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Effects of androgen deprivation on white matter integrity 
and processing speed in prostate cancer patients 
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Abstract: Studies have associated chemotherapy-elicited changes in cognitive function with impaired white matter 
integrity in cancer patients. Androgen deprivation therapy (ADT) may lead to cognitive deficits in prostate cancer 
patients; however, whether ADT influences white matter integrity has never been investigated. In a prospective study, 
15 men with non-metastatic prostate cancer receiving ADT and 15 not receiving ADT (controls or CON), comparable 
in age and years of education, participated in N-back task, flankers’ task, and quality-of-life (QoL) assessments. 
All participants underwent diffusion tensor imaging of the brain at baseline and at 6 months. Imaging data were 
processed with published routines. The results of a paired t-test of 6-month follow-up vs. baseline were evaluated 
at a corrected threshold for the whole brain each in ADT and CON. ADT patients showed significantly worse 1-back 
accuracy during follow-up, but the two groups did not differ in 2-back accuracy, 1- or 2-back reaction time (RT), 
flankers’ task RT or QoL across time points. In ADT, significantly reduced fractional anisotropy (FA) was noted in the 
corpus callosum, forceps minor/anterior thalamic radiation, superior and posterior corona radiata. The differences 
in FA correlated significantly with changes in 2-back and flankers’ task RT. No significant FA changes were noted 
during follow-up in CON. Six-month ADT affects white matter integrity, and the deficits were associated with slower 
processing speed. These findings add to the literature supporting the deleterious effects of androgen deprivation on 
the brain and cognition in prostate cancer patients. 
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Introduction

Cancer-associated cognitive decline is increas-
ingly recognized in patients with non-central 
nervous system cancers [1]. While effective, 
many treatments, including chemotherapy, 
have significant impacts on patients’ cognitive 
status and quality of life. Androgen deprivation 
therapy (ADT) is widely used for treatment of 
prostate cancer. While ADT has shown efficacy 
in the treatment of prostate cancer with metas-
tasis, its indications and duration of use in indi-
viduals with non-metastatic cancer and those 
showing rising levels of prostate specific anti-
gen remain unclear. There has been a growing 
concern in the wide use of ADT in these condi-
tions without studies confirming its efficacy. 

ADT incurs a range of constitutional, cardiovas-
cular, endocrine, and musculoskeletal side 
effects, which need to be taken into consider-
ation when discussing the risk and benefit of 
ADT [2, 3]. Further, ADT may impact cognitive 
function and mental health, a major determi-
nant of quality of life (QoL) [4, 5]. This issue is 
particularly salient in younger men who are 
expected to be cured from prostate cancer. 
Thus, a systematic study of the impact of ADT 
on brain and behavior would facilitate clinical 
decision making in the treatment of prostate 
cancer patients.

Previous studies have combined cognitive 
assessment and brain imaging to understand 
the neural substrates of cognitive deficits elic-
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ited by ADT in prostate cancer patients. For 
instance, studies have noted reduced parieto-
occipital activation during spatial reasoning 
and memory [6], reduced medial prefrontal cor-
tical activation during visual working memory 
[7], reduced posterior cingulate, inferior pari-
etal, and middle temporal cortical metabolism 
and higher inferior parietal cortical metabolism 
in association with impaired spatial reasoning 
and verbal memory, respectively [8]. Other 
studies reported decreased frontal gray matter 
in link with slower reaction time during working 
memory processing [9], increased resting state 
functional connectivity of hypothalamus with 
the precentral gyrus in cognitive motor pro-
cessing [10], as well as an overall increase in 
frontoparietal and temporal cortical connectiv-
ity following ADT [11]. 

However, no studies to our knowledge have 
investigated the effects of ADT on white matter 
integrity. Testosterone is known to influence 
brain development, with higher white matter 
density in male relative to female adolescents 
[12]. The sex differences are likely mediated by 
the direct effects of testosterone or its metabo-
lites on androgen receptors and/or the effects 
of gonadotropins, such as luteinizing hormone, 
on the brain [13]. Higher androgen levels 
through the course of treatment appeared to 
enhance white matter integrity, as noted by 
reduced mean diffusivity, in female-to-male 
transgenders receiving testosterone replace-
ment [14, 15]. Along with lower testosterone 
levels, altered fronto-temporal cortical white 
matter integrity and graph-theoretic metrics  
of structural connectivity were noted in newly 
diagnosed patients with prostate cancer [16]. 
In rats, removal of endogenous testosterone by 
castration led to lower axon diameter and lower 
g ratio (an index of optimal axonal myelin) in  
the splenium - the part of the corpus callosum 
interconnecting right and left posterior cortices 
- in comparison with sham-operated males 
[17]. Studies have reported higher activity of 
5-alpha-reductase - the enzyme that acts on 
testosterone to generate 5-alpha reduced 
metabolites - in the corpus callosum and sub-
cortical white matter [18, 19], suggesting 
potential effects of testosterone on white-mat-
ter structure and function. Further, during early 
development [20] and possibly throughout life-
time [19], 5-alpha reduced metabolites seem 
to be involved in myelinogenesis. Thus, there is 
substantial evidence supporting the effects of 

testosterone on the structural and functional 
integrity of white matters. However, it is not 
clear whether or how androgen deprivation may 
influence white matter structures in prostate 
cancer patients.

Numerous studies of neurological disorders 
including multiple sclerosis (MS), Huntington’s 
disease (HD), Alzheimer’s disease (AD), as well 
as those of healthy aging suggest that white 
matter integrity is central to cognitive function-
ing [21]. For instance, in MS, a demyelinating 
neurodegenerative disease, diminished integri-
ty of anterior thalamic radiation predicted cog-
nitive decline over a period of 10 years [22]. In 
another study, cognitively impaired patients 
with MS showed widespread reduced integrity 
of white matter tracts, including the corpus cal-
losum, superior/inferior longitudinal fasciculi, 
corticospinal tracts, forceps major, cingulum, 
and fornices [23]. In HD, the radial diffusivity of 
fronto-parietal tract negatively [24] and the 
fractional anisotropy (FA) of genu and body of 
corpus callosum positively [25] correlated with 
cognitive function. Similarly, the FA of white 
matter tracts including the splenium of corpus 
callosum, parahippocampal white matter, cin-
gulum, and inferior fronto-occipital fasciculus 
was positively associated with memory func-
tion in AD [26]. Mean white-matter diffusivity 
correlated negatively and FA correlated posi-
tively with global cognition in non-demented 
elderly [27]. With increasing age, a posterior-to-
anterior gradient of decline in white-matter 
integrity is noted that affects overall cognitive 
functioning [28]. 

Thus, it is highly likely that ADT would have a 
significant impact on white matter integrity and 
lead to cognitive deficits in prostate cancer 
patients. In the present study, we assessed the 
effects of ADT on white matter integrity in 
patients with prostate cancer using diffusion 
tensor imaging (DTI), a magnetic resonance 
imaging protocol widely used to investigate 
white matter integrity in psychiatric and neuro-
logical disorders. For instance, individuals with 
multiple sclerosis are known to have white mat-
ter pathology and DTI represents a useful tool 
in monitoring the progression and treatment 
outcome of the illness [29]. Many studies have 
also shown microstructural white matter chang-
es, reflected by a reduction of FA, as a result of 
chemotherapy [30-32] in patients with differ-
ent cancers. Further, the severity of white mat-
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ter changes correlated significantly with the 
extent of cognitive impairment [30, 33]. Here, 
we evaluated the effects of ADT on white mat-
ter integrity in prostate cancer patients who 
received ADT, as compared to those who did 
not receive ADT in a longitudinal setting. We 
hypothesized that ADT would lead to changes in 
white matter integrity, as indexed by FA, infor-
mation processing speed, working memory, 
executive control, as well as deterioration in 
quality of life.

Methods

Participants and clinical profiles

Patient recruitment and methodology follow 
our earlier studies [7, 9, 10]. Patients 55 to 75 
years of age and with biopsy-proven prostate 
adenocarcinoma without distant metastases 
were recruited from the Medical Oncology  
and Urology Clinics at the West Haven VA 
Connecticut Healthcare System. Following cur-
rent National Comprehensive Cancer Network 
and American Urological Society practice guide-
lines, treatments were not affected by patient’s 
decision of participation in the study. Please 
see the legend of Supplementary Figure 1 for 
more details of treatment and recruitment of 
the participants. All patients prescribed ADT as 
adjuvant treatment or due to biochemical recur-
rence were contacted for participation. ADT 
consisted of medical castration with an LH-RH 
agonist (Goserelin or Leuprolide) subcutane-
ously for 6 months, after a lead-in period with 
Bicalutamide 50 mg daily. Patients with non-
metastatic prostate cancer who had never 
been treated with ADT participated as controls 
(CON). For both ADT and CON, exclusion criteria 
were: Eastern Cooperative Oncology Group 
Performance Status >1; active second malig-
nancy; significant cardiovascular, liver, renal, or 
neurological disease; use of any investigational 
drugs or contraindications, including claustro-
phobia, for magnetic resonance imaging (MRI); 
current substance (except nicotine) use disor-
ders (use of illicit substances were verified by a 
urine test); history of Axis I psychiatric illness; 
history of traumatic brain injury or concussions 
causing loss of consciousness. All participants 
underwent a health questionnaire interview to 
ensure eligibility for MRI. Participants who had 
a prostatectomy were at least 3 months from 
their surgery before study entry. Participants 
who were to receive radiation to the prostate 

underwent baseline assessment and MR scan 
before starting any treatment and had to be 
fully recovered from any acute side effects of 
radiation at the time of their follow-up assess-
ments. In addition to evaluation of serum tes-
tosterone and prostate-specific antigen levels 
as part of their routine bloodwork at every 
assessment, all participants underwent deter-
mination of other hormonal (e.g., cortisol) lev-
els that could potentially affect cognitive 
function. 

Among 60 candidates with non-metastatic 
prostate cancer, 46 who had never been treat-
ed with ADT were enrolled in the study. Twenty 
patients were scheduled for ADT and 26 
patients served as CON. Sixteen ADT and 17 
CON completed both baseline and follow-up 
assessments. However, 1 ADT and 2 CON were 
excluded due to excessive head movements 
during MR scans. Thus, the data from 15 ADT 
and 15 CON were included in the analyses 
(Supplementary Figure 1). 

The study was approved by the Human 
Investigation Committee at both the West 
Haven VA and Yale University School of Medicine 
(Ref. No.: HIC#2000020501) and was conduct-
ed in accordance with Declaration of Helsinki. 
All participants provided a written informed 
consent prior to the study. 

Study procedures and assessment of cogni-
tion and quality of life

All participants underwent evaluation for quali-
ty of life (QoL), cognitive assessment with 
N-back and flankers’ tasks (outside the scan-
ner), and MR imaging at baseline and at 
6-month follow-up. At baseline, participants 
were also assessed for global cognition using 
Montreal Cognitive Assessment (MoCA).

N-back task is a widely used paradigm to 
assess working memory, a form of short-term 
memory that provides temporary storage and 
manipulation of information necessary for com-
plex cognitive tasks (Supplementary Figure 2) 
[34]. Briefly, 0-, 1-, and 2-back trials were in- 
cluded in the N-back task, each imposing 
increasingly higher demand on working memo-
ry. As 0-back trials required no working memo-
ry, we used the correct response rate (accu- 
racy) and reaction time (RT) of 1- and 2- vs. 
0-back scores (i.e., 1-back minus 0-back accu-
racy, etc.) as outcome measures [35]. 
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Participants typically respond faster and more 
accurately during 0-back as compared to 1- 
and 2-back trials. Thus, in evaluating changes 
at follow-up from baseline, a larger decrease in 
accuracy and increase in RT indicated more sig-
nificant impact/deficit. 

We used flankers task to assess executive  
control [35]. Each trial began with the presen-
tation of a fixation point which, after 500 ms, 
was replaced by a stimulus array consisting  
of 5 stimuli, spanning 12° in visual angle 
(Supplementary Figure 3). The array included a 
target arrow located at the center and two dis-
tractors (i.e., flankers) located on each side. 
Participants were instructed to make a button 
press in the direction indicated by the target 
arrow. The stimulus array used to disappear at 
the button press, and a fixation point appeared 
for the next trial after an inter-trial-interval of 
900 ms. Approximately 2/3 of all trials were 
congruent trials, with flankers pointing in the 
same direction as the target arrow at the cen-
ter. The remaining 1/3 were incongruent trials 
with flankers pointing in the opposite direction. 
Congruent and incongruent trials appeared 
randomly within two blocks each of 120 trials. 
The primary outcome measure was represent-
ed by RT difference between the two types of 
trials: incongruent minus congruent RT [35]. 
Participants respond faster during congruent 
than the incongruent trials, and less RT differ-
ence between congruent and incongruent trials 
- a smaller value of “incongruent minus congru-
ent RT” - indicated better performance or a 
higher capacity in interference control.

As a general measure of QoL, participants com-
pleted the Functional Assessment of Cancer 
Therapy-Prostate (FACT-P) questionnaire at 
baseline and at 6-month follow-up [36, 37]. The 
cumulative score of FACT-P subscale scores  
of physical, social, emotional, functional well-
being, and prostate cancer subscale score 
formed the total QoL score. 

Imaging protocol and data processing

DTI data was obtained at baseline and at 
6-months follow-up on a 3-Tesla Siemens 
Prisma system using echo-planar imaging with 
b = 1000 s/mm2 diffusion weighting in 64 
directions and one b = 0 image. Whole brain 
coverage was achieved with 64 consecutive, 2 
mm thick axial slices. In-plane resolution was 2 

× 2 × 2 mm3, and acquisition matrix = 110 × 
110; TE = 84 ms; TR = 2200 ms; field of view = 
220 mm × 220 mm; bandwidth = 1818 Hz/Px, 
and 90° flip angle. The scan was repeated 
twice to increase the signal to noise ratio.

First, the images were visually inspected for 
movement artifacts. Next, images were pro-
cessed with FMRIB Software Library (FSL 6.0, 
https://fsl.fmrib.ox.ac.uk/fsl/) following a stan-
dard pipeline. Briefly, diffusion-weighted imag-
es were corrected for motion and eddy currents 
using FSL’s eddy by registering the diffusion 
weighted images to the reference b = 0 s/mm2 
(the first non-diffusion weighted volume) [38]. 
The process also reduced image distortions 
[38]. Next, non-brain tissue from the b0 image 
was removed and a brain-mask was generated 
using FSL’s brain extraction toolbox, BET [39]. 
Corresponding brain mask was applied to the 
rest of the diffusion-weighted images, and dif-
fusion tensor model was fitted at each voxel 
using FSL’s DTIFIT to construct diffusion ten-
sors and dependent maps, including the frac-
tional anisotropy (FA) maps. Next, we applied 
tract-based spatial statistics (TBSS) to localize 
voxel-wise changes in FA [40, 41]. TBSS utilizes 
a non-linear registration tool FNIRT [42, 43] 
which uses a b-spline representation of the reg-
istration warp field to align all FA images to a 1 
× 1 × 1 mm standard FMRIB58_FA template 
space [44]. Next, the standard space FA imag-
es were averaged to create a white matter 
mean FA skeleton using a threshold of 0.2 to 
exclude non-white matter voxels, avoid periph-
eral tracts, and mitigate partial volume effects 
of gray matter. Each participant’s FA map in 
standard space was projected onto this skele-
ton, and the resulting central trajectory of white 
matter pathways across all participants were 
applied to voxel-wise statistics using the rou-
tine randomize [45]. 

Statistical analyses of clinical, behavioral, and 
imaging data

All statistical analyses of clinical and behavioral 
data were conducted with Stata (Stata Corp 
LLC, Texas, USA). We used linear mixed model 
via restricted maximum likelihood (REML) with 
random intercept across subjects, and group 
(ADT vs. CON), time-point (follow-up vs. base-
line), and their inteaction as fixed effects to 
assess the changes during follow-up from 
baseline in longitudinal variables. We account-
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ed for small sample using Kenward-Roger 
method in the model [46]. Wherever appropri-
ate, model was adjusted for baseline age, edu-
cation, and MoCA score. The results that met 
two-tailed P<0.05 were considered statistically 
significant.

We employed FSL’s tool randomize [45] for vox-
el-wise statistical inference of FA maps across 
the two groups. Randomize is a permutation 
method used for inference (thresholding) on 
statistical maps when null distribution is not 
known and is effective in controlling for false-
positive results. Using 5000 permutations to 
allow robust statistical inference, we compared 
changes at follow-up from baseline in ADT and 
CON, separately, using non-parametric thresh-
olding in paired T-tests. A family-wise error 
(FWE) corrected threshold of P<0.05 was 
selected using threshold free cluster enhance-
ment (TFCE) option in randomize to evaluate FA 
changes across time points. The white matter 
tracts were identified using JHU DTI-based 
white-matter atlas as included in FSL [47].

We extracted the mean FA of clusters identified 
from voxel-wise analyses and assessed clinical 
correlates of FA changes in ADT (see Results) 
using Spearman’s rank correlation analysis, 
adjusted for baseline age, education, and 
MoCA score. 

Results

Baseline clinical profile of the participants

At baseline, ADT and CON patients were com-
parable in age, years of education, testoster-

one (t28 = 0.27, P = 0.786), and cortisol (t28 = 
0.55, P = 0.589) levels (Table 1; Supplementary 
Figure 4). MoCA score was significantly higher 
in CON than in the ADT group. In addition, we 
observed a significant treatment × time inter-
action in testosterone level, as expected of the 
effects of ADT, but not in the cortisol level 
(Table 1). 

N-back and flankers task performance and 
quality of life

N-back and flankers task performance metrics 
and QoL scores are presented in Supplementary 
Figure 5 and Supplementary Table 1. In mixed 
model analyses (adjusted for baseline age, 
education, and MoCA scores), treatment group 
(ADT/CON) × time (baseline/follow-up) interac-
tion was significant only for the 1-back (vs. 
0-back) accuracy, but not for other N-back or 
the flankers task metrics (Table 2). In addition, 
we did not observe significant group × time 
interaction in QoL score. 

Changes in fractional anisotropy in ADT and in 
CON, and their clinical correlates

At P<0.05 FWE, the ADT group showed signifi-
cant decreases in FA at follow-up versus base-
line in clusters with peak MNI coordinates at 
the genu of corpus callosum (x = 4, y = 24, z = 
12), forceps minor/anterior thalamic radiation 
(x = 19, y = 43, z = 20), superior corona radiata 
(two peaks: x = -18, y = -13, z = 36; x = -25, y = 
-20, z = 24), body of corpus callosum (x = -6, y 
= -24, z = 24), posterior corona radiata (x = -19, 
y = -35, z = 37), splenium of corpus callosum (x 
= 15, y = -34, z = 24) (Figure 1). No significant 

Table 1. Demographic and clinical characteristics of the patients

ADT (n = 15) CON (n = 15) (t28/χ2(1) group × time, p)

Age (yr) 66.8 ± 7.0 67.0 ± 5.9 0.06, 0.956
Education (yr) 13.6 ± 2.7 14.5 ± 2.9 0.90, 0.375
MoCA score 24.5 ± 2.9 26.9 ± 2.2 2.48, 0.019*
AUDIT score 3.4 ± 3.5 2.0 ± 1.7 1.39, 0.176
Smoker status 0 (n = 4), 1 (n = 7), 2 (n = 4) 0 (n = 3), 1 (n = 10), 2 (n = 2) 1.34, 0.512

B F B F
T level (ng/ml) 3.8 ± 1.7 0.2 ± 0.1 4.0 ± 1.7 4.0 ± 2.0 49.25, <0.001*
C level (µg/dl) 7.7 ± 3.4 10.7 ± 5.5 8.4 ± 3.4 10.1 ± 4.3 0.44, 0.508
Note: Data are presented in mean ± SD except for Smoker status where data is frequency; MoCA: Montreal Cognitive  
Assessment, AUDIT: Alcohol Use Disorder Identification Test, Smoker status (0: never, 1: former, 2: current), T: testosterone, 
C: cortisol; B: baseline; F: follow-up. For T and C levels, the statistics correspond to treatment × time interaction, while for the 
other variables the statistics correspond to two-sample t-tests or χ2-test comparing ADT and CON at the baseline; *P<0.05.
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changes were observed for CON at the same 
threshold. Using the clusters identified from the 
ADT as masks, we extracted the mean FA for all 
participants. As expected, the mean FA showed 
significant differences cross time points for 
ADT; in contrast, the CON group did not show 
significant differences in mean FA at follow-up 
vs. baseline for any of these clusters (Figure 2). 

The extracted mean FA of these clusters 
showed significant treatment × time interac-
tion, adjusted for baseline age, education, and 
MoCA, except for the left posterior corona radi-
ata (Table 3).

Further, we assessed for correlation between 
changes in FA and in N-back/flankers task per-
formance metrics and Qol score at follow-up 
from baseline in ADT (Table 4). In Spearman’s 
rank correlation, adjusted for baseline age, 
education, and MoCA score, we observed sig-
nificant correlations between the change in 
2-back (vs. 0-back) RT with FA changes in the 
PCR; and flankers incongruent (vs. congruent) 
RT changes with FA changes in the CC, genu/
body, FM/ATR, and SCR in ADT. 

Discussion

Despite a small sample size, the current find-
ings showed statistically significant changes in 
white matter integrity, as indexed by a dimin-
ished FA, in prostate cancer patients receiving 
ADT. The changes in FA were observed in mul-
tiple locales of white matter connecting func-
tionally homologous regions across the hemi-
spheres as well as cortical and subcortical 

regions. These changes may potentially impact 
information processing as evidenced in the cor-
relation between the changes in FA and the RT 
during 2-backs and during interference control 
in the flanker’s task. Together, these results 
add to the literature in support of deleterious 
effects of androgen deprivation on cognition in 
prostate cancer patients.

These findings are broadly consistent with a 
recent report of impaired white matter integrity 
in patients with testicular cancer with orchidec-
tomy [48]. Here, we noted FA changes in the 
corpus callosum in prostate cancer patients 
receiving ADT. The corpus callosum comprises 
heavily myelinated nerve fibers that connect 
left and right cerebral hemispheres with the 
function of integrating and transferring infor-
mation across hemispheres [49]. We observed 
significantly reduced corpus callosum FA during 
follow-up vs. baseline and greater FA reduction 
in association with impaired cognitive-motor 
control in ADT. The findings suggest that com-
promised corpus callosum integrity due to ADT 
may lead to worse cognitive control in prostate 
cancer patients. We also observed reduced FA 
in superior/posterior corona radiata, forceps 
minor and anterior thalamic radiation. Corona 
radiata contains fibers ascending from the thal-
amus to the cortex and descending from the 
frontal (superior corona radiata) and parietal 
lobes (posterior corona radiata) to the basal 
ganglia, brainstem and spinal cord, in support 
of cognitive and motor functions [50-54]. For 
instance, patients with posterior corona radia-
ta infarct, as compared to controls, demon-
strated impaired cognitive-motor speed in the 

Table 2. Treatment (ADT vs. CON) and time (follow-up vs. baseline) main and interaction effects of N-
back, flankers task performance and QoL scores: mixed model analysis

Treatment
(χ2(1), p-value)

Time
(χ2(1), p-value)

Treatment × time
(χ2(1), p-value)

N-back correct response %
    1-back - 0-back 0.79, 0.373 2.53, 0.112 5.04, 0.025*
    2-back - 0-back 1.82, 0.178 3.84, 0.050 1.14, 0.286
N-back correct trial RT (ms)
    1-back - 0-back 5.57, 0.018* 1.87, 0.171 0.54, 0.464
    2-back - 0-back 1.03, 0.309 0.00, 0.988 0.22, 0.636
Flankers task RT (ms)
    Incongruent - congruent 0.29, 0.593 0.06, 0.799 2.86, 0.091
    Quality of life 1.95, 0.162 0.08, 0.779 2.73, 0.098
Note: *P<0.05 adjusted for baseline age, education, and MoCA score. 
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Trail Making Test and worse accuracy in a digit 
symbol test, both reflecting executive dysfunc-
tion [54]. Further, in healthy adults 18 to 83 
years of age, lower FA in superior corona radia-
ta correlated with lower cognitive-motor speed 
in the Trail Making Test [55]. 

In ADT, along with reduced FA at follow-up from 
baseline, we observed the FA changes in nega-
tive association with processing speed during 
working memory and cognitive control. Thus, 
ADT impacts the integrity of superior and poste-
rior corona radiata, and the patients showing 
less changes in FA demonstrated less impaired 
cognitive-motor processing. Additionally, the 
capacity of interference control in the flankers’ 
task, as demonstrated in the RT difference 
between incongruent and congruent trials, was 
associated with the FA of forceps minor/anteri-
or thalamic radiation. Forceps minor - the ante-
rior part of corpus callosum - connects homolo-
gous anterior frontal cortical regions [56-58]. 
Anterior thalamic radiation projects from the 
thalamus to the anterior limb of the internal 
capsule and carries reciprocal connections 
from the hypothalamus and limbic structures to 
the frontal cortex [59]. Earlier studies implicat-
ed these fibers in executive functions and pro-
cessing speed [60, 61]. For instance, white 
matter hyperintensities in the anterior thalamic 
radiation predicted slower processing speed in 
the Trail Making Test in genetically defined 
small vessel disease [61]. In addition, higher FA 
in forceps minor and anterior thalamic radia-
tion predicted shorter RT during Stroop-color 
naming task in healthy adults [60]. Consistent 
with the literature, our current findings showed 
that ADT disrupted white matter integrity and 
cognitive functions and that the changes in 
cognitive functions can potentially be account-
ed for by the specific locales of white-matter 
microstructural changes.

Notably, with the impairment in white-matter 
integrity and the association between changes 
in white matter integrity and cognitive perfor-
mance following 6 months of androgen depriva-
tion, ADT patients overall demonstrated little or 
no changes in performance metrics or QoL. The 
only metric showing significant treatment × 
time interaction was 1-back (vs. 0-back) accu-
racy, which was significantly decreased in ADT 
but not in CON at 6 months. These findings are 
broadly in line with our previous studies [10, 
62] and others that showed little significant 
cognitive decline in prostate cancer patients 
who received ADT, as compared to those who 
did not receive ADT [63, 64]. The findings of RT 
changes in significant association with FA 
changes but not manifesting in the impact of 
ADT suggest individual variability in the impact 

Figure 1. Clusters with significantly decreased FA 
(P<0.05 FWE corrected) during follow-up as com-
pared to baseline in ADT. Note: mean FA skeleton is 
shown in Green, and clusters of decreased FA in Red; 
CC: corpus callosum, FM: forceps minor, ATR: ante-
rior thalamic radiation, SCR: superior corona radiata 
(two clusters), PCR: posterior corona radiata, spl: 
splenium. No clusters showed significant differences 
in CON at the same threshold.
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Figure 2. FA (mean ± SD) of the clusters showing significant changes at follow-up from baseline in ADT. The FAs are shown separately for ADT (gray bars) and CON 
(white bars) and for baseline (B) and follow-up (F). Note: *P<0.05, paired t-test of F vs. B; CC: corpus callosum, FM: forceps minor, ATR: anterior thalamic radiation, 
SCR (two clusters): superior corona radiata, PCR: posterior corona radiata, spl: splenium.
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of ADT; although ADT did not influence perfor-
mance on average, some individuals were able 
to compensate for the impact of ADT and some 
were not, as we and others also noted in earlier 
studies of functional measures [7, 65, 66]. High 
variability in performance measures and poten-
tial practice effects may also make it difficult to 
see group differences with a relatively small 
sample size. In our previous functional MRI 
studies, we too noted middle frontal cortical 
hypoactivation [7] and altered hypothalamus-
middle frontal cortical functional connectivity 
[10] in association with N-back performance in 
prostate cancer patients on ADT relative those 
not on ADT, with few significant differences in 
performance metrics. Together, these findings 
suggest the utility of imaging in capturing the 
effects of ADT on the brain. Along with the find-
ings that brain changes may precede cognitive 
deficits [62], brain changes reflect a more sen-
sitive measure than neurocognitive testing 
alone. It remains to be seen whether a longer 
duration of androgen deprivation may elicit 

more pervasive changes in cognition and QoL 
when participants can no longer compensate 
for the brain changes, as has been observed in 
long-term survivors of breast cancer [66].

Limitations of the study and conclusions

A number of limitations need to be considered. 
First, the study included a small sample size, 
and the results would need to be replicated. On 
the other hand, we wish to emphasize that the 
imaging results on white matter FA changes 
were obtained at a corrected threshold and 
would likely be robust. Second, we did not 
observe significant group differences across 
time points in most of the cognitive measures 
and, as discussed earlier, individual variation in 
the capacity of functional compensation may 
account for the findings. On the other hand, 
potential practice effects on task performance 
and small sample size can also mask the 
results. Third, we assessed only working mem-
ory and interference control. Studies are need-

Table 3. Treatment (ADT vs. CON) and time (follow-up vs. baseline) main and interaction effects of 
mean FA: mixed model analysis

Treatment
(χ2(1), p-value)

Time
(χ2(1), p-value)

Treatment × time
(χ2(1), p-value)

CC, genu 4.72, 0.029 15.10, <0.001 5.66, 0.017*
FM/ATR 4.78, 0.029 13.93, <0.001 5.86, 0.016*
SCR, cluster 1 4.35, 0.037 16.70, <0.001 5.23, 0.022*
CC, body 1.67, 0.196 17.82, <0.001 4.71, 0.030*
PCR 3.79, 0.052 10.22, 0.001 1.09, 0.297
CC, splenium 1.45, 0.228 7.36, 0.007 9.75, 0.002*
SCR, cluster 2 6.67, 0.009 8.85, 0.003 4.77, 0.029*
Note: Model was adjusted for baseline age, education, and MoCA score; *P<0.05 treatment × time interaction; CC: corpus cal-
losum, FM: forceps minor, ATR: anterior thalamic radiation, SCR: superior corona radiata, PCR: posterior corona radiata. 

Table 4. Clinical correlates of changes in FA at follow-up vs. baseline in ADT
N-back correct %, 
relative to 0-back

N-back correct trial RT (ms), 
relative to 0-back

Flankers task RT 
(ms)# QoL

1-back 2-back 1-back 2-back Incon vs. cong
CC, genu -0.06, 0.846 0.07, 0.817 -0.46, 0.127 -0.40, 0.191 -0.61, 0.04* -0.46, 0.129
FM/ATR 0.08, 0.787 0.07, 0.819 -0.25, 0.434 -0.36, 0.255 -0.61, 0.033* -0.49, 0.107
SCR, clsuter 1 0.007, 0.983 0.33, 0.294 -0.41, 0.184 -0.55, 0.065 -0.69, 0.013* -0.28, 0.381
CC, bd -0.22, 0.481 0.16, 0.624 -0.45, 0.145 -0.36, 0.252 -0.52, 0.085 -0.35, 0.264
PCR -0.18, 0.567 0.49, 0.102 -0.39, 0.205 -0.62, 0.032* -0.49, 0.107 -0.30, 0.336
CC, spl -0.19, 0.543 0.38, 0.227 -0.57, 0.053 -0.27, 0.398 -0.49, 0.101 0.02, 0.953
SCR, cluster 2 0.04, 0.903 0.28, 0.376 -0.22, 0.485 -0.46, 0.130 -0.66, 0.019* -0.24, 0.452
Note: Values are ρ and p of Spearman’s correlation, adjusted for baseline age, education, and MoCA score. #Incongruent 
minus congruent. *P<0.05. CC: corpus callosum (bd: body; spl: splenium), FM: forceps minor, ATR: anterior thalamic radiation, 
SCR: superior corona radiata (two clusters), PCR: posterior corona radiata.
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ed to employ a more comprehensive battery of 
neuropsychological tests and other neural met-
rics to fully investigate potential cognitive dys-
function in prostate cancer patients receiving 
ADT [16]. Finally, as patients may undergo ADT 
for a longer duration, the current findings 
should be considered as specific to patients 
with only 6 months of exposure to ADT.

To conclude, androgen deprivation for 6 months 
led to worse 1-back accuracy but not significant 
changes in other measures of the N-back or 
flankers’ task or in quality of life. However, ADT 
resulted in reduced white matter fractional 
anisotropy in association with impairment in 
2-back and flankers reaction time. These find-
ings support white matter as a critical target for 
investigation of the influences of ADT on cogni-
tion in prostate cancer patients. In particular, it 
remains to be seen whether or how microstruc-
tural white matter changes would continue 
beyond six months of ADT.
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Supplementary Figure 1. Study timeline, subject recruitment and treatment. Note: Treatment for the patients fol-
lowed current guidelines and were independent of the current study. Three patients of the ADT group had previ-
ously undergone surgery. ADT: androgen deprivation therapy, CON: control, MRI: magnetic resonance imaging, QoL: 
quality of life, LH-RH: luteinizing hormone releasing hormone, RT: radiation therapy. Treatment decisions for all 
participants followed current National Comprehensive Cancer Network and American Urological Society practice 
guidelines and were independent of participation in this research protocol. Thus, the enrollment was not random. 
Briefly, therapeutic interventions for prostate cancer depend on a number of factors, most importantly the extent of 
tumor staging (with stage I-III indicating disease affecting part or whole of the prostate and stage IV indicating dis-
ease spreading outside the prostate) and the Gleason score (with higher score indicating more poorly differentiated 
and prognostically more aggressive disease). Only patients with localized prostate cancer without distant metastatic 
spread were invited to participate. Aside from symptoms related to prostatic enlargement, this patient group is usu-
ally asymptomatic from their cancer. Gleason scoring is a histologic grading system for prostate adenocarcinomas 
used for risk stratification and is not a reflection of a patient’s general health and performance status. Patients in 
the control group (CON) had never received any hormonal therapy and were either on active surveillance or treated 
with surgery or radiation alone. Patients with localized prostate cancer who were scheduled to undergo radiation 
therapy followed by at least 6 months of adjuvant ADT and patients starting ADT for biochemical recurrence without 
evidence for any metastatic disease were recruited to the ADT arm (ADT).

Supplementary Figure 2. N-back working memory task. A stream of fifteen phonologically distinct letters appears 
in sequency each for a duration of 500 ms and with an inter-stimulus-interval of 1500 ms. There are three differ-
ent conditions: 0-, 1-, and 2-back, differing in working memory load. In the 0-back trials, participants identified a 
pre-specified target (e.g., letter “E”); in the 1- and 2-back trials, there is no fixed target; in contrast, a letter that is 
the same as the one 1- and 2-time steps back represents the target, respectively. Participants were instructed to 
response as accurately and as fast as possible. N-back task was administered at baseline and 6-month follow-up 
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Supplementary Figure 3. Flankers’ task. Subjects typically respond slowly during incongruent than in congruent 
trials. The difference in RT between incongruent and congruent trials (incongruent minus congruent) reflects the 
interference from the flankers, with a lower RT difference reflecting better inference control.

outside the scanner. Each subject completed 3 sessions of the task, with each session containing two each of 0-, 
1-, and 2-back blocks, the order of which was counter-balanced across sessions. Each block began with an informa-
tion screen showing the “working memory load” for that block (5 s) and contained 24 trials, with one-third showing 
a target. Correct response rate and reaction time, averaged across blocks and sessions, each for 0-, 1- and 2-back 
trials, serves as an outcome measure of N-back performance.

Supplementary Figure 4. Distribution of demographic and clinical variables during baseline (B) and 6-months fol-
low-up (F) in CON (white bars) and ADT (gray bars). Note: baseline values of age, education, MoCA, AUDIT and 
smoker status, while both baseline and follow-up values of Testosterone and Cortisol are presented; *P<0.05 in two 
sample t-test (MoCA) and paired t-test (testosterone, cortisol).
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Supplementary Figure 5. N-back/Flankers’ task performance metrics and QoL scores at baseline (B) and 6-months 
follow-up (F) in ADT and CON.

Supplementary Table 1. Participants’ N-back/Flankers’ task performance and QoL scores at baseline 
and 6-month follow-up

ADT_B ADT_F CON_B CON_F
Correct response rate (%)
    1-back vs. 0-back -10.9 ± 9.7 -27.0 ± 25.6 -12.6 ± 11.5 -9.8 ± 19.0
    2-back vs. 0-back -30.1 ± 19.1 -41.3 ± 16.2 -35.7 ± 20.7 -39.0 ± 19.0
Reaction time of correct trials (ms)
    1-back vs. 0-back 85.4 ± 65.3 96.9 ± 102.5 138.5 ± 103.9 176.9 ± 114.1
    2-back vs. 0-back 229.1 ± 158.1 212.5 ± 201.8 257.4 ± 108.6 275.0 ± 126.5
Flankers’ Incongruent vs. congruent 314.5 ± 458.2 190.7 ± 238.9 57.8 ± 405.4 225.4 ± 273.2
Quality of life 106.2 ± 20.4 111.8 ± 18.6 119.4 ± 15.7 115.4 ± 16.9
Note: Values are mean ± SD; B: baseline, F: follow-up.


