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Colorectal cancer extracellular  
acidosis decreases immune cell killing  
and is partially ameliorated by pH-modulating  
agents that modify tumor cell cytokine profiles
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Abstract: Tumor cells upregulate myriad proteins that are important for pH regulation, resulting in the acidification 
of the extracellular tumor microenvironment (TME). Abnormal pH is known to dampen immune function, resulting 
in a worsened anti-tumor immune response. Understanding how extrinsic alterations in pH modulate the interac-
tions between immune cells and tumors cells will help elucidate opportunities for new therapeutic approaches. We 
observed that pH impacts the function of immune cells, both natural killer (NK) and T cells, which is relevant in the 
context of a highly acidic TME. Decreased NK and T cell activity was correlated with decreasing pH in a co-culture 
immune cell-mediated tumor cell-killing assay. The addition of pH-modulating drugs cariporide, lansoprazole, and 
acetazolamide to the co-culture assay was able to partially mitigate this dampened immune cell function. Treatment 
of colorectal cancer (CRC) cells with NHE1 inhibitor cariporide increased CRC cell-secreted cytokines involved in 
immune cell recruitment and activation and decreased cytokines involved in epithelial-mesenchymal transition 
(EMT). Cariporide treatment also decreased CRC cell shed TRAIL-R2, TRAIL-R3, and PD-L1 which is relevant in the 
context of immunotherapy. These experiments can help inform future investigations into how the pH of the tumor 
microenvironment may be extrinsically modulated to improve anti-tumor immune response in solid tumors such as 
colorectal cancer.
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Introduction

Tumor cells upregulate proteins that regulate 
pH resulting in acidification of the extracellular 
tumor microenvironment. This acidosis of the 
TME contributes to invasion, progression, and 
therapeutic resistance in cancer [1-3]. Tissue 
acidosis is commonly observed in solid tumors 
and results in an extracellular pH range of 6.0 
to 7.0. Extracellular acidosis disrupts immune 
cell activation and dampens immune function 

which can result in a worsened anti-tumor 
immune response [4]. This deteriorated anti-
tumor immune response is partially due to 
decreased cytotoxic ability of CD8+ cytotoxic T 
lymphocytes [5, 6] as well as natural killer (NK) 
cells [7-10]. By contrast, TME pH modulation 
has been shown to reverse anergy in tumor-
infiltrating T lymphocytes [4, 11, 12]. Under- 
standing how alterations in pH modulate the 
interactions between immune cells and tumors 
cells could help elucidate opportunities for new 
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therapeutic approaches. This is particularly rel-
evant in the context of checkpoint blockade 
therapy, as it has been shown that manipula-
tion of pH in combination with immune check-
point blockade may improve anti-tumor immune 
response [13].

There exist several mechanisms for pH regula-
tion within the cell including monocarboxylate, 
bicarbonate, and proton transporters [14]. 
Here, we examined several therapeutics that 
have the ability to regulate pH including caripo-
ride, lansoprazole, and acetazolamide. Cari- 
poride is a potent Na+/H+ exchanger isoform 1 
(NHE1) inhibitor [15]. The Na+/H+ exchanger is 
a ubiquitously expressed plasma membrane 
protein that exchanges Na+ for H+ to regulate 
pH homeostasis, as has been shown to play a 
role in transformation and cancer progression 
[12]. Although there are ten identified isoforms 
of NHE, the NHE1 isoform is the main isoform 
of the exchanger. NHE1 activity is primarily 
stimulated by intracellular acidosis [16] and 
hypoxia [17, 18]. Increased NHE1 activity 
results in increased intracellular pH and 
decreased extracellular pH, therefore, pharma-
cologic inhibition of NHE1 is an emerging anti-
cancer strategy. Preclinical activity of caripo-
ride has been demonstrated across multiple 
cancer types [15, 19, 20]. In doxorubicin-resis-
tant colon cancer cells NHE activity is increas- 
ed, and inhibition of NHE1 was able to reverse 
doxorubicin resistance [21]. Moreover, biopsies 
of colonic adenocarcinomas and colon tissues 
from patients with colorectal cancer showed 
that net acid extrusion is increased in colon 
cancer crypts, and that treatment with caripo-
ride significantly decreased net acid extrusion 
[22].

Proton pump inhibitors (PPIs) like lansoprazole 
are also being considered in the context of can-
cer treatment to target TME acidosis, and have 
shown significant preclinical activity in regards 
to the prevention of metastasis [23], chemo-
sensitization [24, 25], and induction of apopto-
sis [26]. Lansoprazole selectively inhibits the 
membrane enzyme H+/K+ ATPase [27] and has 
been shown to prevent cancer cell binding to 
extracellular matrix (ECM) components includ-
ing laminin, fibronectin, and type IV collagen 
[28]. Furthermore, lansoprazole was able to 
prevent the formation of lung metastases by 
murine colon cancer cells [12]. PPIs also sensi-

tize cancer cells to chemotherapeutic agents 
5-fluorouracil, cisplatin, and vinblastine and 
result in a significant increase in cytoplasmic 
retention of these drugs [29]. Moreover, be- 
cause PPIs like lansoprazole are weak bases, 
the activated, protonated form of these cyto-
toxic agents preferentially accumulates in the 
acidic TME [30].

A third class of pH-modulating drugs that may 
be used to target hypoxic or acidic tumors 
include carbonic anhydrase inhibitors such as 
acetazolamide [31]. Carbonic anhydrase IX 
(CAIX) is a metalloenzyme that catalyzes the 
reversible reaction and interconversion of car-
bon dioxide and water to carbonic acid, pro-
tons, and bicarbonate ions [32]. CAIX expres-
sion is correlated with poor prognosis in multi-
ple tumor types including breast cancer [33], 
ovarian cancer [34], and bevacizumab-treated 
patients with metastatic colorectal cancer [35].

Materials and methods

Cell culture and reagents

Human colorectal cancer cell lines SW480, 
HCT-116, HT-29, and KM12C were used in  
this study. SW480 cells were cultured in 
Dulbecco’s Modified Eagle Medium (DMEM) 
supplemented with 10% FBS and 1% Peni- 
cillin-Streptomycin. HCT-116 and HT-29 were 
cultured in McCoy’s 5A (modified) Medium sup-
plemented with 10% FBS and 1% Penicillin-
Streptomycin. KM12C cells were cultured in 
Eagle’s Minimal Essential Medium Supple- 
mented with 10% FBS and 1% Penicillin-
Streptomycin. TALL-104 cells (CD2+; CD3+; 
CD7+; CD8+; CD56+; CD4-; and CD16-) were 
purchased from ATCC and were cultured in 
RPMI-1640 containing 20% FBS, 2 mmol/L  
glutamine, 100 U/mL penicillin, and 100 µg/
mL streptomycin. Recombinant human IL-2 
(Miltenyi cat# 130-097744) with a final con- 
centration of 100 units/mL was added to the 
TALL-104 culture media. NK-92 cells were cul-
tured in Alpha Minimum Essential Medium 
without ribonucleosides and deoxyribonucleo-
sides but with 2 mM L-glutamine and 1.5 g/L 
sodium bicarbonate supplemented with 0.2 
mM inositol; 0.1 mM 2-mercaptoethanol; 0.02 
mM folic acid; 100 U/mL recombinant IL-2, 
12.5% horse serum, and 12.5% FBS. All cell 
lines were incubated at 37°C in humidified 
atmosphere containing 5% CO2. Cell lines were 
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authenticated and tested to ensure the cul-
tures were free of mycoplasma infection.

Measurement of cell viability

Cells were plated at a density of 3×103 cells  
per well in a 96-well plate (Greiner Bio-One, 
Monroe, NC, USA). Cell viability was assessed 
using the CellTiter-Glo assay (Promega, Madi- 
son, WI, USA). Cells were mixed with 25 μL of 
CellTiter-Glo reagents in 100 μL of culture vol-
ume, and bioluminescence imaging was mea-
sured using the Xenogen IVIS imager (Caliper 
Life Sciences, Waltham, MA).

Cytokine, chemokine, and growth factor profil-
ing

Colorectal cancer cells (HCT-116, HT-29, 
KM12C) were treated with cariporide at indi-
cated doses and cancer cell culture superna-
tants were collected and analyzed using a 
Luminex 200 multiplexing instrument. An R&D 
systems Human Premixed Multi-Analyte Kit 
(R&D Systems, Inc., Minneapolis, MN) was run 
on a Luminex 200 Instrument (LX200-XPON-
RUO, Luminex Corporation, Austin, TX) accord-
ing to the manufacturer’s instructions. Cell  
culture supernatant levels of TNF-alpha, IL-6, 
IL-8/CXCL8, Ferritin, IFN-beta, IL-10, CCL2/JE/
MCP-1, VEGF, CXCL13/BLC/BCA-1, IFN-gam- 
ma, CCL20/MIP-3 alpha, CCL3/MIP-1 alpha, 
CCL22/MDC, CCL4/MIP-1 beta, IL-4, IL-17/
IL-17a, TRAIL R2/TNFRSF10B, GM-CSF, CXCL5/
ENA-78, CXCL9/MIG, G-CSF, CXCL11/I-TAC, 
Granzyme B, CCL5/RANTES, Prolactin, IFN-
alpha, CXCL14/BRAK, IL-12/IL-23 p40, CX- 
CL10/IP-10/CRG2, CCL7/MCP-3/MARC, IL-7, 
CCL8/MCP-2, TRANCE/TNFSF11/RANK L, IL- 
15, TRAIL R3/TNFRSF10C, CCL11/Eotaxin, 
IL-18/IL-1F4, TRAIL/TNFSF10, IL-21, and C- 
Reactive Protein/CRP were measured.

Immune cell co-culture experiments

Co-culture experiments were conducted with 
target GFP+ SW480 or HCT-116 colorectal  
cancer cells and either NK-92 natural killer or 
TALL-104 T effector cells at various pHs in a 
48-well plate. Manipulation of pH occurred 
using the compounds lactic acid and sodium 
bicarbonate. Ethidium homodimer was used as 
a marker of cell death. Target or effector cells 
were labeled using CellTracker™ Green CMFDA 
or CellTracker™ Blue CMAC Dyes (Thermo 

Fisher Scientific, Waltham, MA, USA). Images 
were quantified using Fiji Image J software [36].

Statistics

A one-way Anova was used to determine statis-
tical significance of groups of three or more  
and a post-hoc Tukey’s multiple comparisons 
test was used for multiple comparisons. 
Significance is reported as follows: *P≤0.05, 
**P≤0.01, and ***P≤0.001.

Results

Immune cell function decreases with decreas-
ing pH of culture media

To determine how pH modification impacts 
immune cell-mediated killing of tumor cells,  
co-culture experiments were conducted with 
GFP+ SW480 colorectal cancer cells and either 
natural killer (NK-92) cells or T (TALL-104) cells 
at pH 7.7, 7.0, and 6.0. We observed that both 
NK-92 cells and TALL-104 cells exhibited 
decreasing amounts of cell killing in response 
to decreasing pH regardless of treatment con-
dition (Figure 1).

Cariporide, lansoprazole, and acetazolamide 
treatment increases immune-cell mediated 
tumor cell killing at pH 6.0

Next, to determine if therapeutic manipulation 
of pH via alteration of pH pump activity could 
overcome the decrease in immune cell activity 
associated with pH, we added cariporide, lan-
soprazole, and acetazolamide monotherapy or 
combination therapy to the co-culture experi-
ments. Treatment with all three of the drugs 
increased natural killer cell-mediated tumor 
cell-killing when the cell culture media was 
adjusted to a pH of 6.0 (Figure 2). We observ- 
ed the most significant single-agent activity 
when acetazolamide was added to the co- 
culture experiments. In contrast, cariporide 
showed the least significant increase over 
baseline natural killer cell-mediated tumor cell 
killing. Two doses of each drug were used,  
and interestingly, we consistently observed 
improved tumor cell death across most of the 
treatment groups using the 10 µM low-dose, as 
compared to the 50 µM high-dose, in both  
single and combination treatment groups. 
Combinations of therapeutics differentially 
impacted immune cell killing of tumor cells with 
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Figure 1. Natural killer and T cell killing of SW480 colon cancer cells decreases with reduced cell culture media pH. 
(A) Co-culture of GFP+ SW480 colon cancer cells and either NK-92 or TALL-104 cells with or without 5 µM cariporide 
treatment. 24-hour timepoint and 10× magnification. Ethidium homodimer was used to visualize dead cells. Scale 
bar indicates 100 µm. (B) Quantification of (A). (C) 4× magnification shows T cell clustering with and without 5 µM 
cariporide treatment. 24-hour timepoint. Ethidium homodimer was used to visualize dead cells. Scale bar indicates 
500 µm.
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Figure 2. Treatment of HCT-116 colorectal cancer cells with pH-modulating agents increases natural killer cell-
mediated killing. Co-culture of HCT-116 colon cancer cells and NK-92 cells with designated drugs using a cell culture 
media pH of 6.0. A 1:1 effector: target cell ratio was used. “C”: Cariporide. “L”: Lansoprazole, “A”: Acetazolamide. 
24-hour timepoint and 10× magnification. Ethidium homodimer was used to visualize dead cells. Scale bar indi-
cates 100 µm. (A) Single treatment results and (B) combination treatment results. (C) Quantification of images in 
(A and B).
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the most significant upregulation of tumor cell 
death observed with the cariporide plus lanso-
prazole combination low-dose treatment and 
the lansoprazole plus acetazolamide low-dose 
treatment. The percentage of dead cells out of 
total cells did not significantly increase in the 
combination therapy groups as compared to 
the single-treatment groups. Treatment doses 
up to 100 µM did not impact tumor cell viability 
(Supplementary Figure 1).

Next, we observed similar trends when we co-
cultured T cells and colorectal cancer cells 
using a culture media with an adjusted pH of 
6.0 (Figure 3). Again, we observed the most sig-
nificant single agent activity with acetazol-
amide. Interestingly, combination treatment 
groups did not provide an advantage over sin-
gle treatment with cariporide, lansoprazole, or 
acetazolamide at low concentrations.

Cariporide, lansoprazole, and acetazolamide 
treatment differentially modulates immune-
cell mediated tumor cell killing at pH 7.0 and 
7.7

We observed similar trends for natural killer 
cell-mediated tumor cell killing using a culture 
media pH of 7.0 (Supplementary Figure 2) and 
7.7 (Supplementary Figure 3). At pH 7.7, we 
once again observed the greatest single agent 
activity with lansoprazole treatment. We 
observed the highest overall percentage of 
dead cells in the triple therapy combination 
group at the low dose. Once again, we observed 
the lowest single agent activity from the caripo-
ride only treatment group. At pH 7.0, we 
observed the highest single agent activity with 
the acetazolamide only group and the lowest 
with the cariporide only group. The most effec-
tive combinatorial group was the cariporide 
plus lansoprazole group.

Moreover, we observed similar trends for T cell-
mediated tumor cell killing using a culture 
media of 7.0 (Supplementary Figure 4) and 7.7 
(Supplementary Figure 5). Again, the acetazol-
amide only treatment group had the highest 
single agent activity and the cariporide only 
group had the least amount of activity in terms 
of the promotion of immune cell-mediated 
tumor cell death at pH 7.7. Interestingly, the 
high concentration, triple therapy group showed 
the largest amount of tumor cell death. At pH 
7.0, acetazolamide again showed the largest 

single-agent activity. Lansoprazole treatment 
alone had the lowest amount of tumor cell 
death. We again observed that the high-dose, 
triple therapy group showed the highest amount 
of tumor cell death.

Cariporide treatment modifies cytokine, che-
mokine, and growth factor profiles; results are 
heterogeneous across cell lines

Given the importance of cell signaling on 
immune function, and because we saw signifi-
cant changes in immune killing with the pH-
modulating agents tested, we then evaluated 
how cariporide treatment impacts the colorec-
tal cancer cell secretome (Figure 4). Our cus-
tom cytokine, chemokine, and growth factor 
profiling panel was designed specifically to 
monitor analytes involved in immunomodula-
tion in the context of colorectal cancer (Figure 
5) [37-41]. We utilized HCT-116 cells, as used in 
the co-culture experiments, and also analyzed 
two other colorectal cancer cell lines (HT-29 
and KM12C) in order to evaluate potential he- 
terogeneity of response based on different cell 
line genetic backgrounds (Figure 4). Inte- 
restingly, in HCT-116 cells treated with caripo-
ride, Interleukin-6 (IL-6) was the only analyte 
that increased. Analytes that decreased post-
treatment included CCL3/MIP-1 alpha, vascu-
lar endothelial growth factor (VEGF), CXCL9/
MIG, macrophage-colony stimulating factor 
(M-CSF), Prolactin, Interleukin-8 (IL-8/CXCL8), 
soluble tumor necrosis factor-related apop- 
tosis inducing ligands receptor 2 (sTRAIL-R2), 
CXCL13/BLC/BCA-1, soluble tumor necrosis 
factor-related apoptosis inducing ligand recep-
tor 2 (sTRAIL-R3), granulocyte-macrophage col-
ony-stimulating factor (GM-CSF), Interleukin-2 
(IL-2), soluble programmed death-ligand 1 
(sPD-L1), C-reactive protein (CRP), and interfer-
on-beta (IFN-beta). In HT-29 cells we saw 
increases in VEGF, prolactin, CXCL13/LBC/
BCA-1, CXCL11/I-TAC, tumor necrosis factor 
alpha (TNF alpha), and IL-6. In contrast, we 
observed decreases in IL-8/CXCL8, Interferon 
gamma-induced protein 10 (CXCL10/IP-10), 
sTRAIL-R2, IL-2, Regulated upon Activation, 
Normal T Cell Expressed and Presumably 
Secreted (CCL5/RANTES), TNF-related activa-
tion-induced cytokine (TRANCE), sPD-L1, inter-
feron-alpha (IFN-alpha), sTRAIL-R3, CRP, IFN-
beta, and GM-CSF. In the third cell line we test-
ed, KM12C, we observed increases in VEGF, 
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Figure 3. Treatment of HCT-116 colorectal cancer cells with pH-modulating agents increases T cell-mediated kill-
ing. Co-culture of HCT-116 colon cancer cells and TALL-104 cells with designated drugs using a cell culture media 
pH of 6.0. A 1:1 effector: target cell ratio was used. “C”: Cariporide. “L”: Lansoprazole, “A”: Acetazolamide. 24-hour 
timepoint and 10× magnification. Ethidium homodimer was used to visualize dead cells. Scale bar indicates 100 
µm. (A) Single treatment results and (B) combination treatment results. (C) Quantification of images in (A and B).
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Figure 4. Cytokine, chemokine, and growth factor profiles of colorectal cancer cell lines treated with cariporide show heterogeneous responses. (A) HCT-116 (B) HT-
29 and (C) KM12C cells were treated with cariporide for 48 hours and cell culture supernatant was analyzed. Slopes of the dose-response linear regression were 
used to create heat maps.



Therapeutic modulation of pH in TME

146	 Am J Cancer Res 2022;12(1):138-151

IL-8/CXCL8, CXCL14/BRAK, Interleukin-18 (IL-
18), sTRAIL-R2, CXCL5/ENA-78, TRANCE, pro-
lactin, M-CSF, CCL11/Eotaxin, GM-CSF, sTRAIL-
R3, sPD-L1, and CRP. Future experiments will 
characterize how lansoprazole and acetazol-

tant for the migration [42] and activation [43] of 
CD8+ T lymphocytes as well as the recruitment 
of natural killer cells [44]. Moreover, CXCL11 is 
an independent prognostic biomarker and high 
CXCL11 expression is correlated with antitumor 

Figure 5. Cytokine, chemokine, and growth factors modified post-cariporide 
treatment are involved in immunomodulation and epithelial mesenchymal 
transition. Analytes were indicated as belonging to the following categories: 
(1) immunostimulatory/favorable colorectal cancer (CRC) prognosis, (2) Im-
munosuppressive/unfavorable CRC prognosis, and (3) markers of epithelial 
mesenchymal transition (EMT). The heatmap indicates the dose-response 
linear regression slope of each cell line (HCT-116, HT-29, and KM12C) post-
cariporide treatment. Color Key: Red indicates a positive slope, white indi-
cates a slope of zero, and blue indicates a negative slope.

amide treatment impacts the 
colorectal cancer cell cyto- 
kinome.

Discussion

We observed that pH impacts 
the function of immune cells 
which is relevant in the con-
text of a highly acidic TME.  
We observed that treatment 
of colon cancer and immune 
cell co-cultures with several 
pH-modulating agents incre- 
ased immune-cell mediated 
tumor cell-killing. We observ- 
ed heterogenous responses 
in tumor cell death in the dou-
ble- and triple-combination 
treatment groups. Therapeutic 
modification of TME pH using 
pH-modulating agents such 
as cariporide, lansoprazole, or 
acetazolamide may be a way 
to improve anti-tumor immune 
response in solid tumors. 
These types of pH-modulat- 
ing therapies may also have 
applicability in the context  
of immunotherapies such as 
immune checkpoint blockade 
with anti-PD-1 or anti-PD-L1. 
Further in vitro and in vivo 
studies are needed to support 
these hypotheses.

We observed that cariporide 
treatment increases colorec-
tal cancer cell-secreted cyto-
kines that are involved in 
immune cell recruitment and 
activation. Analytes that in- 
creased post-cariporide treat-
ment in at least two out of  
the three cell lines that are 
known to be immunostimula-
tory include CXCL11, TNF-
alpha, IL-6, and prolactin. The 
CXCL11-CXCR3 axis is impor-
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immunity in patients with colon adenocarcino-
ma [45]. Furthermore, TNF-alpha enhances NK 
cell cytotoxicity [46], T cell proliferation [47], 
and T cell activation [48]. Next, IL-6, a pleo-
tropic cytokine, has been shown to promote T 
cell activation and proliferation [49], but has 
been shown to inhibit NK cell cytotoxicity [50]. 
Lastly, prolactin is an immunomodulatory hor-
mone which increases NK cell cytotoxicity [51] 
and promotes T cell proliferation and activa- 
tion [52]. The increases we noted in these 
immunostimulatory cytokines may help explain 
the results we observed in the co-culture sys-
tem. However, it should be noted that many of 
these cytokines, chemokines, and growth fac-
tors have pleotropic roles in the tumor microen-
vironment and changes in their individual 
expression levels may not be predictive of 
immunoregulation or EMT in a biological 
system.

Cariporide treatment also decreased CRC cell-
secreted cytokines that are commonly involved 
in immunosuppression and epithelial mesen-
chymal transition. Analytes that decreased 
post-cariporide treatment in at least two out of 
the three cell lines tested that have previously 
characterized immunosuppressive roles in the 
context of colorectal cancer included M-CSF, 
TNF-alpha, IL-8/CXCL8, CXCL13/BLC/BCA-1, 
GM-CSF, IL-10, and CRP. M-CSF is a hemato- 
poietic growth factor that is frequently elevated 
in cancer patients. Interestingly, in patients 
with colorectal cancer, elevated serum M-CSF 
levels are correlated with increased lymph 
node metastasis and poor prognosis [53]. 
Overexpression of TNF-alpha, an inflammatory 
cytokine, is correlated with advanced colorec-
tal cancer stages and is well known to activate 
transcription factors that induce EMT [39, 54]. 
Additionally, the chemoattractant cytokine IL-8 
is upregulated in colon cancer tissue compared 
with normal adjacent colonic tissue and IL-8 
expression in CRC cancer stem cells is regulat-
ed by the EMT activator protein SNAIL [55]. 
Moreover, CXCL13/BLC/BCA-1 is an inflamma-
tory factor that plays a role in colorectal cancer 
growth and invasion via the PI3K/AKT pathway 
[56]. The CXCL13/CXCR5 axis has also been 
shown to regulate the epithelial to mesenchy-
mal transition in breast cancer [57], prostate 
cancer [58], and non-small cell lung carcinoma 
[59]. Next, GM-CSF is a hematopoietic cytokine 
that has been shown to facilitate the develop-

ment of inflammation-associated colorectal 
carcinoma [60]. Similarly, elevated serum lev-
els of IL-10 are also corelated with advanced 
colorectal cancer [61]. Finally, CRP is a liver-
secreted protein that is associated with an 
inflammatory response and plasma CRP con-
centration is a biomarker of colorectal cancer 
[62].

We also observed a significant decrease in 
VEGF secretion when HCT-116 colorectal cells 
were treated with NHE1 inhibitor cariporide. 
VEGF is a potent angiogenic factor upregulated 
by hypoxia and other conditions, and VEGF 
downregulation with NHE1 inhibitors has also 
been observed in other cancer cells [63]. 
Moreover, NHE1 regulation has been implicat-
ed in the metastatic potential of many cancer 
cell types including breast [64], acute lympho-
blastic leukemia [65], gastric, liver, esophageal, 
and cervical cancer [66]. In contrast, VEGF 
increased in HT-29 and KM12C cells post-cari-
poride, indicating a heterogenous cytokine pro-
file response of colorectal cancer cells to treat-
ment and emphasizing the complexity and 
interrelatedness of pathways involved in regu-
lating the cellular response to hypoxia and pH. 
Therapeutic modification of TME pH using pH-
modulating agents such as cariporide, may be 
a way to help prevent EMT in solid tumors with 
certain genetic backgrounds by modifying the 
tumor cell secretome. Future experiments are 
needed to determine which genetic markers 
may be used as biomarkers of response to pH-
modulating therapies in colorectal cancer.

Cariporide treatment decreased sTRAIL-R2, 
sTRAIL-R3, and sPD-L1 in both HCT-116 and 
HT-29 cell lines post-cariporide treatment. 
Interestingly, these analytes all increased in 
the KM12C cell line, again emphasizing the het-
erogeneity in cytokine profile response to cari-
poride treatment. TRAIL-R2 is a tumor cell-
expressed surface receptor involved in the 
apoptotic response upon binding with this cog-
nate ligand, TNF-related apoptosis-inducing 
ligand (TRAIL). The soluble version of TRAIL-R2 
is thought to function as a decoy receptor for 
TRAIL, meaning an increase in sTRAIL-R2 might 
lead to a decrease in the amount of TRAIL that 
binds to the cell surface-bound version of 
TRAIL-R2, thus reducing tumor cell apoptosis. 
Moreover, TRAIL-R3 is a decoy receptor that 
also functions by binding TRAIL, and increased 
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concentrations of sTRAIL-R3 might similarly 
function to decrease the amount of TRAIL that 
binds to tumor cells to mediate apoptosis. The 
soluble versions of these receptors may have 
relevance in the context of TRAIL receptor-tar-
geting monoclonal antibodies which could be 
bound by soluble TRAIL receptors, thus reduc-
ing efficacy of these therapies. Lastly, PD-L1, 
also known as B7 homolog 1 (B7-H1), is a pro-
tein that binds to PD-1 on the surface of lym-
phocytes to inhibit cell activation and prolifera-
tion. The soluble version of PD-L1 presumably 
functions as a decoy receptor in a similar man-
ner that may be predicted to decrease efficacy 
of immunotherapy.

These experiments can help inform future 
investigations into how pH may be extrinsically 
modulated to improve immune cell response, 
possibly in conjunction with conventional che-
motherapeutics, immunotherapies, or other 
treatments for colorectal cancer. Future experi-
ments could also determine if therapeutically-
induced cytokine modulation is pH-dependent 
or independent. Additionally, we are planning 
future experiments to test these pH-modulat-
ing agents in the context of hepatocellular car-
cinoma, a cancer type often treated with local 
therapies such as embolization-based proce-
dures that rely on hypoxia and immune cell infil-
tration for therapeutic effect.
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Supplementary Figure 1. Cell viability results show that NHE1 inhibitor cariporide is non-toxic to immune cell and tu-
mor cell lines selected for analysis at the concentrations used. Colorectal cancer cell lines HCT-116, HT-29, KM12C, 
and SW480 and immune cell lines NK-92 and TALL-104 were treated with doses up to 100 µM of cariporide for 48 
hours.
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Supplementary Figure 2. Treatment of HCT-116 colorectal cancer cells with pH-modulating agents increases natu-
ral killer cell killing at pH 7.0. Co-culture of HCT-116 colon cancer cells and NK-92 cells with designated drugs us-
ing a cell culture media pH of 7.0. A 1:1 effector: target cell ratio was used. “C”: Cariporide. “L”: Lansoprazole, “A”: 
Acetazolamide. 24-hour timepoint and 10× magnification. Ethidium homodimer was used to visualize dead cells. 
Scale bar indicates 100 µm. (A) Single treatment results and (B) combination treatment results. (C) Quantification 
of images in (A and B).
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Supplementary Figure 3. Treatment of HCT-116 colorectal cancer cells with pH-modulating agents increases natu-
ral killer cell killing at pH 7.7. Co-culture of HCT-116 colon cancer cells and NK-92 cells with designated drugs us-
ing a cell culture media pH of 7.7. A 1:1 effector: target cell ratio was used. “C”: Cariporide. “L”: Lansoprazole, “A”: 
Acetazolamide. 24-hour timepoint and 10× magnification. Ethidium homodimer was used to visualize dead cells. 
Scale bar indicates 100 µm. (A) Single treatment results and (B) combination treatment results. (C) Quantification 
of images in (A and B). 
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Supplementary Figure 4. Treatment of HCT-116 colorectal cancer cells with pH-modulating agents increases T cell 
killing at pH 7.0. Co-culture of HCT-116 colon cancer cells and TALL-104 cells with designated drugs using a cell 
culture media pH of 7.0. A 1:1 effector: target cell ratio was used. “C”: Cariporide. “L”: Lansoprazole, “A”: Acetazol-
amide. 24-hour timepoint and 10× magnification. Ethidium homodimer was used to visualize dead cells. Scale bar 
indicates 100 µm. (A) Single treatment results and (B) combination treatment results. (C) Quantification of images 
in (A and B). 
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Supplementary Figure 5. Treatment of HCT-116 colorectal cancer cells with pH-modulating agents increases T cell 
killing at pH 7.7. Co-culture of HCT-116 colon cancer cells and TALL-104 cells with designated drugs using a cell 
culture media pH of 7.7. A 1:1 effector: target cell ratio was used. “C”: Cariporide. “L”: Lansoprazole, “A”: Acetazol-
amide. 24-hour timepoint and 10× magnification. Ethidium homodimer was used to visualize dead cells. Scale bar 
indicates 100 µm. (A) Single treatment results and (B) combination treatment results. (C) Quantification of images 
in (A and B).


