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Abstract: Krüppel-like factor 6 (KLF6) is a nuclear transcriptional regulator found in mammalian tissue that has 
been identified as a tumor suppressor gene in several malignancies. As a result of loss of heterozygosity, DNA 
methylation, and alternative splicing, it is frequently inactivated in various malignancies. Krüppel-like factor 6 splice 
variant 1 (KLF6-SV1), Krüppel-like factor 6 splice variant 2, and Krüppel-like factor 6 splice variant 3 alternatively 
spliced isoforms that emerge from a single nucleotide polymorphism in the KLF6 gene. KLF6-SV1 is generally up-
regulated in multiple cancers, and its biological function is well understood. Overexpression of KLF6-SV1 inhibits 
the KLF6 gene function while promoting tumor progression, which is associated with a poor prognosis in patients 
with various malignancies. We reviewed the progress of KLF6-SV1 research in NSCLC over the last several years 
to understand the molecular mechanisms of tumorigenesis, tumor development, and therapy resistance. Finally, 
this review emphasizes the therapeutic potential of small interfering RNA targeted silencing of KLF6-SV1 as a novel 
strategy for managing chemotherapy resistance in NSCLC patients. 
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Introduction

Lung cancer has a high morbidity and mortality 
rate in the world. Non-small cell lung cancer 
(NSCLC) accounts for more than 85% of lung 
cancers, with squamous cell carcinomas and 
adenocarcinomas being the most common 
types [1]. Surgery is still the primary clinical 
treatment option for early-stage NSCLC [2]. 
However, more than 70% of NSCLC patients  
are identified at the initial visit in the intermedi-
ate or late stages [3]. Even when various clini-
cal treatment strategies, such as surgery, 
radiotherapy, and chemotherapy [4], are used, 
the therapeutic effect is still unsatisfactory [5, 
6]. Despite the discovery of numerous tumor 
suppressor genes and oncogenes in related 
research, the key cause of NSCLC remains 
unknown [7]. As a result, molecular mecha-
nisms involved in NSCLC and the identification 
of potential molecular markers for targeted 
therapy are crucial for early diagnosis and treat-
ment. In recent studies, the Krüppel-like factor 

6 (KLF6) gene functional inactivation and high 
expression levels of Krüppel-like factor 6 splice 
variant 1 (KLF6-SV1) have been linked to NSC- 
LC progression and poor prognosis. This article 
summarizes the functions and molecular mech-
anisms of KLF6-SV1 in cell proliferation, inva-
sion, and metastasis, hoping to provide new 
research directions for NSCLC therapy. 

The KLF6 gene

In the 1990s, researchers detected the KLF6 
gene in placental cells [8], hepatic stellate cells 
[9], and peripheral blood lymphocytes of pa- 
tients with chronic lymphoblastic leukemia [10]. 
KLF6 is a ubiquitous nuclear transcriptional 
regulator found in many mammalian organs 
that belongs to the Krüppel-like factor family. 
KLF6 has a total length of 7 kb and is found on 
human chromosome 10 (10p15) [11]. Three 
domains comprise the KLF6 protein (Figure 1) 
[12-15]. The acidic domain at the amino termi-
nus of proline and serine is important in tran-
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scriptional activity [16]. The serine/threonine-
rich intermediate region of the KLF6 protein is 
involved in transcriptional and post-transla- 
tional regulation mechanisms [17]. Like other 
Krüppel-like factor family genes, the hydroxyl 
terminus has a conserved DNA binding domain 
composed of three Cys2-His2 zinc finger struc-
tures that recognize and bind to the GC box and 
CACCC promoter elements in the target gene 
promoter [8, 18]. 

Roles of KLF6 in tumorigenesis and develop-
ment

The anticancer function of KLF6 was initially 
discovered in prostate cancer [19]. KLF6 was 

later identified as a tumor suppressor gene in 
glioma [20], ovarian cancer [21], and liver  
cancer [22] and linked to gene interactions. In 
the STRING database, KLF6 interacted with  
key genes in many cancer-related signaling 
pathways (Figure 2). KLF6 can upregulate 
p21WAF1/CIP1 (19) without p53 and then inhibit 
the activity of the cyclinD1/CDK4 complex, 
resulting in cell cycle G1 arrest and growth 
retardation [23]. Furthermore, KLF6 has sever-
al downstream target genes, including preg-
nancy-specific glycoproteins [24], transforming 
growth factor-β1 [25], transforming growth 
factor-β receptors [26], and others [27-40]. 
KLF6 is also involved in many tumor-related sig-
naling pathways, including inducing apoptosis 

Figure 1. KLF6 protein structure and the associated post-translational modifications. The KLF6 protein consists 
of three domains: the N-terminal acidic domain, Serine/Threonine-rich central domain, and the C-terminal DNA-
binding domain. 

Figure 2. KLF6 interacts with key genes in many cancer-related signaling pathways. Protein-protein interaction data 
were obtained from the STRING database (https://cn.string-db.org/).
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[27], inhibiting the activity of the c-Jun proto-
oncoprotein [28], decreasing E-cadherin ex- 
pression [21], transactivating the c-MYC gene 
(29), and lowering vascular endothelial growth 
factor expression [30]. 

Functional inactivation of KLF6 in tumors

As tumor pathogenesis research has advanced 
in recent years, more evidence has emerged 
that functional inactivation of KLF6 plays a 
nuanced and essential role in malignancies. In 
most cancers, KLF6 is functionally inactivated 
as a tumor suppressor gene. Point mutations, 
DNA methylation, loss of heterozygosity (LOH), 
and alternative splicing (AS) are the primary 
causes of KLF6 functional inactivation. 

KLF6 is thought to contribute to prostate can-
cer because it is located on chromosome 
10p15, and prostate cancer frequently exhibits 
LOH in this region [41]. Narla et al. confirmed 
that more than 70% of the KLF6 alleles were 
mutated after genetic testing of prostate tissue 
[19]. For the first time, the LOH of the KLF6 
gene was found to be involved in carcinogene-
sis and development [42]. Since then, deletion 
or mutation of KLF6 has been identified in 
tumors such as NSCLC [27], colorectal cancer 
[43], liver cancer [22, 44, 45], gastric cancer 
[46], and astrocytoma [47, 48]. The LOH level of 
the KLF6 gene in ovarian and gastric cancer is 
strongly linked to tumor stage and grade, and 
the detection rate of LOH in advanced cancer is 
much higher than in earlier stages [30, 49]. The 
deletion of the KLF6 allele is closely linked to 
recurrence and survival in the head and neck 
squamous cell carcinomas. KLF6 is regarded 
as an excellent prognostic indicator [50]. 
Hypermethylation of CpG islands in the promot-
er region is one of the most common manifes-
tations of aberrant methylation of tumor sup-
pressor genes, which is one of the most critical 
causes of carcinogenesis [51, 52]. Hyperme- 
thylation of CpG islands in promoter regions 
can alter the cell cycle, DNA repair, tumor 
metabolism, tumor angiogenesis, apoptosis, 
and cell-cell interactions, all of which are 
strongly associated with tumorigeneses [53, 
54]. Song et al. [55] found that methylated  
DNA appears in liver cancer tissues, and 
patients with KLF6 gene methylation have a 
history of hepatitis B virus (HBV) infection or 
liver cirrhosis. If the KLF6 gene is methylated 
abnormally, HBV infection or liver cirrhosis can 
transform into liver cancer. DNA methylation of 

the KLF6 gene is also observed in esophageal 
cancer, which is closely linked to malignant 
tumor progression [56]. 

We discovered that AS of the KLF6 gene is fre-
quent in a range of malignancies, in addition to 
the pathways mentioned above. A single nucle-
otide polymorphism (SNP) can cause aberrant 
gene splicing, and roughly 15% of genetic vari-
ants in hereditary disorders influence precursor 
messenger RNA (pre-mRNA) splicing. 

The process of KLF6-alternative splicing to 
generate KLF6-SV1

SNP can increase the AS of the KLF6 gene. 
KLF6-SV1, Krüppel-like factor 6 splice variant 2 
(KLF6-SV2), and Krüppel-like factor 6 splice 
variant 3 (KLF6-SV3) are three splice variants 
caused by a SNP (Figure 3) [57]. KLF6-SV1 is 
considered to be an oncogene involved in the 
malignant development of many tumors. KLF6-
SV2 acts as an antiproliferative and pro-apop-
totic factor in colorectal and liver cancers. The 
function of KLF6-SV3 is unknown (Table 1). 
Overexpression of KLF6-SV1 reduces the tumor 
suppressor activity of KLF6 and is linked to 
various human cancers [79, 80], including 
prostate cancer [57-59], lung cancer [60, 
62-66], ovarian cancer [30, 61], hepatocellular 
carcinoma (HCC) [71, 72], and pancreatic can-
cer [74]. 

AS modification affects more than 90% of 
human genes, which is the primary cause of 
protein variation [81]. Exons of a single gene’s 
pre-mRNAs are spliced and modified in various 
ways, resulting in mRNA and protein variants 
with different structures and functions [82]. 
These modifications play critical roles in multi-
ple biological processes [83, 84]. 

AS dysregulation is caused by several physio-
logical and pathological mechanisms, including 
disruption of critical tumor-associated cellular 
signaling [85, 86]. When tumor cells produce 
AS, they can silence tumor suppressor genes 
and activate oncogenes [87]. These AS events 
promote tumor cell proliferation, invasion, 
metastasis, drug resistance, and immune eva-
sion [88]. AS of the KLF6 gene is a typical 
example. Intron 1 of the KLF6 gene is prone to 
point mutations, which contribute to the forma-
tion of the SR protein’s binding site (SRp40). 
The SRp40 novel site is considered an atypical 
intronic splicing enhancer, activating three 
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secret splice sites in exon 2 and producing the 
carcinogenic splice isomer KLF6-SV1 (Figure 
3). KLF6-SV1 lacks the carboxyl-terminal DNA-
binding domain and the adjacent 5’ basic  
structure [57, 60]. The functional inactivation  
of the KLF6 gene and KLF6-SV1 overexpres-
sion in tumors can undoubtedly contribute to 
the deregulation of crucial cellular processes 
such as proliferation, differentiation, adhesion, 
death, motility, and invasion (Figure 4), all of 
which lead to cancer. 

Roles of KLF6-SV1 in NSCLC formation and 
progression

KLF6-SV1 increases cancer cell proliferation 
and survival

Under normal physiological conditions, KLF6-
SV1 is ubiquitously present in cells and tissues 
of the human body. KLF6-SV1 expression is sig-
nificantly upregulated in numerous malignan-
cies under pathological term conditions and is 
strongly linked to cell proliferation in cancers 
such as HCC, lung cancer, ovarian cancer, and 
glioblastoma. 

According to a recent study, Ras activation is 
transduced to splicing factor ASF/SF2 via the 

PI3K/Akt pathway and upregulated KLF6-SV1 
expression in human HCC samples and cell 
lines. KLF6-SV1 overexpression inhibits the 
activity of p21, resulting in cell proliferation. 
When Ras signaling is inactive, ASF/SF2 pri-
marily produces KLF6, resulting in p21-mediat-
ed growth inhibition [72]. In SK-MES-1 cells,  
we found that high expression of KLF6-SV1  
significantly promoted Akt phosphorylation. 
Simultaneously, the PI3K/Akt downstream pro-
tein Cyclin D1 levels were significantly in- 
creased, promoting cell proliferation. In A549 
cells, knocking out KLF6-SV1 decreased p-Akt 
levels while decreasing Cyclin D1 expres- 
sion. Furthermore, Bcl-2 expression increased 
whereas Bax, cleaved Caspase9, and cleaved 
Caspase3 expression reduced in SK-MES-1 
cells. KLF6-SV1 can promote cell survival by 
changing the Bcl-2/Bax axis and the caspase 
cascade [65]. According to another study 
focused on lung adenocarcinoma (LUAD) cell 
lines, KLF6-SV1 overexpression increased lung 
cancer cell proliferation by controlling the Bcl-2 
apoptotic family (see the next section) [62]. 

KLF6-SV1 promotes NSCLC cell proliferation by 
activating the PI3K-Akt signaling pathway. 
Furthermore, KLF6-SV1 can maintain lung can-
cer cell viability by altering related apoptotic 

Figure 3. Schematic diagram of the gene structure of KLF6 and its splicing variants. E1-E4 indicates exons 1-4. TGA 
or TAA represents translation stop codons. NLS, Nuclear Localization Signal. The triangle indicates that the Stop 
codon is in a different box from the KLF6 open reading box. 
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signaling pathways, thereby indirectly stimulat-
ing cell growth (Figure 5). 

KLF6-SV1 is considered a novel antiapoptotic 
protein in NSCLC

The death receptor (extrinsic) pathway and the 
mitochondria-mediated (intrinsic) pathway are 
two primary signaling pathways that regulate 
cellular apoptosis [89]. The binding of ligands 
to cell surface receptors, such as tumor necro-
sis factor-related apoptosis-inducing ligand 
receptors and fatty acid synthase, initiates the 
extrinsic pathway of apoptosis (Fas) [90, 91]. 
Cell injury initiates the intrinsic apoptosis pro-
cess, characterized by the release of cyto-
chrome c from the mitochondria into the cyto-
plasm [92]. The Bcl-2 family proteins have 
important mitochondrial functions and are 
classified as either pro-apoptotic proteins 

(Noxa, Bax, and Bak) or anti-apoptotic proteins 
(Bcl-2, Bcl-xl, and Mcl-1) [93-97]. 

According to the current study, KLF6-SV1 over-
expression regulates Bcl-2 protein family-relat-
ed proteins, limiting apoptosis and thus provid-
ing tumor cells a growth advantage. KLF6-SV1 
overexpression can significantly increase Bcl-2 
expression while decreasing Noxa expression, 
inhibiting lung cancer cell apoptosis [62]. KLF6-
SV1 is also substantially expressed in chemo-
therapy-resistant lung cancer cell lines. When 
KLF6-SV1 is suppressed by small interfering 
RNA (siRNA), Noxa and the activity of Caspase3 
and Caspase8 are expressed is dramatically 
increased [63]. SiRNA can also inhibit the anti-
apoptotic protein Mcl-1, resulting in a consider-
able activation of the intrinsic apoptotic path-
way (Figure 5). As a result, we propose that 
KLF6-SV1 exists in NSCLC as a novel anti-apo-

Table 1. The functional roles of KLF6 spliced variants in cancer
Isoforms Tumor types Key results References
KLF6-SV1 Prostate cancer KLF6-SV1 overexpression accelerates human and mouses prostate cancer 

progression and metastasis.
[57-59]

Ovarian carcinoma KLF6-SV1 up-regulation results in increased proliferation, invasion, angiogenesis, 
and tumorigenicity.

[30, 60, 61]

Lung cancer KLF6-SV1 can regulate Bcl-2 family proteins to inhibit apoptosis and promote 
cell survival. High expression of KLF6-SV1 can significantly promote the invasion 
and migration of cancer cells. Targeted inhibition of KLF6-SV1 can restore the 
resistance of NSCLC cells to cisplatin.

[62-66]

Gastric cancer KLF6-SV1 overexpression mediates cell proliferation, survival, angiogenesis, 
motility, and invasion.

[67]

Breast cancer KLF6-SV1 drives breast cancer metastasis and is associated with poor survival. [68]

Chronic lymphocytic leukemia Autologous T cells expressing the oncogenic transcription factor KLF6-SV1 pre-
vent apoptosis of chronic lymphocytic leukemia cells.

[69]

Nasopharyngeal carcinoma (NPC) KLF6-SV1 leads to a significant decrease in E-cadherin and thus promotes tumor 
progression and metastasis in young NPC patients.

[70]

Hepatocellular carcinoma (HCC) The expression of KLF6-SV1 is up-regulated not only in the carcinogenic Ras/
PI3K/Akt-dependent signal pathway but also in the carcinogenic HGF/PI3K/
Akt-dependent signal pathway, thereby changing the relative ratio of KLF6 Full to 
KLF6-SV1, which in turn leads to increased proliferation of HCC cells.

[71, 72]

Glioblastoma multiforme (GBM) KLF6 allelic imbalance, decreased KLF6, and increased KLF6-SV1 expression are 
common findings in primary GBM tumors, and these changes have antagonistic 
effects on the regulation of cellular proliferation in GBM cell lines. No significant 
link between increased KLF6-SV1 expression levels and survival could be found 
in GBM.

[47, 73]

Pancreatic cancer KLF6-SV1 overexpression correlates with prognosis and tumor grade in patients 
with pancreatic cancer.

[74]

KLF6-SV2 Hepatocellular carcinoma In hepatocellular carcinoma and the HepG2 cell line, high expression levels of 
the KLF6-SV2 lead to a significant reduction in cell proliferation associated with 
apoptosis by activating p21CIP/WAF1 and the pro-apoptotic Bax gene, as mediated 
by the p53. 

[75-77]

Colorectal cancer (CRC) KLF6-SV2 expression is decreased in CRC and indicates that KLF6-SV2 plays 
a role as a tumor suppressor in CRC by efficiently blocking cell proliferation, ar-
resting the cell cycle, and inducing apoptosis, which may be related to increased 
expression of p21 and Bax.

[78]

KLF6-SV3 - Functions are yet to be elucidated. -
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ptotic protein that significantly improves LUAD 
cell survival by inhibiting apoptotic proteins. 

Impact of KLF6-SV1 on the epithelial‑mesen-
chymal transition (EMT) and metastasis

The epithelial-mesenchymal transition (EMT) 
has numerous biological functions in the 
human body and is frequently observed in mul-
tiple tumor types. EMT is considered a key fac-
tor in cancer metastasis [98]. By regulating key 
molecules in linked cell signaling pathways, 
some splicing factors can regulate the expres-

sion of epithelium or mesenchyme during EMT, 
as well as the incidence and development of 
malignancies [99]. 

KLF6-SV1 is significantly associated with EMT 
markers in estrogen receptor-positive breast 
cancer by Affymetrix U133A gene chip an- 
alysis. Overexpression of KLF6-SV1 results in 
increased expression of N-cadherin and 
fibronectin, and decreased expression of E- 
cadherin, increasing tumor metastatic poten-
tial [68]. The impact of KLF6-SV1 on NSCLC cell 
migration can also be achieved through EMT 

Figure 4. Causes and consequences of splicing pattern alterations. Mutations that alter cis-acting splicing elements 
can modify messenger RNA (mRNA) quality and protein function. Activating signaling pathways that can affect the 
activity of splicing regulatory factors or modify the balance between them can also change the proportions of mRNA 
splicing isoforms. Both can lead to the deregulation of crucial cellular processes such as proliferation, apoptosis, 
adhesion, motility, and invasion.
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regulation. KLF6-SV1 can induce macrophage 
polarization to M2 by increasing the expression 
of transcription factor TWIST1 and inflammato-
ry chemokine CCL2, promoting lung cancer cell 
migration [66]. E-cadherin plays a vital role in 
the formation and growth of cancer as a cell 
invasion inhibitor, and its absence will result in 
cellular adhesion failure and tumor metastasis 
[100, 101]. In KLF6-SV1-upregulated squa-
mous cell cancer cell lines, E-cadherin expres-
sion was significantly decreased, whereas N- 
cadherin, Vimentin, Snail1, and Snail2 expres-
sion was significantly increased (Figure 5). In 
contrast, siRNA knockdown of KLF6-SV1 
increased E-cadherin expression. This negative 
correlation indicates that KLF6-SV1 overex-
pression on E-cadherin may increase the risk of 
tumor invasion and metastasis in vivo and is 
linked to a poor prognosis in NSCLC patients 
[65]. 

KLF6-SV1 is a potential prognostic biomarker 
in NSCLC patients

Lung cancer is the leading cause of mortality in 
humans, with NSCLC accounting for over 85% 

of all cases [102, 103]. Patients with early 
NSCLC have a 5-year survival rate of more than 
70% after surgery. However, the prognosis for 
patients with advanced NSCLC is only 19% [5, 
104]. The prognosis varies greatly even among 
patients with the same TNM stage. Therefore, 
the TNM staging system is generally insuffi-
ciently predictive [105]. If any biomarkers can 
be used to forecast the prognosis of NSCLC 
patients, clinical practice of focused treatment 
can be better guided, and the goal of improving 
patient prognosis can be achieved. 

KLF6-SV1 is frequently overexpressed in post-
operative pathological specimens from pa- 
tients with primary LUAD. Patients with low 
KLF6-SV1 expression have a 6.5-year longer 
median survival than those with high expres-
sion, indicating that KLF6-SV1 overexpression 
is significantly related to postoperative survival 
in LUAD patients [62]. A multicenter study of 
patients with node-negative breast cancer 
shows that higher KLF6-SV1 expression levels 
are associated with shorter metastasis-free 
survival [68]. However, researchers do not find 
a significant association between high KLF6-

Figure 5. Roles of KLF6-SV1 in NSCLC progression. High expression of KLF6-SV1 promotes cell proliferation via the 
canonical PI3K/Akt signaling pathway in NSCLC cell lines. KLF6-SV1 can maintain the survival of lung cancer cells 
by regulating related apoptosis signaling pathways, thereby indirectly promoting cell proliferation. KLF6-SV1 alters 
the expression levels of EMT-related genes and results in marked cancer cell dissemination.



Roles of KLF6-SV1 in NSCLC

4475	 Am J Cancer Res 2022;12(10):4468-4482

SV1 expression and patient prognosis in glio-
blastoma multiforme (GBM). The main reason 
may be the generally low survival rate of GBM 
patients [73]. In an independent cohort study 
of primary prostate tumors, increased KLF6-
SV1 expression is strongly linked to poorer sur-
vival. The difference in median survival be- 
tween high and low KLF6-SV1 expression levels 
was greater than 4 years [59]. KLF6-SV1 is  
also found to be substantially elevated in the 
diseased tissues of 79 patients with lung squa-
mous cell carcinoma and LUAD who underwent 
complete surgical resection. Our previous stud-
ies have linked KLF6-SV1 expression to tumor 
differentiation, lymph node metastases, TNM 
stage, and poor prognosis [64]. As a result, 
KLF6-SV1 has the potential to become a novel 
NSCLC prognostic biomarker. However, the rel-
evant data presented above are only from a 
small number of patients. Through multicen-
tred research, we will gather huge volumes of 
patient data in the future to further confirm our 
findings. 

Potential gene therapy

Over the last few decades, various clinical strat-
egies have been employed to treat NSCLC, 
including surgery, chemotherapy, radiation, tar-
geted therapy, and immunotherapy [106]. 
Surgical resection is appropriate for patients 
with early-stage NSCLC [2, 107]. Chemotherapy 
primarily centers on antitumor platinum-based 
medications as a first-line clinical treatment 
[108]. Despite the extraordinary efficacy of 
these therapeutic strategies, NSCLC always 
develops treatment resistance to some degree 
[109, 110]. Patients with NSCLC now have a 
poor prognosis. Therefore, a more effective 
treatment strategy is urgently needed. 

SiRNA targeting KLF6-SV1 has been discovered 
to suppress cell proliferation, invasion, and 
metastasis in different cancers, including lung 
cancer [62, 63], glioma [47, 74], prostate can-
cer [59, 89], and gastric cancer [67]. In LUAD 
cell lines, siRNA-mediated regulation of KLF6-
SV1 expression can effectively cause cancer 
cell death, which is linked to Noxa overexpres-
sion and Bcl-2 inhibition [62]. Moreover, KLF6-
SV1 overexpression reduced the apoptosis of 
cancer cells in patients with NSCLC treated 
with cisplatin, demonstrating that KLF6-SV1 is 
linked to cisplatin resistance (Figure 6). KLF6-

SV1 knockdown using siRNA restores chemo-
sensitivity in drug-resistant NSCLC cells [60, 
62]. Similar behavior has been observed in 
ovarian cancer cell lines. KLF6-SV1 downregu-
lation by siRNA can dramatically decrease ovar-
ian cancer cell migration and proliferation while 
restoring cisplatin sensitivity in tumor cells [61, 
111]. In an in vivo model of NSCLC, KLF6-SV1 
can inhibit cisplatin-induced changes in apop-
totic factors and reverse cisplatin-induced 
apoptosis [63]. Overexpression of KLF6-SV1, 
which regulates the apoptotic pathway, could 
be a new mechanism of cisplatin resistance in 
NSCLC patients. As a result, treating NSCLC 
with a combination of siRNA and cisplatin to 
target KLF6-SV1 can not only reduce chemo-
therapy resistance and cause chemotherapy-
resistant lung cancer cells to die spontaneously 
(Figure 6). The quantity of apoptosis of cancer 
cells induced by siRNA combined with cisplatin 
is much higher than any single medication 
alone, suggesting that siRNA combined with 
cisplatin could be a new treatment option for 
chemotherapy-resistant NSCLC. 

Problems and prospects

Currently, timely diagnosis and treatment of 
NSCLC are not satisfactory. More research into 
the underlying molecular pathways that could 
improve NSCLC diagnosis and treatment is crit-
ical. KLF6-SV1 has previously been demon-
strated to be overexpressed in numerous 
human malignant tumors, and it has a compli-
cated interaction with various malignancies. 
However, only a few studies with small sample 
sizes have linked KLF6-SV1 to the occurrence, 
development, diagnosis, and treatment of 
NSCLC, and the molecular mechanism of a par-
ticular regulation remains unknown. Moreover, 
aside from the SNP of the KLF6 gene that 
increases its high expression in cancer, are 
there other processes or upstream genes that 
regulate KLF6-SV1 and accelerate the progres-
sion of NSCLC? A large sample study in con-
junction with multicenter research is still 
required to better understand how KLF6-SV1 
regulates NSCLC. 

In both in vitro and in vivo models of NSCLC, 
siRNA targeting KLF6-SV1 significantly inhibits 
tumor cell proliferation and migration [60]. 
Meanwhile, targeting KLF6-SV1 with siRNA and 
cisplatin can improve NSCLC cell chemosensi-
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tivity, but there are significant challenges in 
translating these treatment strategies from ani-
mal models to human trials [79, 80]. The con-
cept of siRNA therapy has taken many twists 
and turns since it was first proposed in 1998. In 
2001, Elbashir and his colleagues succeeded 
in suppressing the expression of specific genes 
for the first time by delivering chemically syn-
thetic siRNA to mammalian cells [112], igniting 
a research surge. Even though siRNA therapy 
has long been a source of contentious due to 
flaws in safety, targeting, efficacy, and trans-
port, recent advances in chemical modification 
and delivery have resurrected this field as a 
research hotspot. After decades of research, in 
2018, the US Food and Drug Administration 
(FDA) and the European Commission approved 
ONPATTRO (patisiran, ALN-TTR02) as the first 
commercial siRNA treatment for hereditary 
amyloidogenic transthyretin amyloidosis with 
polyneuropathy [113, 114]. The FDA recently 
approved GIVLAARI (givosiran, ALN-AS1) for the 
treatment of acute hepatic porphyria [115-
117]. Fortunately, as the obstacles to the effec-
tiveness of siRNA therapy continue to be over-

come, we believe that siRNA therapeutic medi-
cines targeting KLF6-SV1 will quickly enter  
clinical trials for NSCLC and provide new treat-
ments for patients. 

Conclusion

This review briefly described the molecular 
mechanism by which KLF6-SV1 promotes 
NSCLC cell proliferation, invasion, metastasis, 
and anti-apoptosis. It is worth noting that  
KLF6-SV1 may exist as a novel anti-apoptotic 
protein in lung cancer cell lines, primarily pro-
moting the malignant development of NSCLC 
cells by regulating the apoptosis pathway. 
KLF6-SV1 expression levels in NSCLC patients 
are strongly associated with tumor differentia-
tion, lymph node metastasis, TNM stage, dis-
tant metastasis, and poor prognosis. KLF6-SV1 
has the potential to become a new prognostic 
biomarker in postoperative NSCLC patients. 
Furthermore, we highlighted the possibility of 
siRNA-targeted silencing of KLF6-SV1 as a 
novel strategy for treating chemo-resistant 
NSCLC patients and its therapeutic potential. 

Figure 6. KLF6-SV1-mediated drug-resistance mechanism of NSCLC. Overexpression of KLF6-SV1 abrogates the 
pro-apoptotic effects of chemotherapy on lung cancer cell lines. Targeted reduction of KLF6-SV1 using siRNA re-
stores chemotherapy sensitivity in resistant lung adenocarcinoma. The combination of siRNA and cisplatin resulted 
in a significant increase in apoptosis. 
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Last but not least, we described some issues in 
this field and proposed potential solutions.
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