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Abstract: Triple negative breast cancer (TNBC) is a breast cancer subtype with unfavorable prognosis. We aimed 
to establish a machine learning-based ultrasound radiomics model to predict disease-free survival (DFS) in TNBC. 
Invasive TNBC>T1b between January 2009 and June 2018 with preoperative ultrasound were enrolled and as-
signed to training and independent test cohort. Radiomics and clinicopathological features related with DFS were 
selected by univariate and multivariate regression analysis. Training cohort of combined features was resampled 
with SMOTEENN to balance distribution and put into classifiers. Areas Under Curves (AUCs) of models were com-
pared by DeLong’s test. 562 women were included with 68 DFS events observed. Twenty prognostic radiomics 
features were extracted. Machine learning model by Naïve Bayes combining radiomics, clinicopathological features, 
and SMOTEENN had an AUC of 0.86 (95% CI 0.84-0.88), with sensitivity of 74.7% and specificity of 80.1% in train-
ing cohort. In independent test cohort, this three-combination model delivered an AUC of 0.90 (95% CI 0.83-0.95), 
higher than models based on radiomics (AUC=0.69, P=0.016) or radiomics + SMOTEENN (AUC=0.73, P=0.019). 
Integrating machine learning radiomics model based on ultrasound and clinicopathological features can predict 
DFS events for TNBC patients.
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Introduction

Breast cancer is one of the most commonly 
diagnosed malignancy among females and has 
become the second leading cause of tumor-
related death for women worldwide [1]. In the 
era of precise diagnoses and individualized 
treatment, classifications of molecular sub-
types have become the backbone of manage-
ment strategy for breast cancer [2, 3]. Triple 
negative breast cancer (TNBC), which accounts 
for approximately 10-15% of newly diagnosed 
breast cancer, harbors more malignant biologi-
cal behaviors compared with other molecular 
subtypes [4]. With higher nuclear grade, larger 
tumor size, and more aggressive proliferative 
documents, people with TNBC had a higher risk 
of recurrence and worse overall survival [5]. 
Thus, the spotlight of clinical and translational 
research in TNBC field always includes identify-

ing risk factors of developing relapse, thus to 
find out high risk populations to guide individu-
alized therapy [6]. Among traditional clinico-
pathological factors, younger age at diagnosis, 
axillary lymph node (ALN) involvement, and lym-
phatic vessel invasion (LVI) have been reported 
to associate with the higher relapse rate of 
TNBC in long-term follow-up studies [7, 8]. 
However, to better understand the recurrence 
pattern of TNBC, more novel biomarkers need 
to be studied.

Ultrasound (US) has been widely used in screen-
ing and diagnosis of breast cancer with its 
advantages of no radiation and good accessibil-
ity in clinical practice [9, 10]. Several studies 
have been exploring its predictive and prognos-
tic values for breast cancer. It was reported that 
that breast cancers classified as Breast Imaging 
Reporting and Data System (BI-RADS) 4A cate-
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gory in screening US had a higher risk of recur-
rence compared with tumors with 4B-5 catego-
ries [11]. Notably, our previous studies reviewed 
the preoperative sonographic features of TNBC 
and found out that TNBC tumors with vertical 
orientation had worse RFS and more ALN 
metastases, indicating that ultrasound charac-
teristics could provide prognostic information 
for TNBC patients [12, 13]. However, the accu-
racy of this feature recognition was limited by 
subjective evaluation of US operators.

Radiomics was able to automatically extract 
quantitative image features with large scales 
and high accuracy [14]. Our previous studies 
have shown that radiomics analysis of breast 
cancer ultrasound had a high reproducibility 
and was able to predict molecular classifica-
tions and biological behaviors for breast tumor 
[15, 16]. Furthermore, artificial intelligence (AI), 
especially the machine learning algorithm, has 
gained extensive attention in the field of breast 
cancer research, especially in screening and 
diagnostic settings [17]. Machine learning-
based radiomics model with convolutional net-
work method on screening mammography have 
been reported to reach an Area Under Curve 
(AUC) of 0.98 in breast cancer detection [18]. 
As for sonographic radiomics, Arturo Brunetti  
et al. managed to distinguish malignancy breast 
tumors from benign lesions through an ultra-
sound radiomic analysis combined with 
machine learning [19]. Meanwhile, Zheng et al. 
have established a predictive model for lymph 

node metastasis by machine learning radiomics 
of preoperative ultrasound with an AUC value of 
0.90 [20].

As shown above, previous literatures regarding 
machine learning radiomics based on ultra-
sound have mostly focused on optimizing diag-
nostic efficacy including recognition of malig-
nancies or axillary lymph nodes. However, 
whether machine learning-based radiomics 
models with sonography could predict patients’ 
long-term outcomes, especially in TNBC, has 
barely been explored. Hence, the purpose of 
our study was to evaluate the prognostic pre-
dictive value of machine learning radiomics 
based on ultrasound for disease outcomes in 
TNBC patients, thus to establish a machine 
learning-based model to further classify TNBC 
patients with various disease outcome.

Methods and materials

Patients

For model establishment, patients diagnosed 
with TNBC at the Breast Health Center of our 
hospital between January 1st 2009 to June  
30th 2018 and underwent surgical treatment 
were screened. Patients with invasive TNBC 
larger than 1.0 cm with record of preoperative 
ultrasound were included for analysis. Patients 
with history of neoadjuvant treatment, pre- 
vious breast malignancy, multifocal tumors 
with other molecular subtypes or history of 
other malignancy were excluded (Figure 1).

Figure 1. Flow chart of enrollment. Eligibility and exclusive criteria were shown in the flow chart. Finally, 562 patients 
were retrospectively included, among which 449 patients were randomized into training cohort while 113 patients 
into Independent Test cohort. On the other hand, 40 TNBC patients were included as the External Validation cohort.
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On the other hand, another panel of TNBC 
patients who received neoadjuvant therapy 
between January 1st 2009 to June 30th 2018 
were included as the external validation cohort. 
Patients with records of original ultrasound 
images before treatments without history of 
previous malignancy were retrospectively 
enrolled (Figure 1). The study was performed 
under the Declaration of Helsinki and has been 
approved by the Institutional review board of 
our hospital.

Pathological evaluation

Pathological evaluation was conducted by the 
Department of Pathology in our hospital. Breast 
tumors were fixed in formalin, embedded in 
paraffin, stained with hematoxylin-eosin, and 
then evaluated for pathology types. ER, PR, 
HER2, and Ki67 expression was examined by 
immunohistochemistry (IHC). Nuclear staining 
in at least 1% tumor specimen was defined as 
ER or PR positivity [21]. HER2 negativity was 
determined as IHC 0-1+ or negative on fluores-
cence in situ hybridization (FISH), while positiv-
ity as IHC 3+ or positive on FISH [22]. TNBC was 
defines as breast cancer with no expression of 
ER, PR, and HER2.

Data collection and follow-up

Clinicopathological profiles and follow-up data 
of patients were recorded and retrieved from 
the Shanghai Jiaotong University Breast Can- 
cer Database (SJTU-BCDB). Clinicopathological 
features including patients’ age, menstrual sta-
tus, breast and axillary surgery types, patholo-
gy types, tumor size, ALN metastases, nuclear 
grade, Ki-67, LVI and adjuvant treatments were 
taken into analysis.

Information of follow-up was collected by spe-
cialized nurses. Disease-free survival (DFS) 
events were recorded and analyzed, which was 
defined as the interval between the date of sur-
gery and the date of breast cancer recurrence, 
secondary primary cancer, or death of any 
reason.

Ultrasound examination and image segmenta-
tion

Preoperative ultrasounds were performed and 
reviewed by two proficient radiologists with 
more than 10-years’ experience in breast imag-
ing. Sonograms were all conducted by the 

machines of MyLab60 (Esaote, Genoa, Italy) or 
Philip HD15 (Philips, Rochester, NY, USA) 
equipped with 5-12 MHz linear probes. Static 
images and video profiles were then stored in 
the system of Digital Imaging and Com- 
munications in Medicine (DICOM). The ultra-
sound imaging was then assessed with the cri-
teria of ACR BI-RADS® Atlas.

1-3 representative ultrasound images of tar-
geted lesions were selected. Contours of 
tumors were manually extracted by Polygen 
mode in ITK-SNAP (Windows 3.4.0 version) and 
independently reviewed by two sonographic 
specialists (Figure 2).

Feature extraction and selection

A total of 460 radiomics characteristics were 
extracted and quantified from each ultrasound 
images in MATLAB (Windows 2020a version). 
The features include morphological (15 fea-
tures), histogram-based (16 features), texture 
features (73 features) and wavelet features 
(356 features). For tumors with more than one 
representative sonographic images, mean 
index of each feature was measured and taken 
into analysis. Radiomics features and clinico-
pathological features associated with occur-
rence of DFS events were then explored by 
Logistic Regression. Characteristics with P 
value <0.05 were considered as significantly 
associated with DFS events and then included 
for further model construction.

Data resampling and machine learning models

SMOTEENN [23] was used to conduct data bal-
ancing in order to improve predictive perfor-
mance in our imbalanced dataset. It is a hy- 
brid sampling method combined oversampling 
technique SMOTE (Synthetic Minority Over- 
sampling Technique) and under-sampling tech-
nique ENN (Edited Nearest Neighbor). In the 
procedure of the method, firstly SMOTE gener-
ates synthetic samples by randomly interpolat-
ing between existing samples in the minority 
class [24]. Then ENN cleans the newly generat-
ed dataset to prevent overlap of samples 
between the minority class and the majority 
class. Specifically, a sample from one class will 
be eliminated if more than half of its K nearest 
neighbors do not belong to the same class. As 
a result, SMOTEENN makes the sample num-
bers of the two classes closer and the boundar-
ies between them clearer. Therefore, the classi-
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fier can easily learn the differences between 
the two classes, thus improving the prediction 
performance.

In our study, five machine learning classifiers 
were used to predict DFS, including Naive 
Bayes, SVM, Decision Tree, Bagging, and RUS 
Boost. The first three of these classifiers are 
traditional machine learning classifiers that 
assume roughly equal numbers of samples  
and the same cost of misclassification in each 
class. However, if these traditional classifiers 
were used on our imbalanced dataset, they 
would be prone to misclassify the minority 
class. Therefore, two ensemble classifiers 
Bagging and RUS Boost, were also employed.

The whole cohort was randomly assigned into 
the training cohort and the independent test 
cohort with a ratio of 4:1. Among the training 
cohort, predictive performance of 5 classifiers 
was compared by 5-fold cross-validation test. 
Performance of different models was then fur-
ther validated in the external validation cohort. 
The workflow of the machine learning algorithm 
was shown in Figure 3.

Statistical analysis

Analysis was conducted by IBM SPSS Statistics 
(Windows 25.0 version), R (Windows 3.6.3 ver-
sion), Python (Windows 3.8.5 version) and 
MATLAB (Windows 2020a version). All tests 
were two-sided and P value <0.05 was consid-

Figure 2. Examples of ultrasound segmentations. Typical examples of ultrasound segmentations were shown. Rep-
resentative ultrasound images of breast tumor were selected. The contours of the lesions were manually drawn in 
ITK-SNAP and the ROIs were then extracted.

Figure 3. Workflow of the machine learning algorithm. High-throughout radiomic features were extracted from seg-
mentations of breast ultrasound. Taken clinicopathological features together, enrolled samples were randomly as-
signed into the Training cohort and Independent test cohort with the ratio of 4:1. Data resampling was then per-
formed through the methods of SMOTE-ENN to balance the events. 5 classifiers were conducted with 5-fold cross 
validation and compared in the training cohort and then tested in independent test cohort to find out the best 
Machine Learning Model. Performance of each model was evaluated by AUC, ACC, SENS and SPEC.
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Table 1. Clinicopathological features of the enrolled population

Variables Total
N=562

DFS event
N=68

No DFS event
N=494 P value

Race Asian 562 (100.0) 68 (100.0) 494 (100.0) NA
Age (yrs) ≤55 289 (51.4) 29 (41.6) 260 (52.6) 0.122

>55 273 (48.6) 39 (57.4) 234 (47.4)
Menstruation status Pre-/peri- 218 (38.8) 20 (29.4) 198 (40.1) 0.090

Post- 344 (61.2) 48 (70.6) 296 (59.9)
Breast surgery BCS 215 (38.3) 19 (27.9) 196 (39.7) 0.104

Mastectomy 347 (61.7) 49 (72.1) 298 (60.3)
Axillary surgery SLNB 285 (50.7) 18 (26.9) 261 (53.4) <0.001

ALND 277 (49.3) 49 (73.1) 228 (46.6)
Pathology type IDC 483 (85.9) 63 (92.6) 420 (85.0) 0.090

Non-IDC 79 (14.1) 5 (7.4) 74 (15.0)
Tumor size Mean ± SE 2.5±0.1 2.9±0.1 2.5±0.1 0.006

≤2 cm 246 (43.8) 18 (26.5) 228 (46,2) 0.002
>2 cm 316 (56.2) 50 (73.5) 266 (53.8)

ALN metastases No 401 (71.7) 35 (51.5) 370 (74.9) <0.001
Yes 161 (28.3) 33 (48.5) 124 (25.1)

Nuclear grade I-II 91 (16.2) 10 (14.7) 81 (16.4) 0.546
III 395 (70.3) 52 (76.5) 343 (69.4)
NA 76 (13.5) 6 (8.8) 70 (14.2)

Ki-67 (%) Mean ± SE 54.6±1.1 54.8±1.1 53.6±3.3 0.720
≤30 148 (26.3) 16 (23.5) 132 (26.7) 0.575
>30 414 (73.7) 52 (76.5) 362 (73.3)

LVI No 515 (91.6) 56 (82.4) 459 (92.9) 0.003
Yes 47 (8.4) 12 (17.6) 35 (7.1)

TNM stage I 196 (35.1) 12 (17.9) 184 (37.4) <0.001
II 308 (55.1) 36 (53.7) 272 (55.3)
III 55 (9.8) 19 (28.4) 36 (7.3)

Chemotherapy No 52 (9.3) 11 (16.2) 41 (8.3) 0.036
Yes 509 (90.7) 57 (83.8) 452 (91.7)

Radiotherapy No 244 (43.5) 27 (39.7) 217 (44.0) 0.502
Yes 317 (56.5) 41 (60.3) 276 (56.0)

Abbreviations: DFS, disease-free survival; BCS, breast conserving surgery; SLNB, sentinel lymph node biopsy; ALND, axillary 
lymph node dissection; IDC, invasive ductal carcinoma; SE, standard error; ALN, axillary lymph node; NA, not available; LVI, 
lymphatic vascular invasion; TNM, tumor node metastasis.

ered as significantly important. Regarding 
baseline characteristics, categorical variables 
were shown as numbers and percentages and 
analyzed by Pearson’s Chi-square test (or 
Fisher’s exact test); while continuous variables 
were shown as means and standard errors 
(SEs) and was analyzed by independent sam- 
ple t test. Performances of classifiers and pre-
diction models were evaluated in four merits, 
including the Area Under Curve (AUC), the  
accuracy (ACC), the Specificity (SPEC) and the 
Sensitivity (SENS). AUC of different prognostic 
models was compared with the method of 
DeLong’s test [25].

Results

Basic characteristics

From January 2009 to June 2018, 562 pa- 
tients diagnosed with TNBC were included for 
model establishment (Figure 1). As shown in 
Table 1, mean age of enrolled patients was 
55.5 (27-87) years old and 266 (61.4%) pa- 
tients were post-menopausal at diagnosis. 
There were 215 (38.3%) patients underwent 
breast conserving surgery (BCS) while 347 
(61.7%) received mastectomy. Sentinel lymph 
node biopsy (SLNB) was performed among 285 
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(50.7%) patients. There were 316 (56.2%) 
patients with tumor size >2.0 cm and 395 
(70.3%) with grade III disease. Mean Ki-67 
value for enrolled patients was 54.6% (0-95%). 
ALN metastases were detected in 161 (28.3%) 
patients.

Disease outcomes

Disease outcomes of the enrolled population 
were listed in Table 2. With a median follow-up 
of 76.0 months, 68 (12.1%) DFS events were 
observed. Fifty-seven (10.1%) patients had dis-
tance recurrence, among which 27 (4.8%) 
patients have died with breast cancer events. 
Four (0.7%) patients developed secondary 
tumors. A total of 7 (1.2%) patients died with- 
out breast recurrence: 3 patients for myocardi-
al infarction, 2 for cerebrovascular accident, 1 
for respiratory function failure, and 1 for renal 
function failure.

Training and independent test cohort

The whole cohort was randomly assigned to 
training cohort (N=499) or independent test 
cohort (N=113). Clinicopathological character-
istics including tumor size, lymph node metas-
tasis, nuclear grade, and Ki-67 index were well-
balanced between two cohorts (all P>0.05, 
Table 3). Fifty-seven (12.7%) patients in the 
training cohort while 11 (9.7%) in the indepen-
dent test cohort had DFS events respectively, 
which also showed no significant difference. 
The training cohort was taken into 5-fold cross-
validation test and then validated in the inde-
pendent test cohort.

Classifier selection and clinical information 
integration

With Logistic Regression test, 20 radiomic 
characteristics related with DFS events were 

selected and taken into model construction 
(Table S1), including one morphological feature, 
one histogram-based feature, 3 texture fea-
tures and 15 wavelet features. The boxplots of 
four representative radiomics features are 
shown in Figure 4, where the significant differ-
ences in feature means reflect the strong cor-
relation with DFS events. In order to explore the 
most suitable algorithm for prediction model, 
classifiers including Naive Bayes, SVM, Decision 
Tree, Bagging, and RUS Boost in predicting DFS 
events were compared. As illustrated in Table 
4, the classifier Naive Bayes had the best per-
formance in predicting DFS events when only 
radiomic features were taken into consider-
ation with AUC 0.69 in the independent test 
cohort, which was then adopted for further 
model construction.

Regarding clinicopathological features, both 
clinicopathological characteristics and treat-
ment choices were taken into consideration. As 
shown in Table 1, larger tumor size (P=0.006), 
more lymph node metastases (P<0.001), pres-
ence of LVI (P=0.003), and higher TNM stage 
(P<0.001) was significantly related with elevat-
ed risk of DFS events and was further selected 
into modeling. The AUC value of model based 
on clinicopathological factors was 0.79 but the 
sensitivity was only 54.5%. Moreover, for com-
bination of US radiomics and clinicopathologi-
cal features, the AUC value can reach to 0.86  
in the independent test cohort, but which was 
only 0.65 in the training cohort (Table 5). In 
addition, the sensitivity of combination model 
was only 25.6% and 63.6% in the training and 
independent-test cohorts, respectively.

Prediction of DFS events with machine learn-
ing radiomics

Due to the relatively small number of DFS 
events, SMOTEENN algorithm was further us- 
ed to build prediction model. Radiomics + 
SMOTEENN, clinicopathological + SMOTEENN, 
and Radiomics + clinicopathological + SMO- 
TEENN models were built and compared, which 
had the AUC values 0.84 (95% CI 0.82-0.86), 
0.81 (95% CI 0.76-0.85), and 0.86 (95% CI, 
0.84-0.88) in the training cohort and 0.73  
(95% CI 0.64-0.81), 0.80 (95% CI 0.72-0.87), 
and 0.90 (95% CI 0.83-0.95) in the indepen-
dent test cohort, respectively (Figure 5; Table 
5). The radiomics + clinicopathological + SMO- 
TEENN model had a higher AUC than models 

Table 2. Disease outcomes of patients
Events N Percentage
Recurrences 57 10.1%
    LRR 7 1.2%
    Distance 50 8.9%
Secondary tumors 4 0.7%
Deaths 34 6.0%
    Breast cancer-specific 27 4.8%
    Non-breast cancer-specific 7 1.2%
Abbreviations: LRR, locoregional recurrence.
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based only on radiomic features (AUC 0.69, 
P=0.016) or radiomics + SMOTEENN (AUC 0.73, 
P=0.019) (Figure S1). Furthermore, the radio- 
mics + clinicopathological + SMOTEENN model 
exhibited a high sensitivity (SENS=81.8%) and 
specificity (SPEC=82.3%) in predicting DFS 
events in TNBC patients (Table 5).

Performance of machine learning radiomics in 
external validation cohort

To further test the reproductivity of the machine 
learning radiomics model, a cohort with 40 

were evaluated, which could reveal certain bio-
logical features of breast cancer. Thus, re- 
searcher has explored the role of breast ultra-
sound in predictive and prognostic value in 
breast cancer patients. Vandana D et al. report-
ed that pathological features combined with 
sonographic features including well-circum-
scribed oval mass, vascularity and posterior 
enhancement were able to predict Oncotype  
Dx Recurrence Score (r=0.79) with a sensitivity 
of 89% and specificity of 83% [26]. Our previ-
ous study found that the feature of vertical ori-

Table 3. Features of training and independent test cohorts

Variables Training
N=449

Independent test
N=113 P value

Age (yr) ≤55 225 (50.1) 64 (56.6) 0.215
>55 224 (49.9) 49 (43.4)

Menstruation status Pre-/peri- 168 (37.4) 50 (44.2) 0.183
Post- 281 (62.6) 63 (55.8)

Breast surgery BCS 177 (39.4) 38 (33.6) 0.257
Mastectomy 272 (60.6) 75 (66.4)

Axillary surgery SLNB 228 (51.1) 51 (46.4) 0.395
ALND 218 (48.9) 59 (53.6)

Pathology type IDC 390 (86.9) 93 (82.3) 0.226
Non-IDC 59 (13.1) 20 (17.7)

Tumor size Mean ± SE 2.6±0.1 2.4±0.1 0.232
≤2 cm 197 (43.9) 49 (43.4) 0.922
>2 cm 252 (56.1) 64 (56.6)

ALN metastases No 330 (73.5) 75 (66.4) 0.131
Yes 119 (26.5) 38 (33.6)

Nuclear grade I-II 73 (16.3) 18 (15.9) 0.991
III 315 (70.2) 80 (70.8)
NA 61 (13.6) 15 (13.3)

Ki-67 (%) Mean ± SE 54.2±1.2 56.2±2.4 0.719
≤30 122 (27.2) 26 (23.0) 0.369
>30 327 (72.8) 87 (77.0)

LVI No 417 (92.9) 98 (86.7) 0.055
Yes 32 (7.1) 15 (13.3)

TNM stage I 163 (36.4) 33 (29.7) 0.383
II 243 (54.2) 65 (58.6)
III 42 (9.4) 13 (11.7)

Chemotherapy No 44 (9.8) 8 (7.1) 0.469
Yes 404 (90.2) 105 (92.9)

Radiotherapy No 194 (43.3) 50 (44.2) 0.916
Yes 254 (56.7) 63 (55.8)

DFS events No 392 (87.3) 102 (90.3) 0.518
Yes 57 (12.7) 11 (9.7)

Abbreviations: DFS, disease-free survival; BCS, breast conserving surgery; SLNB, 
sentinel lymph node biopsy; ALND, axillary lymph node dissection; IDC, invasive ductal 
carcinoma; SE, standard error; ALN, axillary lymph node; NA, not available; LVI, lym-
phatic vascular invasion; TNM, tumor node metastasis.

TNBC patients who under-
went neoadjuvant therapy 
were introduced as the 
external validation cohort. 
As shown in Table S2, 21 
DFS events were observed. 
The Radiomics + clinico-
pathological + SMOTEENN 
model showed an AUC of 
0.84 (95% CI 0.69-0.94), 
with a high sensitivity of 
81.0% (Table 5 and Figure 
5) in the external validation 
cohort.

Discussion

In this current study, we 
established and validated  
a novel machine learning-
based model by combining 
ultrasound radiomics, cli- 
nicopathological features 
and data sampling method 
SMOTEENN for DFS predic-
tion in TNBC patients, whi- 
ch had a high AUC value of 
0.90, exhibiting a signifi-
cant better performance 
than models based only  
on radiomics or resampled 
radiomics features.

Ultrasound is one of the 
most prevailing imaging 
techniques in breast can-
cer screening and diagno-
sis [9]. Traditionally, breast 
ultrasound was recorded 
according to BI-RADS sys-
tem and conventional sono-
graphic features including 
orientation, shape, margin, 
posterior acoustic patterns 
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Figure 4. The boxplots of four representative radiomics features. A. MCAC: Mean of the contrast of the internal 
and external region autocorrelation coefficients. B. SDAR-ACM: Standard deviation of annular region based on ap-
proximation coefficients matrix. C. RB-ACM: Relative brightness between inner region and Annular region based on 
approximation coefficients matrix. D. MCR-ACM: Mean of covariance in ROI based on approximation coefficients 
matrix.

entation in preoperative ultrasound was an 
independently risk factor for inferior disease 
outcome in TNBC patients [12, 13], indicating a 
promising value for conventional sonographic 
features in predicting long-term prognosis. 
However, traditional ultrasound images were 
assessed by radiologists, which may lead to 
relatively large inter-observer variability and 
bad reproducibility [27].

Being able to extract large scales of quantita-
tive features from medical images, radiomics 
has shown great advantages and optimistic 

prospective in translational studies of breast 
cancer [28]. Radiomics studies have focused 
on the roles of radiological features in aiding 
breast cancer diagnosis, characterization, and 
prediction [14, 29]. Our team has established a 
novel automatic radiomics approach which pro-
vided 463 features from conventional breast 
ultrasound images, which demonstrated a 
strong correlation between receptor status and 
molecular subtypes with an AUC of 0.760 (P< 
0.05) [15, 16]. Efforts also have been made in 
predicting disease outcomes with radiomics. 
Hyunjin Park et al. constructed a nomogram 
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Table 4. Performance comparisons among different classifiers of Radiomics
Classifiers Dataset AUC ACC (%) SENS (%) SPEC (%)
Naive Bayes Training 0.61 84.4 13.9 94.6

Independent-test 0.69 81.5 18.2 67.6
SVM Training 0.58 87.3 0.0 100.0

Independent-test 0.63 89.4 0.0 99.0
Decision Tree Training 0.48 74.2 10.5 83.4

Independent-test 0.49 81.4 9.1 89.2
Bagging Training 0.61 83.5 8.8 94.4

Independent-test 0.66 88.5 18.2 96.1
RUS Boost Training 0.58 69.3 36.7 74.0

Independent-test 0.56 76.1 18.2 82.4
Abbreviations: AUC, areas under curve; ACC, accuracy; SENS, sensitivity; SPEC, specificity; SVM, support vector machines; RUS, 
random under-sampling.

Table 5. Performance of different models in predicting DFS events for TNBC
Models Dataset AUC ACC (%) SENS (%) SPEC (%)
US only T 0.61 [0.55, 0.67] 84.4 [81.4, 87.4] 13.9 [9.9, 17.9] 94.6 [91.5, 97.8]

I-T 0.69 [0.60, 0.78] 81.5 [73.1, 88.2] 18.2 [39.0, 94.0] 67.6 [57.7, 76.6]
E-V 0.51 [0.35, 0.67] 45.0 [29.3, 61.5] 9.5 [1.2, 30.4] 84.2 [60.4, 96.6]

CP only T 0.67 [0.54, 0.80] 84.0 [80.5, 87.5] 20.8 [7.1, 34.4] 93.1 [89.3, 96.9]
I-T 0.79 [0.70, 0.86] 88.5 [81.1, 93.7] 54.5 [23.4, 83.3] 93.1 [86.4, 97.2]
E-V 0.70 [0.54, 0.84] 57.5 [40.9, 73.0] 42.9 [21.8, 66.0] 73.7 [48.8, 90.9]

US + CP T 0.65 [0.54, 0.75] 84.6 [79.4, 89.9] 25.6 [4.2, 47.0] 93.1 [89.0, 97.3]
I-T 0.86 [0.78, 0.92] 91.3 [84.5, 95.8] 63.6 [30.8, 89.1] 95.1 [88.9, 98.4]
E-V 0.77 [0.61, 0.89] 65.0 [48.3, 79.4] 81.0 [58.1, 94.6] 47.4 [54.5, 71.1]

US + SMOTEENN T 0.84 [0.82, 0.86] 73.1 [69.8, 76.4] 83.5 [80.4, 86.6] 70.1 [65.9, 74.3]
I-T 0.73 [0.64, 0.81] 59.3 [49.6, 68.4] 90.9 [58.7, 99.8] 54.90 [44.7, 64.8]
E-V 0.70 [0.54, 0.84] 55.0 [38.5, 70.7] 33.3 [14.6, 57.0] 79.0 [54.4, 94.0]

CP + SMOTEENN T 0.81 [0.76, 0.85] 73.1 [69.8, 76.4] 47.8 [41.5, 54.2] 90.6 [86.6, 94.7]
I-T 0.80 [0.72, 0.87] 88.5 [81.1, 93.7] 54.5 [23.4, 83.3] 93.1 [86.4, 97.2]
E-V 0.79 [0.64, 0.91] 65.0 [48.3, 79.4] 81.0 [58.1, 94.6] 47.4 [24.5, 71.1]

US + CP + SMOTEENN T 0.86 [0.84, 0.88] 76.5 [72.2, 80.9] 74.7 [68.4, 81.0] 80.1 [78.0, 82.2]
I-T 0.90 [0.83, 0.95] 82.3 [74.0, 88.8] 81.8 [48.2, 97.7] 82.3 [73.6, 89.2]
E-V 0.84 [0.69, 0.94] 77.5 [61.6, 89.2] 81.0 [58.1, 94.6] 73.7 [48.8, 90.9]

Abbreviations: US, ultrasound; CP, clinicopathological; AUC, areas under curve; ACC, accuracy; SENS, sensitivity; SPEC, specific-
ity; T, Training; I-T, Independent-test; E-V, external-validation; DFS, disease-free survival.

combining MRI radiomics and clinicopathologi-
cal features to successfully estimate DFS for 
breast cancer patients with a C index of 0.76 
[30]. Similarly, a radiomic signature based on 
MRI developed by Yunfang Yu et al. managed to 
predict 3-year DFS with an AUC of 0.73 in vali-
dation cohort [31]. However, most of the cur-
rent studies focused on MRI, whether ultra-
sound radiomics could predict prognosis for 
breast cancer patients still lack convincing evi-
dences. In current study, we used 20 radiomics 
features to build a model in TNBC patients, 

which found with a moderate accuracy with 
AUC value 0.61-0.69 in DFS events prediction 
which mainly due to relatively low incidence of 
DFS events, indicating that a new algorithm 
needs to be investigated to overcome class 
imbalance.

In this current study, SMOTEENN, a hybrid sam-
pling method to optimize the imbalanced posi-
tive classification, was applied to predict dis-
ease outcome. In addition, as studies have 
revealed that molecular subtypes of breast 
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cancer may have an impact on signatures of 
ultrasound radiomics [32, 33], we focused on 
the TNBC in current study to avoid the interfer-
ence of radiological heterogeneity. We found 
that the model combining ultrasound radio- 
mics, clinicopathological features, and data 
sampling method SMOTEENN had a signifi- 
cantly higher AUC (0.90) value compared with 
models based on radiomics only (AUC=0.69) or 
radiomics + SMOTEENN (AUC=0.73) in the 
independent test cohort, indicating data sam-
pling method SMOTEENN could significantly 
improve the predictive performance of ultra-
sound radiomics in predicting DFS events. To 
our knowledge, this is the first study that estab-
lished a machine learning-based radiomics 
model based on preoperative ultrasound and 
data sampling method to in predict DFS in 
TNBC patients.

In our study, a total of 20 radiomics features 
were selected. Briefly, the spiculation of the 
tumor was selected from the morphological 
features, which quantifies the degree of irregu-
larity and roughness of the tumor boundary. 
Roughness of the tumor boundary could imply 
that the tumor has invaded surrounding tissue 
[34] and thus could be associated with poor 
survival. The wavelet features were calculated 
from the histogram-based and texture features 
of the single-level discrete 2-D wavelet trans-
form. The low-frequency information features 
of the ultrasound image were extracted, as well 
as the high-frequency information features in 
the horizontal, vertical, and diagonal directions. 
15 of the 20 selected features were obtained 

from the wavelet transformed images, which 
indicate the importance of radiomics that they 
redisplay the texture characters and show dis-
criminative ability [16, 35].

Our study has several strengths. First of all, this 
is the first and largest study to predict long-
term prognosis based on machine learn- 
ing ultrasound radiomics in TNBC patients. 
Notably, our integrated model showed a stable 
performance and promising potency with a 
highest AUC of 0.90. Secondly, to overcome  
the possible imbalance caused by relatively 
few events, the hybrid sampling method 
‘SMOTEENN’ was innovatively introduced to  
our machine learning radiomics model. Last 
but not least, compared with other examina- 
tion methods as MRI and tomography, ultra-
sound was more approachable and affordable 
in clinical practice. Thus, our machine learning 
model based on sonographic radiomics tended 
to have a broader application scenario, which 
showed potential in risk stratification and preci-
sion medicine for TNBC patients.

Several limitations have to be mentioned in our 
study. Firstly, the study was based on a retro-
spectively enrolled cohort within a single cen-
ter, which may unavoidably bring selection bias 
to the analysis. Secondly, the number of DFS 
events was relatively small due to the early 
diagnosis and standardized treatment of  
TNBC, indicating that a prospectively designed 
study in larger cohorts with longer follow-up 
time is warranted to further validate the perfor-
mance of our integrated model. Thirdly, due to 

Figure 5. ROC curves of different prognostic models based on Naïve Bayes Classifier in independent test and 
external validation cohort. ROC curves of 6 different Machine Learning Models in (A) the independent test cohort 
and (B) the external validation cohort were demonstrated and compared.
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the lack of available data, novel prognostic bio-
markers as tumor infiltrating lymphocytes 
(TILs), which may further increase efficacy of 
the model, were unable to be taken into model-
ing. Last but not least, TNBC can be further 
divided into several classifications based on 
genomic expression level [6, 36], including 2 
basal-like, immunomodulatory, mesenchymal, 
mesenchymal stem-like and luminal androgen 
receptor subtypes. The accuracy of machine 
learning radiomics in these certain subtypes 
was not known, which needs further evalua- 
tion.

Conclusion

Novel machine learning-based radiomics of 
preoperative ultrasound combined with clinico-
pathological features can predict DFS in TNBC 
patients, warranting further studies validation. 
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Table S1. Radiomics features involved in machine learning radiomics
No. Feature categories Feature names
1 Morphological Spiculation
2 Histogram-based Median absolute deviation
3 Texture Mean of the contrast of the internal and external region autocorrelation coefficients
4 Mean of contrast in ROI
5 Mean of covariance in ROI
6 Wavelet Standard deviation of annular region based on approximation coefficients matrix
7 Relative brightness between Inner region and annular region based on approximation 

coefficients matrix
8 Standard deviation of contrast in ROI based on approximation coefficients matrix
9 Mean of covariance in ROI based on approximation coefficients matrix
10 Standard deviation of covariance in ROI based on approximation coefficients matrix
11 Energy base on horizontal detail coefficients
12 Skewness based on horizontal detail coefficients
13 Histogram skewness based on horizontal detail coefficients
14 Variance contrast of Inside and outside based on horizontal detail coefficients
15 Energy base on vertical detail coefficients
16 Relative brightness between inner region and annular region based on diagonal detail 

coefficients
17 Sum variance based on diagonal detail coefficients
18 Information measure of correlation 1 based on diagonal detail coefficients
19 High gray based on diagonal detail coefficients
20 High gray-Level Zone Emphasis based on diagonal detail coefficients
Abbreviation: ROI, region of interest.

Figure S1. Comparison between different predictive models in independent test cohort. The difference between 
areas and p value of Delong’s test of each two machine learning models was demonstrated. For difference between 
areas, the largest difference was painted for deep blue while minimum for white. P values with significant impor-
tance were painted as pink. Abbreviations: US, ultrasound; CP, clinicopathological; AUC, areas under curve.
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Table S2. Clinicopathological features of external validation cohorts
Variables Number (%)
Age (yr) ≤55 24 (60.0)

>55 16 (40.0)
Menstruation status Pre-/peri- 18 (45.0)

Post- 22 (55.0)
Breast surgery BCS 5 (12.5)

Mastectomy 35 (87.5)
Axillary surgery SLNB 5 (12.5)

ALND 35 (87.5)
Tumor size Mean ± SE 2.9±0.3

≤2 cm 18 (45.0)
>2 cm 22 (55.0)

ALN metastases No 12 (30.0)
Yes 28 (70.0)

Nuclear grade I-II 10 (25.0)
III 25 (62.5)
NA 5 (12.5)

Ki-67 (%) Mean ± SE 54.2±1.2
≤30 16 (40.0)
>30 24 (60.0)

LVI No 32 (80.0)
Yes 8 (20.0)

DFS events No 19 (47.5)
Yes 21 (52.5)

Abbreviations: DFS, disease-free survival; BCS, breast conserving surgery; SLNB, sentinel lymph node biopsy; ALND, axillary 
lymph node dissection; IDC, invasive ductal carcinoma; SE, standard error; ALN, axillary lymph node; NA, not available; LVI, 
lymphatic vascular invasion; TNM, tumor node metastasis.


