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Abstract: Cuproptosis, a newly discovered mechanism of programmed cell death, is important for detailing the met-
abolic aspects of cancer progression and thereby guiding cancer therapy. An exciting era of translational medicine 
has led to the rapid development of countless immunotherapeutic strategies. The existing successful cancer im-
munotherapies have sparked new hope for patients with solid and hematologic malignancies. Hence, it is important 
to characterize the link between the cuproptosis process and the immunity status in the tumor microenvironment 
(TME) in Lung Adenocarcinoma (LUAD), which may be able to predict patient’s prognosis. In this study, we sys-
tematically assessed 10 cuproptosis-associated genes (CAGs) and comprehensively characterized the relationship 
between cuproptosis and the molecular characteristics and immune cell infiltration of tumor tissue, prognosis and 
clinical treatment of patients. Subsequently, the CAG_score for predicting overall survival (OS) was established and 
its reliable predictive ability in LUAD patients was confirmed. Next, we created a highly reliable nomogram to facili-
tate the clinical viability of the CAG_score. The low CAG_score group, with lower immune cell infiltration, and muta-
tion burden, had a significantly superior OS, which was associated with a better response to immunotherapy. The 
present study revealed that cuproptosis play a significant role in TME regulation in LUAD. Collectively, we identified a 
prognostic CAGs-related signature for LUAD patients. This signature may contribute to clarifying the characteristics 
of TME and enable the exploration of more potent immunotherapy strategies. 
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Introduction

Lung cancer is one of the most malignant 
tumors, mainly divided into small cell lung can-
cer (SCLC) and non-small cell lung cancer 
(NSCLC) [1]. Lung adenocarcinoma (LUAD) is 
the principal subtype of NSCLC, accounting for 
40% of all lung cancer [2, 3]. Although signifi-
cant efforts have been made in early diagnosis, 
immunotherapy, radiotherapy, and targeted 
therapy, the 5-year overall survival rate of LUAD 
patients is still low [4-6]. The difficulty in early 
diagnosis, the tendency to metastasize, and 
molecular differences are the main causes of 
the bad prognosis of LUAD [7, 8]. As a result, it 

is essential to develop effective therapeutic tar-
gets for LUAD and identify new biomarkers for 
improved diagnosis. 

Programmed cell death (PCD) is an important 
biological process during tissue homeostasis 
and animal development [9]. Increasing evi-
dence indicated that PCD including apoptosis, 
ferroptosis, autophagy, and others, play vital 
roles in tumorigenesis, progression as well as 
metastasis [10-12]. A study recently published 
in the journal Science is the first research to 
uncover cuproptosis, as a novel type of PCD, 
differs from ferroptosis and apoptosis in its 
special mechanism that excess intracellular 
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copper induces the aggregation of lipoylated 
dihydrolipoamide S-acetyltransferase (DLAT), 
which is related to the mitochondrial tricarbox-
ylic acid (TCA) cycle, ultimately leading cell 
death [13]. Tsvetkov et al. revealed that copper-
induced cell death requires mitochondrial res-
piration, but ATP from glycolysis has less effect 
on it. Copper does not directly participate in the 
electron transport chain (ETC) and only plays a 
role in the tricarboxylic acid (TCA) cycle. These 
results suggest a strong relationship between 
copper-induced cell death and mitochondrial 
metabolism, implicating a strong link between 
copper and the TCA cycle [13, 14]. Although the 
detailed mechanism underlying the role of 
cuproptosis in tumors is still unclear, the cop-
per ionophore Elesclomol already helped 
patients whose tumors depend on mitochon-
dria for energy. Besides, the researchers also 
identified 10 key genes including FDX1 involved 
in cuproptosis and these genes will provide 
direction for our subsequent analysis. 

Recently, immunotherapy like immune check-
point inhibitors (ICIs), therapeutic antibodies, 
and others, are gradually being widely used in 
the treatment of various cancers, and its effec-
tiveness is being confirmed by more and more 
clinical studies [15, 16]. Although the develop-
ment of ICIs like PD-1, PD-L1 as well as CTLA-4 
has made great breakthroughs, only a small 
percentage of people benefit from it [17, 18]. 
Tumor microenvironment (TME) including infil-
trating immune cells, tumor cells, stromal cells, 
and various factors have gradually been shown 
to be involved in tumor invasive behavior and 
influences tumor response to immunotherapy 
[19, 20]. Many studies have recently demon-
strated the close link between TME and PCDs. 
Wang et al. found that programmed death-
ligand 1 (PD-L1) blockade cause upregulation 
of CD8+ T cells, which release more interferon 
gamma (IFNγ), leading to tumor ferroptosis 
[21]. Liu et al. have developed the ferroptosis 
potential index to clarify the possible mecha-
nism of ferroptosis in many cancers and con-
cluded that ferroptosis is related to TME, 
patient survival, prognosis, and clinical treat-
ment [22]. However, the relationship between 
cuproptosis, TME, and immunotherapy respon- 
se in LUAD is unclear. It is necessary to dig effi-
cient biomarkers that can divide LUAD patients 
into diverse groups and instruct the clinical 
treatment. 

In this study, we analyzed 10 cuproptosis-asso-
ciated genes’ impact on the progression, prog-
nosis, TME, and immunotherapy response of 
LUAD patients from the TCGA and GEO data-
bases. We divided LUAD patients into different 
cuproptosis subgroups and explored the differ-
ence in prognostic significance, molecular char-
acteristics, anti-tumor drug sensitivity, infiltrat-
ing immune cell intensities, and response to 
critical ICBs. In addition, we developed a  
CAG_score-based risk model that predicted 
the clinical outcome and the OS of LUAD 
patients accurately. Our goal is to better eluci-
date the relationship between cuproptosis and 
lung cancer as well as to develop a viable LUAD 
immunotherapy.

Methods

Data acquisition 

The RNA expression data, somatic mutation 
data, CNV files, and clinical information of LUAD 
patients were obtained from TCGA database 
(https://portal.gdc.cancer.gov/). Besides, GSE- 
31210 dataset from GEO database (http://
www.ncbi.nlm.nih.gov/geo/) was utilized to 
acquire clinical parameters and normalized 
gene expression data. Further removed sam-
ples missing important clinical and survival 
information, 736 LUAD and 59 normal samples 
were obtained. In total, 10 CAGs (FDX1, LIAS, 
LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, 
and CDKN2A) were acquired from the previous 
literature [13]. The protein-protein interaction 
(PPI) information was obtained by the STRING 
database (https://string-db.org/). 

Consensus clustering analysis of CAGs

Consensus clustering was employed to define 
distinct cuproptosis-related patterns by the 
k-means algorithms [23]. The number and con-
sistency of clusters were built using the con-
sensus clustering algorithm implemented in 
the R package “ConsensuClusterPlus” [24]. 
Using gene set variation analysis (GSVA) with 
the KEGG gene set (c2.cp.kegg.v7.4), we identi-
fied the functional differences among subclus-
ters according to the CAGs [25].

Relationship among molecular patterns, clini-
cal characters, and TME 

The association between molecular patterns, 
OS, and clinical characteristics including age, 
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gender, pathological stage, survival time, and 
status was investigated to determine the clini-
cal significance of the cluster. K-M analysis was 
applied to evaluate the difference in OS 
between different patterns using R packages 
“survival”. Using the ESTIMATE algorithm to cal-
culate the immune and stromal scores of LUAD 
patients [26]. Besides, we calculated the infil-
trating of immune cells and functions based on 
the CIBERSORT and ssGSEA algorithm [27, 28]. 
We also calculated the association among the 
two subgroups on critical immune checkpoint 
genes (ICPs) expression. 

Identification of DEGs between molecular pat-
terns

We applied the “limma” R package to distin-
guish the differentially expressed genes (DEGs) 
in the cuproptosis subgroups following criteria 
(|log2-fold change (FC)| ≥ 1, P-value < 0.05). 
Based on the DEGs, we applied GO and  
KEGG analysis using the R package “cluster- 
Profile” [29]. To screen functional pathways  
further, GSEA 4.2.1 software was further con-
ducted (http://www.gesa-msigdb.org/gsea/in- 
dex,jsp) [30]. 

Construction of the cuproptosis-associated 
prognostic CAG_score

CAG_score was established to provide a better 
assessment of the prognosis of LUAD patients. 
739 LUAD samples were split into the training 
set (n = 408) and testing set (n = 331) random-
ly. The training set was adopted to construct 
the CAG_score, and the testing set and the 
entire set were further employed to verify the 
accuracy of the established risk model. Based 
on 486 DEGs among cuproptosis clusters, we 
further applied univariate Cox regression analy-
sis to identify survival-associated genes. 
Ultimately, we generated CAG_scores with the 
following formula: CAG_score = gene expres-
sion (1) × coefficient (1) + gene expression (2) × 
coefficient (2) + gene expression (n) × coeffi-
cient (n). LUAD patients were divided into high- 
and low-risk groups according to the optimal 
cut-off value determined by the “survminer” 
package.

Assessment of the prognostic CAG_score and 
establishment of nomogram

K-M analysis was applied to compare the OS 
between high-risk and low-risk groups using 

the R package “survival”. Principal component 
analysis (PCA), as well as t-distributed stochas-
tic neighbor embedding (t-SNE) analyses, were 
used to lessen the dimensions and visualize 
the distinction between the high-risk and low-
risk groups. We further applied univariate and 
multivariate Cox analysis to verify whether 
CAG_score was an independent prognostic fac-
tor using the R package “survival”. Using the R 
package “RMS”, we established a nomogram 
integrated CAG_score as well as other clinico-
pathological characteristics to better predict 
the 1-, 3-, and 5-year OS of LUAD patients. 
Subsequently, the predictive capability of the 
nomogram was evaluated by calibration cur- 
ves, concordance index (C-index), and decision 
curve analysis (DCA). Besides, the Receiver 
operating characteristics (ROC) curve of 1-, 3-, 
and 5-year was drawn to further verify the pre-
dictive power of the established nomogram 
using the R package “timeROC”. 

Exploration of TME and TMB between high- 
and low-risk groups

We explored the infiltrating of immune cells and 
immune functions in the high- and low-risk 
groups using the above methods. In addition, 
Wilcoxon analysis was used to compare 
immune cell levels and infiltrating function 
between the two risk groups. We analyzed 
tumor mutation burden (TMB) using the pack-
age “maftools” [31] and divided all LUAD 
patients into high- and low-TMB groups accord-
ing to the median TMB score. Besides, we cal-
culated the correlation between the risk model 
and TMB using Spearman correlation analysis.

Exploration of immunotherapeutic treatment

To evaluate the clinical performance of immu-
notherapy for LUAD patients in different risk 
groups, we calculated the semi-inhibitory con-
centrations (IC50) for common anti-tumor 
drugs such as cisplatin, paclitaxel, gemcitabine, 
gefitinib, among others, using the R package 
“pRRophetic” [32]. Furthermore, to identify 
potential drugs that can treat LUAD, we identi-
fied many promising compounds obtained from 
the GDSC website (https://www.cancerrxgene.
org/) with significantly different IC50 values 
between the two groups. We further assessed 
the immunophenotype score (IPS) for LUAD 
patients among two subgroups. The results 
were downloaded from the Cancer Imaging 
Archive (TCIA) database (https://tcia.at/home). 
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Statistical analysis

The statistical analyses and data visualization 
were conducted in the R platform, GSEA soft-
ware, and the string website. Student’s t-tests 
were applied to determine the difference 
between the two groups. For the analysis of dif-
ferences between K-M curves, the log-rank test 
was performed. For the above methods of anal-
ysis where no special instructions are given, P < 
0.05 was considered statistically significant.

Results

The landscape of CAGs in LUAD

The flow chart of this study is shown in Figure 1. 
We identified the expression levels of the 10 
CAGs in tumor and normal samples based on 
the TCGA-LUAD dataset. As shown in Figure 2A, 
2B, the expression levels of LIAS, LIPT1, DLD, 
DLAT, PDHA1, PDHB, and CDKN2A were signifi-
cantly upregulated in LUAD samples, whereas 
the expression level of MTF1 and FDX1 were 
downregulated in LUAD samples. Then we 
explored the incidence of CNVs and somatic 
mutations of 10 CAGs in LUAD. Additionally, the 
CNV alteration frequency suggested that alter-
ations were prevalent across all 10 CAGs 
(Figure 2C). Among them, the CNV of MTF1, 
GLS, DLD, LIAS, and LIPT1 increased, while 
DLAT, FDX1, and CDKN2A exhibited an exten-
sive decrease in CNV. Furthermore, the loca-
tions of CNV alterations for 10 CAGs on chro-
mosomes are shown in Figure 2D. Additionally, 
54 of 561 (9.63%) LUAD samples exhibited 
genetic mutations, and the results showed 
CDKN2A (4%) associated with the highest 
mutation rate, followed by DLD (1%) and PDHA1 
(1%) as well as the most common variant clas-
sification was a missense mutation (Figure 2E). 
Furthermore, a protein-protein interaction (PPI) 
network analysis by using the string website 
indicated that the 10 CAGs interacted with 
each other and PDHB was one of the hub genes 
(Figure 2F). Based on these analyses, it indi-
cated that CAGs may play an important role in 
LUAD biogenesis and progression.

Construction of cuproptosis subgroups in LUAD 

In total, 739 LUAD patients from TCGA and 
GSE31210 datasets were included in the sub-
sequent study to identify the potential relation-
ship between CAGs and LUAD. The prognostic 

values of 10 CAGs in LUAD patients were identi-
fied with univariate Cox regression analysis 
(Figure 3A; Table S1). Additionally, we estab-
lished a network to exhibit the interactions, 
connections, and prognostic values of the CAGs 
(Figure 3B). Besides, based on K-M analysis, 
we identified most of the CAGs were highly 
related to the prognosis of LUAD, and the high 
expression of DLAT, DLD, FDX1, and PDHA1 
resulted in the worse OS (Figure S1). Based on 
the results, we identified most of the CAGs were 
highly related to the prognosis of LUAD, which 
indicated the potential role of CAGs in LUAD 
tumorigenesis. Moreover, we conducted the 
consensus clustering analysis to further deter-
mine the relationship between expression pat-
terns of CAGs and LUAD subtypes. The optimal 
clustering stability was found to be K = 2, and 
LUAD patients were separated into cluster A  
(n = 482) and cluster B (n = 257) (Figures 3C, 
S2). We further applied t-SNE analysis to con-
firm the brilliant cluster distribution (Figure 3D). 
According to the K-M analysis, patients in clus-
ter A had a significantly better OS than patients 
in cluster B (Figure 3E). Finally, we compared 
the gene expression profiles and clinicopatho-
logical features of both clusters and significant 
differences were found between them with 
respect to CAGs expression and clinical fea-
tures (Figure 3F).

Features of TME cell infiltration in different 
clusters 

We applied the GSVA analysis to explore the 
underlying mechanism and related pathways in 
two clusters. The result suggested that cluster 
A primarily connected with multiple metastasis-
related pathways, such as linoleic acid, nitro-
gen, alpha-linolenic acid, and ether lipid metab-
olism. Interestingly, cluster B is mainly involved 
in P53 signaling and repair-related pathways 
such as base excision, nucleotide excision, and 
mismatch (Figure 4A; Table S2). Furthermore, 
we examined the infiltrating levels of 23 human 
immune cells in the two clusters to identify the 
relationship between CAGs and the TME of 
LUAD by using the ssGSEA algorithm. The 
results indicated that infiltration of eosinophil, 
mast cell, plasmacytoid dendritic cell, and neu-
trophil was significantly higher in cluster A, 
while the infiltration of activated CD4 T cell, 
gamma delta T cell, CD56 bright natural killer 
cell was increased in cluster B (Figure 4B, P < 
0.05, Table S3). Considering that ICIs have 

http://www.ajcr.us/files/ajcr0144904suppltabs.xlsx
http://www.ajcr.us/files/ajcr0144904suppltabs.xlsx
http://www.ajcr.us/files/ajcr0144904suppltabs.xlsx


Cuproptosis associated genes affect LUAD

4549 Am J Cancer Res 2022;12(10):4545-4565

been used for the treatment of LUAD for many 
years, we investigated whether there were dif-
ferences in the expression of ICI-related bio-
markers between the two clusters. The results 
suggested that cluster B correlated positively 

with high PD-1, PD-L1, CTLA-4, and HAVCR2 
(Figure 4C-F, P < 0.05). Furthermore, based on 
the DEGs identified between the two clusters 
by using the “limma” R package, we applied the 
GO and KEGG enrichment analyses to explore 

Figure 1. Flow chat.
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the possible enriched functions and pathways 
in them. GO enrichment analysis revealed that 
organelle fission, nuclear division, chromosom-
al region, and active ATPase are significantly 
enriched in biological processes, cell compo-
nents, and molecular functions (Figure 4G; 
Table S4). KEGG enrichment analysis revealed 
that these DEGs are mainly connected with the 

cell cycle, P53 signaling pathway, Cellular 
senescence, and other immune related path-
ways (Figure 4H; Table S4).

Identification of gene subgroups according to 
DEGs

Considering such a large prognostic difference 
between the two clusters, we further applied 

Figure 2. Analysis of expression and mutation of cuproptosis-related genes in LUAD. (A) Boxplot of 10 CAGs’ expres-
sion in normal and LUAD samples. (B) Heatmap of 10 CAGs’ expression in normal and LUAD samples. (C, D) The 
frequency (C) and chromosome distribution (D) of CNV among CAGs. (E) CAGs’ mutations in LUAD. (F) CAGs form 
part of the PPI network. *P < 0.5, **P < 0.01, ***P < 0.001, ns, no sense.
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the univariate Cox regression analysis to deter-
mine the survival significance of the 468 DEGs 
among clusters A and B, and 393 genes were 
ultimately identified (Table S5). To better inves-
tigate the underlying mechanisms responsible 
for this differential prognosis, we used a con-
sensus clustering approach to further differen-
tiate patients according to 393 prognostic 
genes (Clusters A-C) (Figures 5A, S3). Further- 
more, K-M analysis indicated that patients in 
cluster B had the superior OS time, whereas 
patients in cluster C had the shortest survival 
time (Figure 5B). Besides, the correlation 

between clinicopathological variables, CAG 
clusters, and gene clusters was shown in Figure 
5C. As expected from the cuproptosis clusters, 
the cuproptosis gene clusters proved the sig-
nificant discrepancies in CAGs’ expression 
(Figure 5D). 

Construction and validation of the CAG_score 
related risk model

The CAG-score related risk model was estab-
lished according to the CAG cluster-associated 
DEGs. The training set was employed to con-

Figure 3. Differences in OS and distribution of cuproptosis-related genes between two clusters. (A) The univariate 
Cox Analysis for CAGs. (B) The network of correlation with CAGs in LUAD. (C) The heatmap of consensus clustering 
(k = 2) in LUAD. (D, E) Analysis of t-SNE (D) and Kaplan-Meier curve (E) among two clusters. (F) Two clusters were 
identified by the CAGs with a heatmap and clinicopathological profiles. 

http://www.ajcr.us/files/ajcr0144904suppltabs.xlsx
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struct the CAG-score related risk model; mean-
while, the testing and entire set were applied to 
assess the predicted ability of the established 
model. LASSO and multivariate Cox regression 
analysis for 393 cuproptosis cluster-associated 
prognostic DEGs were further conducted to 
identify and establish an optimal risk model. 
Finally, we obtained two genes including CD55 
and SPP1. Then we calculated the CAG_score 
with the following formula: CAG_score = 
(-1.21914109097502 × expression of CD55) + 
(0.574745465004888 × expression of SPP1). 
LUAD patients were divided into high- and low-
risk groups according to the optimal cut-off 

value determined by the “survminer” package. 
Furthermore, we explored the distribution of 
samples and correlation among the two cupro-
ptosis clusters, three gene clusters, and two 
groups (high-risk group and low-risk group) 
(Figure 6A). Additionally, we observed a signifi-
cant difference between the cuproptosis clus-
ters and gene clusters in the CAG_score (Figure 
6B, 6C). Based on the abovementioned survival 
analysis, we identified that higher CAG_scores 
of both classifications were correlated with 
worse survival. Besides, K-M analysis also indi-
cated that LUAD patients in the high-risk group 
had a worse OS than in the low-risk group 

Figure 4. Exploration of the role of immune checkpoints and differentially expressed genes. (A) GSVA between two 
clusters in TCGA and GSE31210. (B) The infiltration level of 23 immune cell types in two clusters. (C-F) Expression 
of PD-1 (C), PD-L1 (D), CTLA-4 (E), and HAVCR2 (F) between two clusters. (G, H) GO (G) and KEGG (H) analyses for 
biological functions and pathways. *P < 0.5, **P < 0.01, ***P < 0.001, ns, no sense.
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(Figure 6D, P < 0.05). Subsequently, the C-index 
analysis was used to evaluate the model’s pre-
diction capability, and CAG_score has a higher 
c-index than other clinical traits (Figure 6E). In 
addition, the distribution of CAG_scores and 
survival status among patients in two groups 
suggested an association between increased 
CAG_scores and decreased OS (Figure 6F, 6G). 
The relative expression standards of the two 
genes for every patient were shown in Figure 
6H. We further used PCA and t-SNE analysis to 
assess the distribution among the two sub-
groups and clear distribution results demon-
strate the accuracy of our model, subsequently 
(Figure 6I, 6J).

Assessment of the CAGs-related risk model

To determine the prognostic capability of the 
established model, CAG_score for LUAD pa- 
tients in the testing and entire set were calcu-

lated using the above formula. Similarly, K-M 
analysis suggested a better OS of patients in 
low-risk group among testing and entire sets 
(Figure 7A, 7B). The distribution of risk scores, 
as well as the survival status of patients in the 
testing and entire sets, was displayed in Figure 
7C-F. Furthermore, the relative expression 
standards of the two genes for LUAD patients 
among testing and entire sets were also shown 
in Figure 7G, 7H. PCA and t-SNE analyses were 
applied to evaluate the accuracy of the risk 
model based on testing (Figure 7I, 7J) and 
entire sets (Figure 7K, 7L). All the above bioin-
formatics studies manifested that the estab-
lished risk model according to CAG_score was 
accurate and promising.

Independent prognostic value of the CAG_
score and construction of nomogram

To determine whether CAG_score was an inde-
pendent prognostic factor for OS among LUAD 

Figure 5. Identification of gene subgroups. A. 3 matrices from consensus clustering. B. Survival analysis of three 
gene subgroups in LUAD. C. Heatmap and clinicopathological features between three gene subgroups. D. The ex-
pression level of CAGs in three gene subgroups. *P < 0.5, **P < 0.01, ***P < 0.001, ns, no sense.
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patients, we carried out the univariate and mul-
tivariate Cox analyses. According to the univari-
ate regression assessment, the hazard (HR) of 
CAG_score and the 95% confidence interval 
(CI) were found to be 2.511 and 1.585-3.980 
(Figure 8B, P < 0.001). Furthermore, after 
adjusting for other confounding factors, multi-

variate regression analysis presented that the 
CAG_score still has a statistically significant 
effect on OS (HR = 2.295, 95% CI = 1.434-
3.673) (Figure 8A, P < 0.001). Based on the 
above results, it is concluded that the risk prog-
nostic model according to CAG_score serves  
as independent prognostic factor for LUAD 

Figure 6. Construction of the model based on the CAG score. (A) Alluvial diagram of inner Connections between CAG 
cluster, gene cluster, CAG score, and survival status. (B, C) The difference in CAG score among CAG cluster (B) and 
gene cluster (C). (D) The distinction of OS between high- and low-risk groups. (E) Predictive capability evaluation in 
the concordance index. (F-I) Distribution types of risk levels (F), living status (G), expression of prognostic signatures 
(H), PCA (I) and t-SNE (J) analyses in the training set.
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patients. Additionally, we established a nomo-
gram that takes into account gender, age, 

stage, and CAG_score to better predict survival 
for LUAD patients at 1-, 3-, and 5-years (Figure 

Figure 7. Validation of the CAG score model based on the testing and entire sets. (A, B) K-M analyses based on the 
testing set (A), and the entire set (B). (C, D) Distribution of CAG scores based on the testing set (C), and entire set 
(D). (E, F) Relative expression of 2 hub genes based on the testing set (E), and the entire set (F). (G, H) Survival sta-
tus and survival time patterns are based on the testing set (G), and the entire set (H). (I-L) PCA and t-SNE analyses 
between the high-risk and low-risk groups based on the testing set (I, J) and entire set (K, L).
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8C). The accuracy of the nomogram was veri-
fied in subsequent calibration curves, and we 
found a high degree of accuracy between the 
actual observed and predicted values (Figure 

8D). Besides, compared with other clinical indi-
cators, the nomogram showed the highest 
C-index (Figure 8E). Besides, the area under 
the ROC curve (AUCs) at 1, 3, 5-year were 

Figure 8. Development and assessment of the nomogram. (A, B) Multivariate (A) and univariate (B) Cox analyses 
based on the entire set, respectively. (C) The nomogram. (D) The calibration curves of the nomogram predict the 
probability of the OS (The x-axis shows nomogram-predicted survival, and the y-axis shows actual survival. The grey 
line shows the ideal calibration line, and the color line represents the model-predicted calibration line). (E) The 
concordance index of the nomogram, CAG_score (risk score), and clinical characteristics. (F) ROC curves for 1-, 3-, 
and 5-year OS in the nomogram. (G) OS comparison in ROC curves for clinical characteristics, CAG_score, and the 
nomogram. (H) Evaluation of clinical applicability of the nomogram with DCA curves. (I, J) The exploration of biologi-
cal pathways based on GSEA in the high- (I) and low-risk (J) groups.
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0.824, 0.768, and 0.769, suggesting that the 
nomogram was reliable in predicting the OS of 
LUAD patients (Figure 8F). In addition, we ana-
lyzed the AUCs of the risk model and other clini-
cal factors to further test the accuracy and sen-
sitivity of the risk model. The nomogram’s AUCs 
for predicting 1-, 3-, and 5-year survival were 
higher than those for other clinical factors 
(Figure 8G). The DCA curves also confirmed the 
superior predictive power of the nomogram 
(Figure 8H). For a deeper exploration of the 
mechanisms that contribute to significant dif-
ferences between two groups in the multidi-
mensional analysis, we performed the enrich-
ment analysis using GSEA software. In the 
results, it was evident that the high CAG_score 
group was enriched in the pathway such as cell 
cycle, DNA replication, homologous recombina-
tion, P53 signaling pathway, and others (Figure 
8I; Table S6), while pathways such as arachi-
donic acid metabolism, fatty acid metabolism, 
and sodium reabsorption were significantly 
enriched in the low CAG_score group (Figure 
8J; Table S6).

Evaluation of immune infiltration landscape 
among high- and low-risk groups

Next, we applied the CIBERSORT algorithm to 
explore the differences in the composition of 
TME-infiltration cells between high- and low-
risk groups (Table S7). The relative fraction of 
22 immune cells within low- and high-risk 
groups was presented by the heatmap (Figure 
9A), and the box plot (Figure 9B). The results 
showed significant differences in the distribu-
tion of immune cells based on risk model. We 
further conducted the ssGSEA algorithm to 
explore the difference of immune cell infiltra-
tion and immune response for LUAD patients 
among high-risk and low-risk groups (Table S8). 
The results of immune cell infiltration suggest-
ed that infiltration of Macrophages, Treg, NK 
cells, and T helper cells were obviously 
increased in the high-risk group (Figure 9C). 
Similarly, the immune functions such as APC 
co-inhibition, stimulation, CCR, Check-point, 
MHC-class-I, and T cell co-inhibition were sig-
nificantly higher in the high-risk group (Figure 
9D). Additionally, we applied the ESTIMATE 
algorithm to analyze the immune, stromal, and 
estimate scores of LUAD patients. It was found 
that LUAD patients in the high-risk group had a 
significantly higher immune score, stromal 

score, and estimate score than in the low-risk 
group (Figure 9E-G, P < 0.05). We also identi-
fied the relationship between CAG_score and 
TME scores, and the results suggested that the 
immune score, stromal score, and estimate 
score were positively correlated with CAG_
score (Figure 9H-J). In order to assess the cor-
relation between the CAG_score and immune 
cell subtype infiltration, we conducted a com-
prehensive analysis using multiple immune-
related algorithms including TIMER, CIBERS- 
ORT, xCELL, quanTIseq, MCPcounter, EPIC, and 
CIBERSORT-ABS. The results indicated that 
there was a positive relationship between 
immune cell infiltration and CAG_score (Figure 
9K). We then investigated the correlation 
between CAG_score and immune cells, and we 
found that most immune cells were highly cor-
related with both genes (Figure 9L). According 
to the findings above, high-risk patients tended 
to have a high immune infiltration status, which 
may be responsible for the poor prognosis.

Difference between clinical characteristics and 
TMB among subgroups

Considering the significant differences between 
high-risk and low-risk groups, we further 
explored the relationship between CAG_score 
and different clinical characteristics. The 
results suggested that no significant distribu-
tional difference was found with respect to age 
(≤ 65/> 65 years) (P > 0.05, Figure 10A), stage 
I, III, and IV (P > 0.05, Figure 10B), Myc expres-
sion (P > 0.05, Figure 10C). Interestingly, clini-
cal differences were found in terms of stage I 
and stage II (P = 0.00039, Figure 10B), ever 
smoking and never smoking (P = 0.0018, 
Figure 10D), gender (P = 0.036, Figure 10E), 
ALK fusion + and EGFR mutation + (P = 0.006, 
Figure 10F) and other alteration status. In addi-
tion, as TMB emerged as an important predic-
tor of tumor immune response, we examined 
TMB differences between high- and low-risk 
groups in more depth. The results demonstrat-
ed that the high-risk group had a significantly 
higher TMB status (P = 0.028, Figure 10G). The 
CAG score and TMB exhibited low linear correla-
tion (R = 0.095, P = 0.034, Figure 10H). Based 
on the median cut-off of TMB scores, we divid-
ed LUAD patients into high and low TMB groups. 
Furthermore, we applied K-M analysis to inves-
tigate the impact of TMB status on prognosis in 
LUAD patients. The results suggested that high-

http://www.ajcr.us/files/ajcr0144904suppltabs.xlsx
http://www.ajcr.us/files/ajcr0144904suppltabs.xlsx
http://www.ajcr.us/files/ajcr0144904suppltabs.xlsx
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TMB patients had a better prognosis than low-
TMB patients (Figure 10I, P < 0.05). Using the 
TMB score to predict the survival of LUAD 
patients or using the risk model to predict the 

prognosis of patients, which one had the better 
predictive ability? Interestingly, when we com-
bined the TMB and risk scores for K-M analysis 
of LUAD patients, we found that better OS with 

Figure 9. Characterization of immune cells infiltration in TME. (A, B) Expression features of 22 immune cells in the 
heatmap (A), and the box plot (B) using the CIBERSORT algorithm. (C, D) The infiltration of immune cells (C) and 
immune functions (D) among high- and low-risk groups using ssGSEA algorithm. (E-G) ESTIMATE assessed sample 
tumor purity with the estimate (E), immune (F), and stromal (G) scores. (H-J) The relationships between the estimate 
(H), immune (I), stromal (J) scores and CAG_score. (K) Relationship between the CAG_score and immune cells infil-
tration. (L) Analysis of the correlation between the CAG score and 23 immune cells. *P < 0.5, **P < 0.01, ***P < 
0.001, ns, no sense.
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Figure 10. Comprehensive analysis of the CAG score in LUAD. (A-F) The distribution and composition of Age (A), 
Stage (B), Myc expression (C), Smoking history (D), Gender (E), and Alteration status (F) in LUAD. (G) The level of 
TMB between high- and low-risk groups. (H) Correlation analysis of the CAG score and TMB. (I, J) K-M analysis the OS 
between the low- and high-TMB groups (I), and four groups stratified by both TMB and CAG_score (J). (K, L) Somatic 
mutation landscape in the high- (K) and low-risk (L) groups.
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high-TMB was eliminated by the risk score. On 
the contrary, the patients in the group (low-risk 
score and high TMB score) had a significantly 
better OS than in the other groups, and it could 
be concluded that the CAG_score risk model 
was superior to the TMB in predicting an indi-
vidual’s prognosis (Figure 10J). Based on the 
TCGA-LUAD dataset, we also examined whether 
there were differences in the distribution of 
somatic mutations between high-risk and low-
risk patients. The top 20 driver genes including 
TP53, TTN, MUC16, RYR2, CSMD3, and others 
among two subgroups were displayed in Figure 
10K, 10L.

Clinical treatment and drug sensitivity analysis

As the prognosis of low-risk and high-risk 
patients differs greatly, we anticipate different 
responses to immune drugs and immune 
checkpoints among patients in different risk 
groups. We calculated IPS scores to detect the 
immune response-ability of LUAD patients. 
According to the results, patients in the low-risk 
group had a greater IPS score, suggesting that 
low CAG_score patients may be more respon-
sive to immunotherapy (Figure 11A). Addi- 
tionally, to identify the potency of the CAG score 
as a biomarker to predict therapeutic response 
in LUAD patients, we further applied the “pRRo-
phetic” package to appraise the IC50 values of 
138 drugs available in the Genomics of Drug 
Sensitivity in Cancer (GDSC) database. The 
IC50 of AZD.0530, AUY922, ATRA, AP.24534, 
AMG.706, AKT inhibitor VIII, AICAR, ABT.263, 
and A.443654 were significantly higher in the 
low-risk groups, indicating that high CAG_score 
patients might benefit from these drugs (Figure 
11B, P < 0.05). Furthermore, we calculated the 
IC50 of common antitumor drugs treated for 
lung cancer among two subgroups and found 
that low-risk patients had a higher IC50 for  
chemotherapeutics such as cisplatin, paclitax-
el, gemcitabine and target therapy such as  
gefitinib and erlotinib, suggesting that CAG_
score served as a promising predictor of  
anti-tumor drug sensitivity (Figure 11C, P < 
0.05). Furthermore, we investigated the expres-
sion of ICPs between patients with different 
risk groups, and the results showed that the 
expression of most ICPs in the high-risk group 
was generally higher than that in the low-risk 
group (Figure 11D, P < 0.05). 

Discussion

Cuproptosis, a new form of programmed cell 
death, was first revealed in journal of Science 
[13]. Different from previously reported pro-
grammed cell death including apoptosis, pyrop-
tosis, necroptosis, and ferroptosis, excess 
intracellular copper induces proteotoxic stress 
by affecting the mitochondrial tricarboxylic acid 
(TCA) cycle leading to cell death [33]. There 
have been many studies confirming that PCD 
plays an important role in regulating cancer 
growth, immunotherapy as well as TME [10,  
12, 34]. For example, the low expression of 
GSDMD, as the key pyroptosis affecting pro-
tein, results in the proliferation of gastric can-
cer cells through ERK1/2, STAT3, and PI3K/
AKT pathways [35, 36]. By using bioinformat-
ics, Wu et al. identified a large number of gen- 
es involved in ferroptosis pathways that are 
highly expressed in various cancers [37]. Che 
et al. found that mutations in ROS-induced  
oxidative stress pathways-related regulatory 
genes which as the core of ferroptosis are wide-
ly present in various cancers [38]. Additionally, 
autophagy has been characterized as having  
a dual role, whereby it can either prevent or 
facilitate cancer metastasis by decreasing 
tumor necrosis caused by hypoxia and prevent-
ing the infiltration of inflammatory cells [39, 
40]. However, the exact mechanism that wheth-
er cuproptosis involved in cancer progression 
is unclear. Despite failed clinical trials of cop-
per ionophores such as Elesclomol as cancer 
treatments, Tsvetkov et al. confirmed it already 
helped patients whose tumors depend on mito-
chondria for energy. Furthermore, now that re- 
searchers have discovered the key regulators 
of cuproptosis, they think copper ionophores 
could potentially be used to treat a range of 
cancers that are particularly susceptible to this 
process, such as cancers that overexpress the 
FDX1 gene [13, 41]. It needs to be specified 
that the biological functions and mechanism by 
which cuproptosis affect LUAD and TME were 
previously unknown. Therefore, the compre-
hensive role of cuproptosis-associated genes 
in LUAD and TME was examined in this research.

In this study, we obtained the LUAD samples by 
integrating the TCGA and GEO databases. 
Firstly, we found that the expression of CAGs 
was differently expressed in LUAD and normal 
samples as well as associated with prognosis. 
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Then, we divided LUAD patients into two cupro-
ptosis clusters (clusters A and B) with different 
prognoses, immune infiltrations, and functions 
by using unsupervised clustering analysis. 
Furthermore, GSVA enrichment analysis indi-
cated that cluster B was mainly enriched in car-
cinogenic pathways such as P53 and repair 
pathways such as mismatch and nucleotide 

repair; and cluster A was significantly related to 
carcinogenic pathways and metabolism path-
ways. Additionally, GO and KEGG functional 
enrichment analyses have shown that DEGs 
between two clusters were highly correlated 
with biological processes, as well as pathways 
such as cell cycle, P53, ATPase activity, and 
organelle fission. Based on the DEGs associat-

Figure 11. Sensitivity analysis of immunotherapy and chemotherapy. A. IPS score between high- and low-risk 
groups. B. The immunotherapy prediction of high-risk and low-risk groups. C. Drug sensitivity analysis of common 
chemotherapeutic drugs. D. Relationships between immune checkpoints and CAG score. *P < 0.5, **P < 0.01, 
***P < 0.001, ns, no sense.
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ed with the subgroup signature, three gene 
clusters with different clinical characteristics, 
immune functions, and environmental effects 
were identified for LUAD. By using univariate 
and multivariate Cox regression analysis, CAG_
score was established to quantify the high-risk 
and low-risk subgroups. The cluster B and gene 
cluster C with the poorest OS had the higher 
CAG_score in CAG_clusters as well as three 
gene clusters. Interestingly, high CAG_score 
patients had worse clinical outcomes, revealing 
that a high CAG_score could predict a poor 
prognosis. Furthermore, our functional enrich-
ment analyses indicated that cancer- and 
metastasis-related pathways were significantly 
enriched, implying that cuproptosis may involve 
in the malignant behavior of LUAD. 

Additionally, univariate and multivariate Cox 
analyses indicated that CAG_score was an 
independent factor for predicting LUAD 
patients’ survival outcomes. Besides, ROCs 
and C-index analyses validated its predictive 
robustness for 1-, 3-, and 5-year OS. Therefore, 
CAG_score might be a reliable predictive value 
for the prognosis of patients. Furthermore, our 
results indicated that there was a significant 
discrepancy in TMB and somatic mutations 
among high and low CAG_scores. Higher TMB 
has been validated to be related to a better 
prognosis for LUAD patients, consistent with 
our findings [42]. Furthermore, the survival 
probability in the group (low CAG_score and 
high TMB) was significantly better than the 
group (high CAG_score and high TMB), suggest-
ing CAG_score could be adopted to indepen-
dently predict the responsiveness of immuno- 
therapy. 

Interactions of the immune system are critical 
features of tumorigenesis and serve as thera-
peutic targets for LUAD. According to studies, 
stromal cells and immune cells form major 
components of the tissue microenvironment 
(TME), and immune and stromal scores are 
associated with clinical features as well as 
prognosis in LUAD [43, 44]. Using the ESTIMATE 
algorithm, we estimated TME scores and found 
that high CAG_score groups presented signifi-
cantly higher immune and stromal scores than 
low CAG_score groups. This suggested that 
cuproptosis could be associated with the 
involvement of the TME, thus regulating  
LUAD occurrence and development. Besides, 
researchers have discovered that abnormal 

immune cells promote the progression of LUAD 
and control the RCD like ferroptosis, and that 
checkpoint inhibitor-based immunotherapies 
have raised survival among patients with 
advanced cancer [21, 45, 46]. In our study, we 
identified that higher expression of immune 
cells such as NK, macrophages, Th1, and Treg 
as well as immune functions like APC-co-
inhibition/stimulation, CCR, check-point, Type-
II-IFN-response, and parainflammation were 
highly correlated with high CAG_score. Con- 
sidering the high immune infiltration of high 
CAG_score was related to poor prognosis, tar-
geting cuproptosis might be a valuable regula-
tive strategy for immunotherapy of LUAD. 

When applying the GDSC dataset to find the 
possible drugs, we were pleasantly surprised to 
find that the IC50 of 9 compounds in the low 
CAG_score group was significantly higher than 
the high CAG_score group, implying that high 
CAG_score patients may have greater sensitiv-
ity to these possible drugs. Furthermore, we 
evaluated the sensitivity to common anti-tumor 
drugs such as gefitinib, cisplatin, and gem-
citabine in different CAG_score groups to guide 
clinical medication. IPS signature and the 
expression levels of critical ICPs such as PD-1, 
PD-L1, and CTLA-4 were assessed and indicat-
ed that CAG_score has the potential to deter-
mine patients who have a better response to 
ICIs. 

Admittedly, there were several limitations sus-
pending in our study. First, we obtained all the 
raw data from public databases, which may 
lead to bias in the analysis results. Besides, 
cuproptosis death is a newly discovered mech-
anism of programmed cell death, and there are 
few related studies. Last but not least, this 
research was conducted based on bioinformat-
ics technology, and complementary in vivo and 
in vitro experimental studies are necessary to 
confirm our findings.
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Figure S1. K-M analysis based on CAGs in LUAD cohort.
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Figure S2. Identification of CAG subtypes based on expression of CAGs in LUAD cohort.
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Figure S3. Identification of gene subtypes based on DEGs among two CAG subgroups in LUAD cohort.


