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Abstract: Adenoid cystic carcinoma (ACC) is a slow growing, but relentless cancer. Due to its rarity and lack of un-
derstanding of its molecular etiology, no standard chemotherapy for ACC currently exists and many patients suffer 
from recurrent and/or metastatic disease. As such, development of safe and effective therapies is imperative. To 
describe and summarize existing clinical trial studies and preclinical discoveries, we surveyed the PubMed on devel-
opmental therapeutics for ACC. Objective response rates to monotherapy with cytotoxic agents were approximately 
10% with cisplatin, 5-FU, gemcitabine, mitoxantrone, epirubicin, vinorelbine and paclitaxel. The most studied com-
bination therapies were cyclophosphamide-doxorubicin-cisplatin (CAP) and cisplatin-vinorelbine, with an objective 
response rate of 18-31%. Among molecularly targeted drugs, the most studied drugs are inhibitors targeting the vas-
cular endothelial growth factor receptor (VEGFR) to inhibit tumor angiogenesis. Among those, lenvatinib and axitinib 
showed a relatively high objective response rate of 11-16% and 9-17%, respectively. Given high recurrence rates 
and chemoresistance of ACC, treatments targeting cancer stem cells (CSC), which function as tumor-initiating cells 
and drive chemoresistance, may be particularly valuable. CSC have been shown to be targetable via MYB, Notch1, 
p53 and epigenetic mechanisms. Myb overexpression is characteristic in ACC but was previously thought to present 
a difficult target due to its nature as a transcription factor. However, due to the development Myb-targeted inhibitors 
and an ongoing clinical trial of MYB-targeted cancer vaccine therapy, MYB is becoming an increasingly attractive 
therapeutic target. Drugs targeting NOTCH signaling demonstrated 5-17% response rate in phase I clinical trials. 
Within the field of epigenetics, treatment with PRMT5 inhibitors has shown 21% partial response rate in phase I 
clinical trial. Immunotherapies, such as PD-1 inhibitors, are also associated with CSC, but have not been effective 
against ACC. However, clinical trials of cancer vaccine therapies are actively being conducted. In addition to conven-
tional chemotherapies and inhibitors of angiogenesis, the emergence of new therapies such as immunotherapy and 
those targeting cancer stemness is expected to bring clinical benefits to patients in the future.
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Introduction

Adenoid cystic carcinoma (ACC) is a relatively 
rare cancer, accounting for 1% of head and 
neck tumors and 10% of salivary gland tumors 
[1]. Salivary glands present the most common 
primary site for ACC, but tumors may also occur 
in the lacrimal glands, paranasal sinuses, 
mammary glands, skin, and genital organs 
[2-5]. The disease progresses relatively slowly, 
but continues to grow relentlessly, giving rise to 

a 5-year and 10-year patient survival rate of 
about 60% and 50%, respectively. Notably, the 
20-year survival rate is only 20%, due to high 
incidences of recurrence and metastasis [6]. 
Lungs constitute the most common site for 
metastases, while perineural invasion is char-
acteristic of local progression for ACC [7-9].

At present, the standard treatment for ACC 
remains surgery with or without radiation thera-
py, as no approved systemic therapy currently 
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exists. Although radiation therapy has a posi-
tive effect for local disease control, its effect on 
prolonging overall survival is unclear [10, 11]. 
Distant metastasis is the most common type of 
relapse, with about 30% of patients with dis-
tant metastasis not experiencing recurrence of 
the primary lesion [10, 12].

The need for a robust preclinical ACC model is 
apparent to advance basic and translational 
research within the field. However, it was 
reported that 6 types of ACC cell lines (ACC2, 
ACC3, ACCM, ACCNS, ACCS and CAC2) com-
monly used by many laboratories were cross-
contaminated with other cells. This poses a 
large question mark on the research resulting 
from use of these cells, while leaving in vitro 
studies reliant on use of low passage primary 
cells [13]. Recently, Moskaluk and collabora-
tors reported a xenograft model that reproduc-
es the characteristics of human ACC [14], from 
which several cell lines have been established, 
thereby raising expectations that the under-
standing of pathological conditions underlying 
ACC will be accelerated [15]. More recently, a 
MYB-NFIB fusion-positive ACC cell line was 
developed and characterized as well suited for 
developmental therapeutics studies [16]. In 
this review, we will focus on the current state of 
pharmacological treatment of ACC. We sur-
veyed the PubMed, summarized results of clini-
cal trials, and discussed the potential clinical 
benefit of these therapies to ACC patients in 
the future.

Clinical trial data for cytotoxic chemotherapy

Single agent

In 10 studies focusing on single agent chemo-
therapeutic treatment, only 22 out of 163 
(16%) patients demonstrated objective res- 
ponses. No response was seen in the 21 
patients who received gemcitabine or the 14 
patients who received paclitaxel [17, 18]. 
Cisplatin and 5-FU showed relatively high objec-
tive response rates. Response rates to cisplat-
in vary widely from report to report, ranging 
from 0 to 70%. In addition, a 33% (4 of 12) 
objective response rate was observed upon 
5-FU treatment [19-22]. Regarding the anthra-
cycline cytotoxic agents mitoxantrone and epi-
rubicin, the number of patients participating in 
the study was relatively large, whereas the 
objective response rate was only 5-12% [23-

25] (Table 1). Almost half of patients showed 
stable disease (65 of 113). However, it was dif-
ficult to determine whether the disease was 
stable due to the drug’s effect or the natural 
history of ACC.

Combination chemotherapy

The combination of cisplatin, doxorubicin and 
cyclophosphamide (CAP) was the most com-
mon regimen for ACC, sometimes combined 
with 5-FU. From 5 studies, 27% patients (12 of 
43) presented objective responses [26-30]. 
Patients treated with a CAP plus 5-FU regimen 
demonstrated the longest duration of objective 
response. However, the authors mentioned 
that this treatment was too toxic to be consid-
ered standard treatment [30]. Cisplatin and 
doxorubicin were used in combination with 
bleomycin, in which 3 of 9 patients showed 
objective response [21]. The combination of 
cyclophosphamide, vincristine, and 5-FU show- 
ed a rather long duration of objective respons-
es [31]. The above studies have been conduct-
ed relatively early. However, the regimens of 
paclitaxel-carboplatin and cisplatin-vinorelbine 
are newer and have been reported since 2000. 
Two studies investigated the combination of 
carboplatin with paclitaxel, where 2 of 10 and 1 
of 9 patients showed objective responses [32, 
33]. A randomized phase II trial was completed 
to compare single-agent vinorelbine with cispl-
atin plus vinorelbine, but included only 36 
patients (of which 22 patients had ACC) [34]. 
Another study showed that 7 of 34 (20%) and 6 
of 19 (31%) patients demonstrate objective 
responses [35, 36]. In several studies, the com-
bination therapy groups demonstrated greater 
toxicities, particularly nausea, vomiting, myelo-
suppression, and neuropathy. Notably, the 
vinorelbine plus cisplatin regimen shows higher 
objective response rate compared to the 
response to the CAP regimen. Overall, when 
focusing on studies with 10 or more patients, 
the best objective response rates were 
obtained with cisplatin-vinorelbine combination 
[28, 29, 33, 35-37] (Table 1).

Targeted therapies

c-Kit and EGFR

As in many other cancers, treatment with 
molecularly targeted drugs has been attempt-
ed in ACC. It is known that high c-Kit expression 
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was confirmed in 90% of ACC tumors [38]. But, 
single drug imatinib (targets c-Kit) resulted in 
no objective responses in ACC [39-41]. 
Dasatinib, which also targets c-Kit, failed to 
show any activity in ACC [42]. In one trial, com-
bination treatment with cisplatin and imatinib 
was conducted and showed 3 (10%) cases of 
partial response [43]. Increased expression of 
epidermal growth factor receptor (EGFR) was 
also observed in ACC [44]. However, clinical tri-
als with EGFR inhibitors (e.g. cetuximab, gefi-
tinib, lapatinib) did not provide a positive thera-
peutic responses [45-47] (Table 2). Given the 
results of these trials, molecular targets other 
than c-Kit and EGFR have been considered in 
ACC.

Targeting angiogenesis

Vascular endothelial growth factor (VEGF) is 
highly expressed in approximately 76% of ACC 
patients, raising the possibility that VEGF func-
tion may be associated with recurrence and 
metastases [48]. It has also been shown that 

overexpression of MYB promotes expression  
of several target genes including VEGF [49]. 
Therefore, VEGF receptor (VEGFR) could be 
considered as a potential therapeutic target  
for ACC. Chen and colleagues [50] have  
shown the efficacy of regorafenib in a preclini-
cal study, where it led to delayed tumor growth 
and metastasis in 2 patient-derived xenograft 
(PDX) mouse models. To observe impacts of 
treatment of metastasis, they implanted 
labeled ACC cells in zebrafish embryos. Re- 
gorafenib treatment inhibited ACC cell migra-
tion and intravascular invasion as compared to 
the control group. Several VEGFR-targeted 
drugs are being tested in clinical trials. No 
objective response was observed to sunitinib, 
regorafenib, and nintedanib [51-53], but 9-16% 
objective response rate was observed with 
sorafenib, axitinib, and Lenvatinib. These data 
suggest limited efficacy of VEGFR-targeted 
treatment [54-59] (Table 2). Particularly, 
Tchekmedyian and collaborators showed that 
lenvatinib leads to the longest median progres-
sion-free survival (mPFS) of 17.5 months [55]. 

Table 1. Studies reporting cytotoxic chemotherapy for ACC

single agent authors year # of patients 
with ACC

objective 
responses duration stable 

disease
median survival 

(months)
cisplatin Schramm et al. [19] 1981 10 7 (70%) 7-18 months NS NS

Licitra et al. [20] 1991 13 2 (15%) 5-8 months 6 (46%) 20
Dick Haan et al. [21] 1992 10 0 5 (50%) 78

5-FU Tannock et al. [22] 1980 12 4 (33%) 5-24 months 2 (17%) NS
gemcitabine van Herpen et al. [18] 2008 21 0 11 (52%) NS
mitoxantrone Verweij et al. [23] 1996 32 4 (12%) 3-13 months 22 (69%) 18

Mattox et al. [24] 1990 18 1 (5%) 12 (66%) 19
epirubicin Vermorken et al. [25] 1993 20 2 (10%) 7.5, 20 months NS 16
vinorelvine Airoldi et al. [34] 2001 13 2 (15%) NS NS NS
paclitaxel Gilbert et al. [17] 2006 14 0 7 (50%) 25
combination therapy
CAP Licitra et al. [29] 1996 12 3 (25%) 5, 9, 13 months 5 (41%) 34

Creagan et al. [28] 1988 11 2 (18%) 12, 12 months NS 22.5
Belani et al. [26] 1988 4 1 (25%) 16 months NS 13

Dreyfuss et al. [27] 1987 9 3 (33%) NS NS NS
CAP + 5-FU Dimery et al. [30] 1990 7 3 (42%) 6, 13, 18 months 2 (28%) 29
P + A + bleomycin Dick Haan et al. [21] 1992 9 3 (33%) 6, 21, 77 months 5 (55%) 67
CVF Triozzi et al. [31] 1987 8 2 (25%) 107, 28 months 4 (50%) NS
P + 5-FU Hill et al. [37] 1997 11 0 9 (81%) 12
carboplatin, paclitaxel Airoldi et al. [33] 2000 10 2 (20%) 5, 12 months NS NS

Nakano et al. [32] 2016 9 1 (10%) NS NS 21.9
P + vinorelvine Airoldi et al. [34] 2001 9 4 (44%) NS NS NS

Airoldi et al. [35] 2017 34 7 (20%) NS NS 10.2
Hong et al. [36] 2018 19 6 (31%) NS 10 (52%) NS

*P: cisplatin, C: cyclophosphamide, A: doxorubicin, V: vincristine, F: 5-fluorouracil.
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Table 2. Studies reporting targeted therapies for ACC
phase II studies target authors year

# of 
patients

# of patients 
with ACC

objective 
responses

stable 
disease

median survival 
(months)

median PFS 
(months)

imatinib c-kit, bcrabl, PDGFR Hotte et al. [41] 2005 16 16 0 9 (56%) 7 2

Pfeffer et al. [39] 2007 10 10 0 2 (20%) NS NS

Bahl et al. [40] 2019 8 8 0 2 (25%) NS NS

imatinib + cisplatin Ghosal et al. [43] 2011 28 28 3 (11%) 19 (67%) 35 15

dasatinib c-kit, bcrabl, SRC family, PDGFβ, EPHA2 Wong et al. [42] 2016 54 40 1 (2.5%) 20 (50%) 14.5 4.8

cetuximab EGFR Locati et al. [46] 2009 30 23 0 20 (87%) NS NS

gefitinib EGFR Jakob et al. [45] 2015 36 19 0 13 (68%) 25.9 4.3

lapatinib HER-2, EGFR Agulnik et al. [47] 2007 40 19 0 15 (79%) NS 3.5

dovitinib FGFR, VEGFR, PDGFR, c-Kit Keam et al. [68] 2015 32 32 1 (3%) 30 (93%) NS 6

Dillon et al. [69] 2017 34 34 2 (6%) 22 (65%) 20.6 8.2

sunitinib VEGFR, c-KIT, PDGFR Chau et al. [52] 2012 13 13 0 11 (85%) 18.7 7.2

regorafenib VEGFR, FGFR, PDGFR Ho et al. [51] 2017 38 38 0 17 (45%) NS NS

nintedanib VEGFR, FGFR, PDGFR Kim et al. [53] 2017 20 13 0 10 (77%) 10 7.9

lenvatinib VEGFR, FGFR, PDGFR and etc. Tchekmedyian et al. [55] 2019 32 32 5 (16%) 24 (75%) NS 17.5

Locati et al. [54] 2020 28 28 3 (11%) 20 (71%) 27 9.1

axitinib VEGFR, PDGFR, c-KIT Locati et al. [57] 2019 26 6 1 (17%) 3 (50%) NS NS

Ho et al. [56] 2016 33 33 3 (9%) 25 (76%) NS 5.7

sorafenib VEGFR, PDGFR, c-Kit and etc. Thomson et al. [58] 2015 23 23 2 (11%) 13 (57%) 19.6 11.3

Locati et al. [59] 2016 37 19 2 (11%) 11 (58%) 26.4 8.9

vorinostat histone deacetylase inhibitor Goncalves et al. [114] 2017 30 30 2 (7%) 27 (90%) 11.5 10

everolimus mTOR Kim et al. [123] 2014 34 34 0 27 (79%) NS 11.2

nelfinavir Akt pathway inhibitor Hoover et al. [124] 2015 15 15 0 7 (47%) NS 5.5

phase I studies

figitumab + dacomitinib IGF1R + EGFR inhibitor Calvo et al. [92] 2017 74 3 1 (33%) 2 (67%)

R1507 + sorafenib IGF1R + multikinase inhibitor Mahadevan et al. [93] 2014 NS 1

BMS-986115 pan-NOTCH inhibitor Aung et al. [99] 2018 36 NS 0 2 (5.6%)

crenigacestat (LY3039478) expansion of phase I pan-NOTCH inhibitor Even et al. [100] 2020 22 22 1 (5%) 15 (68%) NS 5.3

brontictuzumab NOTCH1 inhibitor Ferrarotto et al. [101] 2018 48 12 2 (17%) 3 (25%) NS NS

GSK3326595  PRMT5 inhibitor Siu et al. [119] 2019 44 14 3 (21%) NS NS NS
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Currently, the VEGFR-2 inhibitor rivoceranib 
(apatinib) is in phase II trial (NCT04119453) 
(Table 3).

Tumor cells release VEGF and other pro-angio-
genic factors to promote angiogenesis which 
enables influx of oxygen and nutrients to sup-
port the high metabolic demands of tumor 
growth. Interestingly, VEGF induces B-cell lym-
phoma (Bcl)-2 expression and enhances both 
endothelial and tumor cell viability in several 
tumor types [60]. The anti-apoptotic Bcl-2 and 
Bcl-xL proteins are overexpressed in adenoid 
cystic carcinomas [61]. Acasigua and col-
leagues [62] showed the effect of a BH3-
mimetic small molecule inhibitor (BM-1197) on 
ACC tumor suppression, where they demon-
strated that small molecule inhibitors of Bcl-2 
induce apoptosis of tumor cells by suppressing 
the heterodimerization of Bcl-2 and Bcl-x. In a 
PDX model of ACC, the BM-1197-treated group 
showed an increase in apoptotic rate and 
growth inhibition as compared to the control 
group. However, clinical studies targeting Bcl-2 
have not been conducted yet for ACC.

Overexpression of fibroblast growth factor 
(FGF) has been observed in salivary gland can-
cers including ACC [63]. Increased FGF, as well 
as VEGF, has been shown to be associated  
with overexpression of MYB [64]. FGF is also 
involved in angiogenesis by promoting pro- 
liferation and migration of vascular endothelial 
cells [65]. Doddapaneni and colleagues report-
ed responses of ACC of the lacrimal gland in 
protein expression due to intra-arterial cytore-
ductive chemotherapy (IACC) with cisplatin and 
doxorubicin. According to the study, immuno-

fluorescence and immunohistochemical analy-
ses demonstrate a significant increase of 
FGFR1 in post-IACC tissues, when comparing to 
pre-IACC. They also performed an in vitro study 
on ACC cells using cisplatin and AZD4547, a 
FGFR1 inhibitor. The cells treated with the 
FGFR1 inhibitor and cisplatin showed a lower 
cell proliferation rate and cell migration com-
pare to the control group or the cisplatin alone 
group [66].

The clinical trial for dovitinib is one of the trials 
targeting FGFR in ACC. Dovitinib is also a drug 
that targets VEGFR, but it has a higher affinity 
for FGFR when compared to sorafenib and len-
vatinib [67]. In the phase II clinical study on 
dovitinib, the objective response rate was 
3-6%, which was lower than that of Lenvatinib 
[68, 69].

Targeting stemness

Cancer stem cells in adenoid cystic carcinoma

Cancer Stem Cells (CSCs) constitute a small 
fraction of the entire tumor cell population (typi-
cally ≥5%). These cells are highly tumorigenic, 
capable of self-renewal, and capable of (re-)
generating the various cell phenotypes that 
make up a tumor [70]. It has been suggest- 
ed that CSCs are resistant to conventional che-
motherapy and are strongly associated with 
recurrence and metastasis [71, 72]. Methods 
for identifying CSCs have been suggested in 
various types of carcinoma, and the markers 
identified for labeling differ depending on the 
type of carcinoma. In a study using a PDX  
model of ACC, when ALDHhigh and ALDHlow cell 

Table 3. Ongoing clinical trials for ACC
ongoing phase II Target or drug types dose clinical.gov

ATRA retinoic acid receptor (RAR) NS NCT03999684

AL101 pan-NOTCH inhibitor 4 mg IV weekly NCT03691207

CB-103 pan-NOTCH inhibitor NS NCT03422679

APG-115 ± carboplatin MDM2-p53 interaction 150 mg every other day NCT03781986

chidamide + cisplatin histone deacetylase inhibitor
Chidamide: 30 mg orally two times per week, one 
week before cycle 1 treatment Cisplatin 25 mg/m2 iv

NCT03639168

lenvatinib + pembrolizumab VEGFR inhibitor + PD-1 antibody Lenvatinib 20 mg daily, Pembrolizumab (200 mg) NCT04209660

rivoceranib (apatinib) VEGFR-2 inhibitor oral rivoceranib, 700 mg daily NCT04119453

ongoing phase I

PRT543 PRMT5 inhibitor NCT03886831

CV8102 intratumor therapy TLR7/8 agonist adjuvant NCT03291002

VMD-928 TrkA inhibitor NCT03556228

TetMYB Vaccine cancer therapy vaccine with PD-1 antibody NCT03287427
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populations were subcutaneously injected into 
mice, ALDHhigh cell populations were capable  
of forming tumors with a smaller number of 
cells than ALDHlow cells. This suggested that 
ALDHhigh cells have high tumorigenicity, and  
that ALDH is an effective CSC marker in ACC 
[73] (Figure 1). In another study, when the 
ALDHhighCD44high and ALDHlowCD44low cells were 
compared for tumorigenicity, the ALDHhigh 

CD44high cells were more tumorigenic. From 
this, it was suggested that CD44 in addition to 
ALDH can be a marker for CSCs in ACC [74]. It 
has further been reported that CD44 and 
CD133 have overlapping expression in ACC, 
suggesting that CD133 may also serve as a 
marker to identify ACC CSCs [75].

As mentioned above, CSCs selected by the 
aforementioned markers constitute a very 
small population [74]. As such, an effective 
treatment targeting CSCs might eliminate this 
small cell population but would not result in 
immediate tumor regression. Thus, treatments 
targeting CSCs are typically accompanied by 
strategies (e.g. cytotoxic therapies) aiming at 
the elimination of bulk tumor cells [72]. 
Importantly, CSC-targeted treatment has the 
potential to reduce ACC recurrence rates, as it 
eliminates tumor-initiating cells. In a preclinical 
recurrence study using PDX models of ACC, 
inhibition of the MDM2-p53 interaction with a 

small molecule inhibitor reduced the fraction of 
CSCs and enhanced sensitivity to cisplatin. In 
addition, no tumor recurrence was observed 
after tumor resection in neoadjuvant adminis-
tration of the targeted therapy group (MI-773), 
whereas 63% of the vehicle control group 
showed recurrence [76]. Altogether, treatment 
targeting CSCs can potentially be beneficial  
in ACC, as tumor recurrence is frequently 
observed.

MYB as a stemness target

A recurrent t(6;9)(q22-23; p23-24) transloca-
tion is a common chromosomal abnormality in 
ACC and results in the fusion of the proto- 
oncogene (MYB) with the transcriptional factor 
gene (NFIB) [49]. The MYB-NFIB gene fusion is 
observed in about 50% of all ACC tumors. 
Interestingly, 35% of MYB-NFIB gene fusion 
negative ACC have MYBL1 gene alterations. 
Therefore, it is suggested that approximately 
80% of all ACC have MYB or MYBL1 gene alter-
ations, and that MYB-like signaling might be 
involved in the oncogenesis and maintenance 
of ACC [77]. In tumors with MYB-NFIB translo-
cation, the fusion is detected in all tumor cells. 
However, the expression of Myb protein is 
detected only in limited subsets of ACC cells, 
primarily with a basal phenotype. In the tumor 
cells with a basal phenotype, p63 has been 

Figure 1. Representative photomicrographs of immunofluorescence staining of putative cancer stem-like cells in 
Adenoid Cystic Carcinoma. Histological section prepared from a surgical specimen of human ACC (A) and from a 
patient-derived xenograft UM-PDX-HACC-5 (B). Tissues were stained for the CSC marker ALDH (red) and for DAPI 
(blue). Images were taken at 400× magnification. Scale bars represent 50 µm.
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suggested as a CSC marker [78] and is typi- 
cally co-expressed with Myb [79]. In addition, 
sphere formation in ultra-low attachment 
plates (functional in vitro assessment of stem-
ness) was suppressed by MYB gene silencing. 
This suggests that MYB promotes tumorigene-
sis by enhancing cancer stemness [80].

Since MYB is a transcription factor, this genetic 
abnormality is particularly difficult to target clin-
ically. However, initial approaches to inhibit 
MYB activity or expression by small molecule or 
peptide-mimetic inhibitors have already proven 
successful and have shown that MYB inhibi- 
tion is feasible clinically. The main strategy to 
inhibit MYB remains targeting MYB’s interac-
tion with partner proteins or inducing direct 
degradation of MYB. CBP/p300 was the first 
identified coactivator to interact with Myb and 
influence its transcriptional activity [81, 82]. 
Recent studies have proposed that Celastrol,  
a natural low-molecular-weight compound, can 
inhibit MYB function through disruption of its 
interaction with the KIX domain of p300/CBP 
[83]. However, Celastrol reduced viability not 
only of MYB-positive ACC cells but also of  
cells not associated with MYB activation at the 
same concentration [84]. This suggests that 
Celastrol inhibits non-selective cell viability. To 
improve the therapeutic specificity for MYB, a 
peptidomimetic inhibitor (MYBMIM) that was 
designed to target and interfere with the 
assembly of the MYB:CBP/P300 co-transcrip-
tional protein complex using structure-guided 
molecular design was utilized [85]. A dose-
dependent tumor cell viability reduction was 
observed in MYB-activated tumor cells by 
MYBMIM. On the other hand, incubating 
MYBMIM with cells that are not associated  
with MYB activation does not decrease cell via-
bility. This suggests that MYBMIM may be a 
viable selective MYB inhibitor for the treat- 
ment of ACC patients [84]. Yusenko and col-
leagues showed that the polyether ionophore 
monensin A (referred to monensin) has an 
inhibitory effect on MYB and induces its degra-
dation in vitro. Using MYB-NFIB mutation-posi-
tive ACC cells, the expression of MYB was sup-
pressed under the administration of monensin. 
Under similar conditions, the expression of 
VEGF, which is typically induced by MYB, was 
also suppressed [86].

One drug already in clinical use has been  
shown to have an inhibitory effect on MYB. 

Mandelbaum and collaborators demonstrated 
that All-trans Retinoic Acid (ATRA), clinically 
available for treatment of acute promyelocytic 
leukemia (APL), decreases c-MYB expression in 
myeloid leukemia cell via retinoic acid receptor 
(RAR). In a PDX model of MYB translocation-
positive ACC, it was shown that ATRA and reti-
noic acid agonist suppresses tumor growth. 
They also examined apoptosis (cleaved cas-
pase-3) and proliferation (Ki-67) in ACC xeno-
graft tumors, and observed that ATRA treat-
ment induced tumor cell death, but had no sig-
nificant effect on tumor cell proliferation [87]. 
To verify these results in humans, a phase II 
trial of ATRA in Advanced Adenoid Cystic 
Carcinoma (NCT03999684) has been initiated 
(Table 3).

Immunomodulatory therapy to target MYB is 
another area of ongoing research. The TetMYB 
vaccine is a DNA vaccine targeting MYB. It was 
generated using a full-length MYB complemen-
tary DNA (cDNA) bound by two potent CD-4 epi-
topes derived from the tetanus toxin, which 
was then cloned into the FDA-compliant DNA 
vaccine vector pVAX1 [88]. Following several 
studies demonstrating that the TetMYB vaccine 
has a tumor suppressing effect for colorectal 
cancer [89, 90], a phase I clinical trial for 
colorectal carcinoma or adenoid cystic carci-
noma is currently active [91] (NCT03287427) 
(Table 3).

Lastly, MYB has also been reported to be  
downregulated by inhibiting IGF1R signaling. In 
MYB-NFIB fusion-positive ACC cells, IGFR1/
EGFR/MET are consistently activated. These 
receptors stimulate proliferation of ACC cells 
through AKT signaling. Inhibition of these sig-
naling events upon treatment with linsitinib, 
crizotinib, or gefitinib (IGF1R/INSR, MET, and 
EGFR inhibitors, respectively) significantly de- 
creased tumor growth in ACC xenograft models 
[80]. Currently, there are two phase I clinical tri-
als IGF1R targeting. One trial tests figitumab 
combined with the EGFR inhibitor dacomitinib, 
and the another uses R1507 combined with 
sorafenib. In those studies, 1 patient with par-
tial response for 1.5 years and 3 patients with 
stable disease were observed. Although clinical 
development of figitumumab has been discon-
tinued, these clinical studies support that 
IGF1R signaling has the potential to inhibit ACC 
growth and progression [92, 93] (Table 2).
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NOTCH1 as a stemness target

NOTCH signaling is an evolutionarily conserved 
cell fate determinant pathway that regulates 
stem cells in many adult tissues, as well as in 
pathological conditions such as cancer [94]. 
More recent data have established a correla-
tion between NOTCH1 signaling and cancer 
stemness. Higher expression of NOTCH1 was 
observed in CD133+ cells when compared to 
CD133- and unsorted cells. Silencing of 
NOTCH1 suppresses spheroid formation in low 
attachment culture conditions [95]. NOTCH1 
signaling was also shown to indicate poor 
patient prognosis. NOTCH1 mutation leads to 
its activation as demonstrated by a luciferase 
reporter assay bearing the promoter of HES1, 
which is a Notch1 transcriptional target. The 
NOTCH1 mutation was found in approximately 
13-14% of ACC patients [9, 96]. Patients har-
boring NOTCH1 mutations showed more 
aggressive histologies with a solid subtype, 
shorter relapse-free survival, and shorter over-
all survival when compared with NOTCH1 wild-
type tumors. Although distant metastases with 
organ involvement outside the lungs predicted 
poorer outcomes [97], patients with NOTCH1 
mutation exhibited a higher likelihood of devel-
oping metastasis in the liver and/or bone [9].

The NOTCH-pathway can be targeted with pan-
notch inhibitors such as gamma-secretase 
inhibitors or Notch1 inhibitors. Preclinical stud-
ies demonstrated significant activity of Notch 
inhibitors (e.g. brontictuzumab, Notch1 inhibi-
tor; AL101, pan-Notch inhibitor) in a NOTCH1 
mutant ACC PDX. In both studies, brontictuzum-
ab and AL101 had no significant effect on 
tumors lacking Notch1 activating mutations. 
For AL101, together with cisplatin or everolim-
us (mTOR inhibitor) was also studied, but this 
combination therapy had no additional benefit 
in Notch1 mutation-positive tumors [9, 98]. 
These preclinical studies suggested that when 
treating patients with Notch inhibitors, it may 
be more effective to select and treat patients 
who exhibit NOTCH1 mutations. There is some 
emerging data showing that Notch inhibitors 
benefit ACC patients. In a phase I study of  
BMS-986115 (pan-NOTCH inhibitor), some clin-
ical benefits including 2 stable disease (SD) 
patients with ACC were shown. However, the 
study was terminated early [99]. In an expan-
sion of a phase I study on crenigacestat (pan-

Notch-inhibitor), a cohort of 22 ACC patients 
was enrolled. From this cohort, 14 (64%) 
patients were positive for Notch by immunohis-
tochemistry, but mutation status was not  
given. In the trial, 1 patient had an unconfirmed 
partial response (PR) (15%) while 15 patients 
showed SD [100] (Table 2). Treatment using 
brontictuzumab also demonstrated clinical 
benefit with 2 PR patients and 3 SD patients 
out of 12 patients enrolled in a phase I trial. 
Bronticutuzumab (specific Notch1 inhibitor), 
was expected to reduce systemic toxicity (e.g. 
diarrhea) related to Notch inhibition in the 
intestinal crypts. However, the frequency and 
grade of diarrhea was comparable with that 
reported with other pan-Notch inhibitors [101]. 
Currently, one phase II clinical trial with  
AL101 (Gamma Secretase Inhibitor) is recruit-
ing ACC patients with NOTCH1 mutation 
(NCT03691207), and another phase I/IIA study 
with CB-103 (targeting assembly of the NOTCH 
transcription complex in the cell nucleus) is 
recruiting patients with advanced or metastatic 
solid tumors including ACC (NCT03422679) 
[102] (Table 3).

p53 as a stemness target

Mutations in the TP53 gene are the most fre-
quently found in human cancer. Indeed, p53 is 
known as the “guardian of the genome” playing 
a key role in the determination of cell fate. 
Under normal conditions, p53 is under tight 
molecular regulation. However, once the gene 
is mutated, it is released from the degradation 
mechanism of p53 and accumulates rapidly  
in the cell to promote various transcription fac-
tors involved in senescence and apoptosis. 
Mouse double minute 2 (MDM2) is a major 
negative regulator of p53 that promotes degra-
dation of p53 upon direct binding [103]. It is 
considered that malignant tumors survive 
because p53 itself does not have proper func-
tion due to an abnormality in itself or an abnor-
mality in the binding to MDM2 [104].

There is some relationship between p53 and 
CSCs regarding stem cell self-renewal and dif-
ferentiation [105]. In studies with mammary 
stem cells, p53 deficiency increased self-
renewal capacity, increased the stem cell pool, 
and promoted symmetric division of cells. p53 
knockout mice were found to have a higher  
proportion of cells capable of generating mam-
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mospheres, supporting the concept that p53 
plays an important role in the generation and 
maintenance of the cancer stem cell pool [106, 
107]. In addition, p53 promotes differentiation 
by suppressing the expression of Nanog in 
mouse embryonic stem cells [108]. Given these 
findings, it is concluded that p53 controls the 
balance between self-renewal and differentia-
tion of stem cells.

Although TP53 is mutated in many cancers, it is 
not as frequently mutated in salivary gland 
tumors when compared to other neoplasms 
[109]. In addition, high expression of p53 was 
noted in 19 out of 21 ACC cases (90%) via 
immunohistochemistry [61]. This indicates that 
increased accumulations of p53 might have a 
therapeutic effect within ACC. In fact, inhibition 
of the MDM2-p53 interaction with small mole-
cule (MI-773) activates downstream effectors 
of apoptosis and causes tumor regression in 
PDX models of ACC [110]. MI-773 also sensi-
tized ACC PDX tumors to cisplatin and success-
fully reduced the fraction of CSCs (ALDHhigh 

CD44high cancer cells). Furthermore, inhibition 
of MDM2-p53 prevented tumor recurrence in 
preclinical trials. No recurrence was observed 
upon tumor resection after neoadjuvant  
administration of MI-773, whereas 63% of the 
mice in the control group showed recurrence 
[76]. Given these results, a Phase I/II trial  
of APG-115 (small molecule inhibitor of 
MDM2-p53) in patients with salivary gland 
tumors including ACC (NCT03781986) is cur-
rently ongoing (Table 3).

The epigenome as a stemness target

Treatments targeting the epigenome have been 
studied in many carcinomas, with ACC being no 
exception. Mutations related to the epigenome 
such as histone acetylation and methylation, 
as well as chromatin remodeling have been 
reported [111]. CBP/P300 described in MYB 
also has a histone acetyltransferase (HAT) 
function to acetylate H3K18 and H3K27 [112]. 
Histone deacetylase (HDAC), which has the 
opposite effect to HAT, has been shown to have 
an effect as a pro-oncogene [111]. A preclini- 
cal study showed that Vorinostat, an HDAC 
inhibitor (HDACi), has an effect of depressing 
CSC in ACC. In an in vitro study, Vorinostat 
reduced CSCs as identified by CD44 expres-
sion and ALDH activity in primary ACC cells. 

Furthermore, combination treatment with cis-
platin reduced the CSC fraction when com-
pared with Vorinostat monotherapy. From these 
data, it was shown that Vorinostat demon-
strates not only the tumor suppressive effect of 
a single agent but also the effect of sensitizing 
cells to cisplatin [113]. Vorinostat has also 
been tested in clinical trial. In a phase II study 
in which 90% (27/30) of the patients exhibited 
disease progression prior to enrollment, there 
were 2 patients out of 30 (7%) with PR and 27 
patients with SD [114] (Table 2). Although the 
PR rate was inferior when compared with anti-
VEGFR drugs such as Lenvatiniv, considering 
the results of preclinical studies, it is possible 
that the combination treatment with conven-
tional chemotherapy may be effective. To 
answer this question, another phase II trial of 
combination therapy with HDACi (chidamide, 
orally active histone deacetylase inhibitor) and 
cisplatin is being conducted (NCT03639168) 
(Table 3). Chidamide has been approved for the 
treatment of relapsed and refractory peripheral 
T-cell lymphoma and is expected to have a 
tumor suppressing effect on various types of 
carcinoma [115].

The inhibitor of the protein arginine methyl-
transferase 5 (PRMT5) may also have a thera-
peutic effect in ACC. PRMTs are involved in  
various signal transduction cascades by cata-
lyzing methylation of specific arginine residues. 
Overexpression of PRMT5 has been confirmed 
in many carcinomas and is thought to have a 
role in cancer progression by inhibiting tumor 
suppressor gene expression via methylation of 
transcription factors and chromatin associated 
proteins [116]. In oropharyngeal cancers, high 
expression of PRMT5 in the nucleus indicates 
poor prognosis. Notably, and it has been shown 
that IL-6 promotes PRMT5 translocation into 
the nucleus [117]. In breast cancer, PRMT5 
was overexpressed in chemoresistant cell  
lines compared to non-resistant cell lines. 
Conversely, it was observed that knocking 
down PRMT5 enhances drug sensitivity. In 
addition, PRMT5 knockdown inhibits sphere 
formation and decreases the CSC fraction  
identified as CD44+CD22- [118]. Therefore, it  
is likely that PRMT5 has an association with 
carcinogenesis and cancer stemness. Pre- 
clinical studies showing a relationship between 
salivary gland carcinoma and PRMT5 are inad-
equate, but clinical trials have shown some 
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promise for ACC. Although it is an intermediate 
result of a Phase I trial, PR was confirmed in 3 
out of 14 patients in the ACC patient group 
treated with GSK3326595, which is a PRMT5 
inhibitors [119] (NCT02783300) (Table 2). In 
addition, another PRMT5 inhibitor (i.e. PRT543) 
is also undergoing phase I studies in patients 
with ACC (NCT03886831) (Table 3).

PI3K/Akt/mTOR pathway as a stemness target

Phosphatidylinositol 3-kinase (PI3K) activates 
Akt by phosphorylation. Furthermore, it acti-
vates transcriptional factors such as mammali-
an target of rapamycin (mTOR), an Akt sub-
strate. Inhibition of mTOR has been shown to 
decrease expression of CSC markers and inhib-
it sphere formation in various cancer types 
including breast cancer and colorectal cancer. 
This indicates that inhibition of mTOR has a 
suppressive effect on CSCs [120]. In ACC, p-Akt 
is overexpressed when compared to normal 
salivary gland tissue, and therefore it may play 
a role in ACC carcinogenesis [121, 122]. 
However, high p-Akt expression was associat- 
ed with lower grade histology, and it was even 
found that the p-Akt high-expressing group had 
a better prognosis [122]. In a phase II study of 
the mTOR inhibitor everolimus, 27 of 34 (79%) 
had SD, but no PR was seen [123]. Of note, nel-
finavir (anti-HIV drug) has a tumor-suppressing 
effect by inhibiting Akt. As such, a phase II trial 
of nelfinavir was conducted in ACC, but only 7 
out of 15 (46%) patients showed SD, none 
showed PR, and clinical prognosis was not 
affected [124] (Table 2).

Immunotherapy and cancer stemness

It is known that cancer cells can be eliminated 
by immune cells, creating a surveillance by the 
immune system that can inhibit tumor forma-
tion. However, tumorigenic cells might evade 
the immune surveillance and grow into tu- 
mors. CSCs are known to be able to evade 
immunological recognition and to exhibit tu- 
morigenic potential. Immunosuppressive me- 
chanisms have been characterized as key for 
tumor generation and progression, including 
programmed cell death 1 (PD-1), programmed 
cell death 1 ligand 1 (PD-L1), transforming 
growth factor β (TGF-β) and cytotoxic T- 
lymphocyte-associated antigen 4 (CTLA-4) 
[125]. Therapeutic efficacy of PD-1/PDL-1 

inhibitors has been demonstrated in head and 
neck squamous cell carcinoma (HNSCC),  
with higher levels of PD-L1 expressed in the 
CD44high CSCs group [126]. However, the thera-
peutic potential of inhibiting the PD-1/PD-L1 
pathway in ACC remains unclear. A clinical trial 
of pembrolizumab (PD-1 inhibitor) was conduct-
ed, but no objective response was observed in 
ACC patients [127]. A combination of pembroli-
zumab and radiotherapy did not result in tu- 
mor regression [128]. Even with the combina-
tion therapy of vorinostat and pembrolizumab, 
the therapeutic effect was 8% (1 out of 12) in 
ACC, and no additional therapeutic effect for 
pembrolizumab was observed [129]. A poten-
tial reason for the lack of response to PD-1 inhi-
bition might be because PD-L1 is rarely 
expressed in ACC and tumor-infiltrating lympho-
cytes (TILs) [130, 131]. Further, expression of 
PD-L2 alone was shown to aid in evasion of 
immune surveillance mechanisms [132]. PD-L2 
expression tends to be relatively high in ACC 
[130, 131].

Emerging evidence suggests the possibility of 
developing anti-CSC vaccines. Cancer thera-
peutic vaccines activate a number of tumor 
antigen-specific cytotoxic T lymphocytes (CTLs) 
to eliminate the tumor by recognizing tumor-
associated antigens [125]. Studies using the 
xenograft model of ovarian cancer have shown 
that the CD117+CD44+ CSC vaccine inhibits 
tumorigenicity [133]. A clinical trial of a MYB-
targeted vaccine is being conducted in MYB-
expressing tumors, such as ACC and colorectal 
cancer [91]. The results of this trial should shed 
light on the therapeutic potential of this new 
treatment modality.

Ongoing clinical trials

Intra-tumor therapy

When discussing immunotherapy, we men-
tioned anti-cancer vaccines. But vaccines using 
tumor-associated antigens may not elicit 
enough immunostimulatory action to evoke a 
sufficient immune response, which is required 
to have a strong and persistent tumoricidal 
effect. Most adjuvants have been developed 
for prophylactic vaccines and have a low Th1-
activating effect. However, CV8102, a non-cod-
ing, long-chain RNA molecule, is an adjuvant 
that stimulates TLR7/8 and induces a robust 
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immune response [134, 135]. In a preclinical 
study using an HPV-related cervical cancer 
model, comparing the vaccine containing HPV-
16 E7 protein-derived long peptides alone  
with the vaccine and CV8102 together, the 
combination group showed a longer and more 
potent anti-tumor effect. It also demonstrated 
a stronger immunostimulatory effect than the 
existing adjuvant, i.e. poly (I:C) [136]. Fur- 
thermore, it has been reported that intra-
tumoral administration of adjuvants alone has 
an anti-tumor effect by presenting the tumor 
cell itself as an antigen to immune cells [137]. 
Intra-tumoral administration of adjuvants also 
showed increased activation of immune eva-
sion mechanisms such as PD-L1. Therefore, it 
has been suggested that combination with 
PD-L1 inhibitors may enhance antitumor 
effects [138]. Based on this evidence, a clinical 
trial exploring a combination therapy that 
includes intra-tumoral administration of 
CV8102 and PD-1 inhibitor for solid tumors 
including ACC is ongoing (NCT03291002) 
(Table 3). In the mid-term report, complete 
regression was confirmed in one patient with 
melanoma, and tumor shrinkage was observed 
in one patient with head and neck squamous 
cell carcinoma and another in a patient with 
melanoma [139]. Considering the potential 
immunostimulatory effect, combination thera-

has been conducted in many carcinomas 
including ACC is actively recruiting patients at 
this time (NCT03556228) [144] (Table 3).

Combination therapy

The observation that vorinostat enhanced the 
effect of cisplatin in preclinical studies [113], 
suggests that this drug combination may be 
effective in salivary gland cancer. The combina-
tion of either conventional chemotherapy with 
targeted therapies, or the combination of a 
molecular targeting drug with immunotherapy, 
are being actively pursued in clinical trials.  
The former is presented by combination thera-
pies using HDACi and cisplatin (NCT03639- 
168), as well as APG-115 and carboplatin 
(NCT03781986), while the latter is presented 
by a combination therapy using lenvatinib and 
pembrolizumab (NCT04209660) (Table 3).

Conclusion

ACC is a rare disease found primarily in the sali-
vary glands. Initial treatment for ACC is often 
surgery with or without radiation therapy,  
but most patients eventually experience tumor 
recurrence and/or metastasis. Chemotherapy 
is administered to control advanced, unresect-
able, recurrent and/or metastatic ACC, but a 
standard-of-care chemotherapy protocol is yet 

Figure 2. Graphical illustration depicting cytotoxic chemotherapy, anti-angio-
genic therapy, stemness-targeted therapy and immunotherapy as potential 
strategies for treatment of therapy Adenoid Cystic Carcinoma.

pies involving anti-cancer vac-
cines may become a novel 
strategy for ACC.

TRKA

Perineural invasion, a charac-
teristic invasion pattern of 
ACC, poses a major challenge 
in the treatment of patients 
with ACC [140]. Neural inva-
sion is also a prognosis factor 
of local control rate [141]. It is 
believed that neural invasion 
is associated with nerve 
growth factor (NGF) and its 
receptor Tropomysin receptor 
kinase A (TrkA). In ACC, high 
expression of NGF and TrkA 
displays significant correla- 
tion with neural invasion and 
disseminated disease [142, 
143]. A Phase I study of oral 
small-molecule TrkA inhibitor 
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to be determined. Although inhibitors of tumor 
angiogenesis demonstrated relatively high 
effective response rates, they were at  
best comparable to conventional chemothera-
py in patients with ACC. However, NOTCH sig-
naling inhibitors and PRMT5 inhibitors have 
higher efficacy response rates and show prom-
ise as putative therapeutic targets in ACC. 
Furthermore, clinical studies are being con-
ducted on cancer vaccines targeting MYB and 
small molecule inhibitors of the p53-MDM2-
p53 interaction. In addition, the emergence of 
new therapies targeting stemness and the mat-
uration of immunotherapy protocols is expect-
ed to bring benefits to clinical patients in the 
future (Figure 2). The recent development of 
validated ACC cell lines and preclinical models 
that are suitable for developmental therapeu-
tics studies, raise the speed of discovery and 
should enable discoveries towards safer and 
more effective therapies for ACC patients.
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