profile, which is challenging due to the 
tumor heterogeneity. Even within the same type 
of cancer, the biology of cells shedding from the 
primary site is variable, depending on the tumor 
subtype, stage and grade. Indeed, CTCs have  
in recent years experienced an identity crisis: 
their initial definition as nucleated cells expr- 
essing EpCAM and lacking the leukocyte anti-
gen CD45 is being continuously updated (Fi- 
gure 2), as EpCAM- and CK-negative CTCs have 
been discovered and new data suggest high 
CTC heterogeneity due to the dynamic cellular 
reprogramming during metastasizing [58]. In- 
deed, both EpCAM and CK are often found 
downregulated as part of oncogenic adapta- 
tion to allow epithelial cell dissociation from the 
tumor, and facilitate cell plasticity and migra-
tion, respectively [59, 60]. This might lead to 
underestimation of CTC numbers when using 
epithelial marker-based detection, jeopardiz- 
ing clinical decisions. With advancement of our 
knowledge on metastatic processes in OC, it is 
now clear that CTCs often present with me- 
senchymal features that increase invasiveness 

Figure 2. Molecular markers most frequently used for OC CTC detection. 
Methods identifying gene and antigen expression are indicated in blue and 
purple, respectively. The reported molecular markers have been used in at 
least four studies performed by different scientific groups. IF = immunofluo-
rescence, CK = cytokeratin.

obtained by microfluidic devic-
es is still an issue, as CTCs are 
retained together with a sub-
stantial portion of immune ce- 
lls. While this may be resolved 
by immunofluorescent stain-
ing, the latter is not useful if 
the isolation of viable CTCs is 
required. 

CTC detection in OC patients 
depends primarily on molecu-
lar marker analyses

Whereas the aforementioned 
enrichment approaches per-
form most efficiently when ex- 
ploiting CTC biophysical prop-
erties, their identification and 
enumeration is currently achi- 
eved mainly by molecular anal-
yses, such as detection of sp- 
ecific DNA mutations, protein 
markers or gene transcripts. In 
OC, as for other epithelial neo-



CTC analysis in ovarian cancer

4118	 Am J Cancer Res 2021;11(9):4111-4126

and metastatic potential [61]. Moreover, recent 
evidence suggests that OC CTCs may display 
not only EMT-associated transcripts, but also 
stem cell markers [17, 62], and are often char-
acterized by high folate receptor-alpha (FRα) 
expression [63]. Thus, studies applying simul- 
taneous detection of several proteins have 
shown to increase CTC detection rate in OC 
patients. For example, the simultaneous detec-
tion of EpCAM and FRα significantly increased 
the CTC capture rate to 92%, exceeding the 
capture rate obtained with EpCAM or FRα tar-
geting alone by 20% [63]. Similarly, combined 
targeting of EpCAM and mesenchymal marker 
N-cadherin increased OC CTCs detection by 
approximately three times compared to target-
ing EpCAM alone [64]. However, it must be 
noted that N-cadherin is also expressed on  
the circulating endothelial cells, potentially 
leading to false positive results if simultaneous 
staining of vascular endothelial cadherin is not 
performed to distinguish the two entities [64]. 
On the other hand, the selection of these false 
positives is rare with EpCAM targeting [64]. Of 
note, OC CTCs co-expressing epithelial and 
mesenchymal phenotypes have been reported 
to increase after chemotherapy, highlighting 
the dynamic protein expression profile and the 
need for inclusiveness of various markers to 
maximize CTC detection [65]. Thus, it is not sur-
prising there are currently no known universal 
biomarkers, warranting confident identification 
of all CTCs in a liquid biopsy from OC patients. 
The majority of the literature analysing CTCs in 
OC has been based on targeting EpCAM and 
CKs (Figure 2), which might have contributed to 
inconsistent results when analysing the asso-
ciation of CTCs with progression free and over-
all survival [66-69]. Here we discuss the most 
commonly used molecular approaches for CTC 
detection in OC patients, and describe how  
the spectrum of the recommended markers is 
evolving, as the technical progress allows more 
insight on CTC biology, opening the window of 
eventually developing label-free CTC detection. 

Epitope recognition-based methods 

One of the most widely used approaches for 
CTC detection is the labelling of specific tu- 
mor-associated antigens. This has mainly been 
done by fluorescent immunocytochemistry, of- 
ten directly on the membrane/chip used for 
enrichment [19, 21, 34, 45, 48, 54]. Together 

with DAPI to identify nucleated cells, the sam-
ple is stained against CD45 and CTC-specific 
antigens such as EpCAM, MUC1 or MUC16 
[65]. For example, Isoflux™ enrichment step 
has been integrated with pan-CK and CD45 
fluorescent staining to identify the recovered 
CTCs, which are then enumerated through the 
automatic microscope scanning [45]. The sys-
tem efficiently captures OC CTC from whole 
blood, also when low spiking numbers are  
used (average capture rate of 70% of 20-300 
tumor cells spiked in 7.5 mL blood; Table 1). 
Immunofluorescence is highly specific and all- 
ows CTC enumeration, but requires substantial 
operator workload, which is why automated sy- 
stems have been developed. For example, mi- 
crofluidics-based enrichment instrument Par- 
sortixTM has been integrated with automatic in-
cassette staining protocol in which the opera-
tor may select which antibodies to use. How- 
ever, the subsequent CTC count is perform- 
ed manually. On the other hand, CellSearch® 
allows not only enrichment, but also automated 
CTC enumeration via in-device immunocyto-
chemistry. In detail, after positive immunocap-
ture with ferrofluid nanoparticles functionalized 
with EpCAM antibodies, cells are permeabilized 
and stained against CK8, CK18 and CK19, 
while CD45 antibody is used to exclude leuko-
cytes and DAPI to identify nucleated cells. Next, 
the cells are pulled by a magnetic cartridge to a 
single focal depth for scanning. The approach 
was compared to ParsortixTM in a few studies, 
showing no substantial differences between 
recovery rates when analysing spiked samples 
[70], but when the two methods were used to 
detect CTCs in patient liquid biopsies the 
results were discordant with positive patients 
being identified exclusively with ParsortixTM or 
CellSearch® in 15% and 19% of the cases, 
respectively [52]. CellSearch® is the most well-
known approach for CTC analysis and, so far, 
the only U.S. Food and Drug Administration 
(FDA) approved method for detection and enu-
meration of CTCs in the peripheral blood of 
breast, prostate and colorectal cancer patients 
[71]. The FDA accreditation has led to diffusion 
of CellSearch® as the golden standard within 
the CTC field, thus most of the emerging  
technologies validate their performance by 
comparison with CellSearch®. The system has 
been broadly used to enumerate epithelial 
CTCs, being employed in about 15% of the sci-
entific works on ovarian malignancies (Figure 
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2). Moreover, it is the only approach applied  
for CTCs analysis in OC clinical trials [72-74]. 
Capture rates are typically high for EpCAM 
expressing cells, ranging between 80 to 82%, 
also when low cell numbers are added to the 
whole blood sample (5-10 cells/7.5 mL blood) 
[71]. However, it should be noted that a spiking 
experiment with an OC cell line is still lacking, 
which would be important since the capture 
efficiency of the CellSearch® approach strongly 
depends on the expression of markers used for 
cell recognition. Indeed, it was demonstrated 
that spiking the same concentrations (10-500 
cells/7.5 mL blood) of high versus low EpCAM-
expressing cells results in considerably differ-
ent recovery rates (75% versus 42%, respec-
tively) [46] (Table 1). Moreover, a study com- 
paring ISET technology and CellSearch® for CTC 
detection in patients with breast, prostate and 
lung carcinomas revealed discrepancies bet- 
ween the CTC numbers isolated with the two 
approaches [23]. In breast cancer patients, 
CTC counts were generally higher by CellSear- 
ch® [23]. On the contrary, in 80% of lung cancer 
patients the number of CTCs identified was 
higher with ISET technology, which was also 
more efficient to detect prostate cancer CTCs, 
highlighting the limits of marker-specific detec-
tion. While its biased approach towards the epi-
thelial phenotype risks underestimating the 
CTC count due to exclusion of cells carrying 
exclusively mesenchymal or stem markers, the 
most important advantage of CellSearch® is 
the possibility of simultaneous enrichment and 
automated CTC enumeration, which ensures 
standardization and reproducibility of the anal-
yses. Of note, the same manufacturer devel-
oped the DEPArrayTM platform (Di-Electro-Pho- 
retic Array system), which after the initial stain-
ing via CellSearch®, applies dielectrophoretic 
forces to a mixed-cell population sample, to iso-
late single viable CTCs by means of a chip con-
sisting of various microelectrodes generating 
electric cages in which individual CTCs are tra- 
pped. The approach allows the recovery of a 
single CTC available for further investigations, 
including molecular analyses and culturing, but 
is yet to be used in the context of OC [75, 76]. 

Besides immunocytochemistry, epitope recog-
nition may involve also flow cytometry approa- 
ches. In particular, ImageStream platform was 
used to detect CTCs in stage III OC patients by 
staining against CK, WT1 and CD45 [77]. The 

advantage of the system is the possibility of 
staining with markers chosen by the operator. 
Moreover, conversely from traditional flow cy- 
tometry systems, it allows visualization of labe- 
lled cells. It should be noted, however, that the 
authors do not provide detection rate evalua-
tion by spiking experiments [77]. Thus, even 
though the approach seems promising, the 
data are to be interpreted with caution, since 
flow cytometry traditionally lacks the sensitivity 
to detect underrepresented populations such 
as CTCs. In this context, boosting flow cytome-
try efficiency in detecting low OC CTC numbers 
has been attempted by generating antibody-
bound silica nanoparticles with enhanced fluo-
rescent ability [78]. However, the approach is 
currently in a developmental phase, being test-
ed only by spiking 100 OC cells in 50 µl of blood 
[78]. 

Furthermore, a noteworthy epitope detection 
platform has been developed by Jeon et al, who 
built a nanoroughened microfluidic device in 
which OC CTCs were isolated via an electrically 
conductive chip coated with biotin-doped poly-
pyrrole and streptavidin [12, 79]. The latter lay-
ering allows a versatile choice of various bioti-
nylated antibodies that can be used simu- 
ltaneously in one step analysis. In particular, by 
labelling EpCAM, TROP-2, EGFR, vimentin and 
N-cadherin, the authors report capture rate 
>65% for samples spiked with 10 cancer cells 
per mL of blood [79] (Table 1). Capture rates 
were at 8% when only EpCAM antibody was 
used for labelling, highlighting the need for mul-
tiple-marker staining. Importantly, the system 
allows CTC cluster detection and viable cell 
recovery, but has not yet been widely used. 

Besides the typical use of fluorescent immu-
nostaining, it is interesting to note that antigen-
based CTC recognition has also been coupled 
with a micro-nuclear magnetic resonance (µN- 
MR) technology that should in principle allow 
more specific detection of extremely rare ev- 
ents. Indeed, a decade ago Ghazani and col-
leagues reported µNMR detection of nanopar-
ticles functionalized with antibodies against 
EpCAM, HER-2, EGFR and MUC-1, which suc-
cessfully capture OC CTCs [80]. Notably, this 
approach showed considerably higher detec-
tion sensitivities with respect to CellSearch® 
and allowed one-step analysis, directly from 
the whole blood, without the need for sample 
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enrichment or cell isolation. Similarly, function-
alized magnetic nanoparticles have been anal-
ysed by a microfluidic chip-based micro-Hall 
detector for simultaneous detection of EpCAM, 
HER2/neu and EGFR on individual OC CTCs 
[81]. Nonetheless, up to date, such analyses 
have not been widely used, at least not for 
CTCs, most likely due to requirements for fine-
tuning the technology towards a user-friendly 
approach [82]. 

In conclusion, being based on antigen-antibody 
interaction, positive immunocapture approach-
es are typically highly specific. The main pitfall 
remains that antigen-based detection still fails 
to account for CTC heterogeneity. Moreover, the 
approach often requires cell fixation which pre-
cludes isolation of viable cells. 

OC CTC specific gene expression analysis

While immunocapture permits precise enumer-
ation, usually only a limited number of markers 
can be used for staining (<5), risking false neg-
ative results due to CTC heterogeneity. In this 
context, quantitative Real Time PCR (qRT-PCR) 
is a highly sensitive technique by which analy-
sis of dozens of markers may be performed 
simultaneously, detecting even rare transcripts. 
Indeed, the detection of epithelial or tumor spe-
cific gene expression has been shown informa-
tive to detect CTCs in OC patients in various 
studies (Figure 2). In some cases, the sensitiv-
ity has been increased by introducing gene of 
interest pre-amplification steps and by optimi-
zation of various enrichment approaches to 
identify the most efficient workflow [9]. The 
same study obtained the most efficient enrich-
ment results by combining density gradient 
with ParsortixTM separation. Moreover, qRT-PCR 
is the detection method of choice in the QIA- 
GEN AdnaTest Detect kit, where EPCAM, MUC1, 
and MUC16 transcripts are analysed after the 
initial positive immunoenrichment by AdnaTest 
Select [63, 83]. Samples are defined as CTC-
positive if the measured quantity of at least 
one of the tumor markers is above a defined 
threshold (>0.1 ng/μL). The AdnaTest Ovarian 
Cancer Detect approach was demonstrated to 
recognize low numbers of OC cells (5-25 cells/5 
mL blood) with high recovery rates (100%) [62]. 
This approach is so far the second most com-
monly used to detect CTC, cited in 11% of all 
original articles on OC (Figure 2). Other groups 
have used custom gene panels suggesting 

that, apart from EPCAM, CKs and mucines, 
genes such as ERCC1, WT1, MAL2, LAMB1, 
SERPINE2, PPIC, TUSC3, PGR, CDH2, ARG2, 
GPX8 and PRAME may be valid markers for CTC 
detection by gene expression analysis [19, 31, 
84, 85]. In particular, PPIC has been recognized 
as a particularly efficient OC CTC marker, as it 
was detected in 70-78% of positive samples 
[84]. Of note, even though EMT and stem cell 
markers have been detected in OC CTCs, their 
qRT-PCR signals were obtained also in healthy 
donor blood samples [62], indicating they are 
an inappropriate choice when analysing sam-
ples in which leukocytes persist after the 
enrichment step. In general, when applying 
qRT-PCR for CTC detection, a rigorous cut-off 
threshold value is always required to effectively 
distinguish CTC signals from those of leuko-
cytes [84]. 

Taken together, while being highly sensitive in 
simultaneously detecting multiple CTC-derived 
rare transcripts, gene expression analysis pres-
ents with several drawbacks. Similarly to the 
other marker-based approaches, it requires a 
priori knowledge on the targets of interest and 
sample lysis for analysis, preventing viable cell 
collection. Moreover, the approach is not capa-
ble of enumeration, and CTC clusters cannot be 
discriminated from single CTC, leading to the 
lack of clinically significant information. Finally, 
if the appropriate controls are not included in 
the analysis, the interpretation of results can 
be biased by nonspecific amplification of nor-
mal sequences closely related to cancer genes 
[86] or target genes in noncancerous cells [87]. 

Molecular marker agnostic approaches for CTC 
detection 

With the aim to avoid biased epitope and gene 
expression analyses, label-free approaches for 
CTC enrichment and detection are emerging. 
Importantly, since methods detecting CTC mo- 
lecular markers most often require destruction 
of the sample, development of marker agnostic 
techniques is appealing not only to account for 
heterogeneity of CTC subpopulations, but also 
to allow recovery of intact, viable cells. Label-
free separation technologies exploit morpho-
logic and biophysical CTCs features, such as 
cell size, shape, density, mechanics, deform-
ability, hydrodynamics, electrical polarizability/
impedance, and magnetic susceptibility [88, 
89]. In OC, for example, cells enriched by ISET 
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microfiltration have been stained with May-
Gruenwald-Giemsa and analysed for the follow-
ing histo-pathological/cyto-morphological cri- 
teria: a) anisonucleosis (ratio >0.5), b) nuclei 
larger than 1-3 calibrated pore sizes of the 
membrane (i.e. >8-24 μm), c) irregular nuclear 
borders, d) high nuclei-cytoplasmic ratio, and/
or e) presence of three-dimensional sheets 
[26]. On the other hand, Phillips and colleagu- 
es defined CTCs as having greater volume and 
reduced dry mass density with respect to leu-
kocytes, and designed a high-definition CTC 
assay, combining brightfield imagery with the 
quantitative differential interference contrast 
microscopy to measure cellular dry mass and 
cellular volume, respectively [33]. An interest-
ing approach has been reported by Choi and 
co-workers, who discriminated CTCs from other 
blood cells by using a microcytometer device 
where label-free direct current impedance of 
the cells was measured [90]. The system allows 
direct liquid biopsy processing and has been 
used on OC spiked samples with 88% recovery 
rates, although high numbers of tumor cells 
(100-2000/mL blood) were used for evaluation 
[90] (Table 1). Another marker agnostic me- 
thod for OC CTC isolation regards Vita-Assay™ 
functional separation, based on the tendency 
of cancer cells to invade collagenous matrices 
via invadopodia. It consists of slides/plates 
coated with fluorescently labelled cell adhe- 
sion matrix scaffold, where density gradient 
enriched liquid biopsy fraction of mononuclear 
cells is seeded [91]. Invasive CTCs ingest fluo-
rescent scaffold, whereas non-adherent cells 
are washed away. Labelled CTCs may be subse-
quently analysed by flow cytometry, character-
ized by additional markers, or cultured in vitro 
and in vivo [12, 91-95]. Even though the app- 
roach is conceptually intriguing, it has not been 
evaluated by spiking experiments or compared 
with other CTC isolation methods. 

Conclusions

All currently available CTC analysis methods 
display limitations, and the choice of the app- 
roach depends on the objective of the study. 
When CTCs are used as prognostic markers, 
which is currently the most frequent case, 
detection methods that do not necessarily in- 
volve isolation are sufficient. Regardless of the 
marker-bias, both CellSearch® and Adna Test 
are attractive approaches, since they offer CTC 
enrichment and detection in one protocol. Most 

likely, these and similar kits will be upgraded in 
the near future, on one hand to allow increas- 
ed number of simultaneously analyzed markers 
and, on the other, to offer tumor type-specific 
panels. In OC, it seems that mesenchymal and 
stem cell markers should be included, but the- 
se are often found also in normal blood. Thus, 
we expect that approaches permitting single 
cell isolation and characterization, such as 
DEPArray®, will lead to the identification of 
novel markers and guide the design of ideal 
panels to optimize clinical decisions. In parallel, 
the development of isolation methods which 
preserve not only CTC viability, but also CTC 
cluster integrity are of particular importance, 
such as label-free microfluidic systems with 
precisely controlled, gentle flow rates that ma- 
intain cell function, morphology and structure. 
In breast cancer and melanoma, the presence 
of CTC clusters correlate with worse prognosis, 
highlighting the clinical value of their detection, 
which in OC has not yet been achieved. 

Even though there is currently no approach 
available which would allow simultaneous en- 
richment, detection, enumeration and isolation 
of viable CTCs from OC patients, the emerging 
technologies suggest this holy grail is not far 
from being retrieved, most likely with the help 
of machine learning systems offering the ulti-
mate label-free CTC detection [96].
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