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Abstract: Immune checkpoint inhibitors (ICIs) have become the cornerstone in treating many solid and hematologi-
cal cancers. The ICIs, including anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4), anti-programed cell death 
1 (PD-1), and anti-programed death-ligand 1 (PD-L1) monoclonal antibodies, have significantly improved the prog-
nosis of cancer patients. Meanwhile, the incidence of hepatic or renal impairment in cancer patients is increasing. 
However, data about the efficacy and safety of ICIs in patients with hepatic or renal impairment are limited. In this 
review, we characterize and summarize the pharmacokinetics (PK) of ICIs as well as the effects of hepatic or renal 
function on the PK of ICIs, and provide specific recommendations for clinicians when prescribing ICIs in patients 
with hepatic or renal impairment. 
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Introduction

Immunotherapy has become one of the most 
important breakthroughs in treating cancer 
patients over the last decade. Immune check-
point inhibitors (ICIs) are widely used in trea- 
ting multiple cancers including, but not limited 
to melanoma, lung cancer, colorectal cancer, 
renal cell carcinoma, head and neck squamous 
cell cancer, urothelial carcinoma, gastric can-
cer, esophageal cancer, cervical cancer, endo-
metrial carcinoma, hepatocellular carcinoma, 
triple-negative breast cancer, and lymphoma 
[1-3]. Seven ICIs have been approved by the US 
Food and Drug Administration (FDA) and the 
European Medicines Agency (EMA). Among th- 
em, pembrolizumab, nivolumab, and cemiplim-
ab are anti-programed cell death 1 (PD-1) 
monoclonal antibodies; atezolizumab, durvalu- 
mab, and avelumab are anti-programed death-
ligand 1 (PD-L1) monoclonal antibodies; ipilim-
umab is an anti-cytotoxic T lymphocyte-associ-
ated protein 4 (CTLA-4) monoclonal antibody 
[4]. These ICIs inhibit co-inhibitory checkpoint 
signaling pathways to promote T cell activation, 
thereby unleashing anti-tumor immune res- 
ponses [5].

The ICIs have a large molecular weight, which 
leads to a poor ability to cross the cell mem-
brane. Thus, ICIs are distributed mainly in the 
central compartment with a small volume of 
distribution after parenteral administration [6, 
7]. The ICIs are metabolized to peptides and 
amino acids by circulating phagocytic cells or by 
their target cells rather than via the liver and 
kidneys under normal circumstances [6, 7]. 
Theoretically, the hepatic or renal function may 
have little influence on the clearance of ICIs. 
However, the elimination of ICIs is complicated, 
hepatic or renal function may have a clinically 
significant effect on the pharmacokinetics (PK) 
of ICIs via an unknown pathway. In addition, 
several ICIs have been shown to induce hepa- 
totoxicity or nephrotoxicity [8-10]. Therefore, 
patients with hepatic or renal impairment repre-
sent a population that may be more susceptible 
to adverse events. In a retrospective observa-
tional study, patients with baseline hepatic or 
renal impairment displayed shorter real-world 
time to treatment discontinuation and overall 
survival compare with patients with normal 
baseline organ function [11]. Therefore, dose 
adjustment of ICIs may be needed to avoid 
exposure alteration and drug toxicity for pa- 
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tients with hepatic or renal impairment. In this 
review, we summarized the potential hepato-
toxicity and nephrotoxicity of the seven ICIs  
and their PK in patients with hepatic or renal 
impairment. In addition, based on available evi-
dence from drug labels and published articles, 
dosing recommendations for the seven ICIs are 
provided for patients with varying degrees of 
hepatic or renal impairment.

Mechanism of action of ICIs

T lymphocytes play important roles in the 
human immune system by recognizing and 
destroying abnormal human cells, including 
cancer cells. As T lymphocytes are regulated  
by various immune checkpoints (e.g., CTLA-4, 
PD-1, and PD-L1), cancer cells can suppress 
the innate T lymphocyte function by activating 
these immune checkpoints to evade the im- 
mune system [12, 13]. Therefore, inhibition of 
immune checkpoints is one way to treat can-
cers. To date, several ICIs have been developed 
and widely used in clinical practice [14]. The 
ICIs can bind immune checkpoints to re-acti-
vate the T lymphocyte tumor suppressing func-
tion, resulting in cancer cell death [14]. Current 
ICIs therapy includes the inhibition of the CTLA-
4, PD-1 and PD-L1. Ipilimumab is an inhibitor of 
the CTLA-4 checkpoint, it binds to CTLA-4 and 
blocks the interaction of CTLA-4 with its ligands 
(CD80/CD86), thus leading to T cell activation 
and proliferation [15]. In addition, inhibition of 
CTLA-4 can also inhibit T-regulatory cell func-
tion, which may contribute to increased T cell 
response [15]. Pembrolizumab, nivolumab, and 
cemiplimab are PD-1 inhibitors, they bind to  
the PD-1 receptor and block the interaction 
between PD-1 and its ligands PD-L1 and PD-L2, 
restoring T cell response toward cancer cells 
[16-18]. Atezolizumab, durvalumab, and ave-
lumab are PD-L1 inhibitors, they bind PD-L1 
and block its interaction with PD-1 and CD80 to 
remove PD-L1/PD-1-mediated inhibition of the 
immune response, thus restoring anti-tumor T 
cell responses [19-21]. The mechanisms of ac- 
tion of ICIs are illustrated in Figure 1.

PK of ICIs

All of the seven ICIs are humanized or human 
immunoglobulin G (IgG) monoclonal antibodi- 
es, of which, pembrolizumab, nivolumab, and 
cemiplimab are IgG4 monoclonal antibodies, 

whereas the remaining four ICIs are IgG1 mo- 
noclonal antibodies [6, 7]. Despite their differ-
ent mechanisms of action, the seven ICIs dis-
play approximately the same PK, including the 
high molecular weight proteins (from 140 to 
150 kDa), a small volume of distribution (from 
4 to 8 L) consistent with limited extravascular 
distribution, and a long half-life (from 6 to 27 
days) [6, 7]. In addition, the seven ICIs are 
immediately and completely bioavailable and 
are not expected to bind to plasma proteins in 
a specific manner. Similar to other monoclonal 
antibodies, ICIs are degraded to small peptides 
and individual amino acids through the endo-
plasmic reticulum system and are subsequent-
ly taken up by the body and incorporated into 
other proteins or catabolized [6, 7]. Therefore, 
ICIs are not metabolized by hepatic enzymes or 
excreted by the kidneys or liver. The PK param-
eters of the seven ICIs are shown in Table 1.

Effects of hepatic impairment on the PK of 
ICIs

Due to the minor involvement of hepatic pro-
cesses in the clearance of ICIs, hepatic im- 
pairment is not expected to influence the clear-
ance of ICIs. Therefore, prospective studies of 
hepatic impairment effects on the PK of ICIs 
have not been established. However, limited 
data showed a trend for exposure decrease 
with several monoclonal antibodies in patients 
with hepatic impairment [22]. Hepatic impair-
ment can reduce the transport of gut antigens 
and endotoxins, leading to B cell activation and 
proliferation, which can increase the endoge-
nous IgG levels [23]. The increased endoge-
nous IgG level can result in competitive neona-
tal fragment crystallizable region (Fc) receptor 
(FcRn) binding with exogenous IgG, which can 
increase the drug clearance and decrease the 
drug exposure [24]. Hepatic impairment may 
increase cytokine levels, leading to increased 
Fc gamma receptor (FcγR)-mediated elimina-
tion pathways, which can result in decreased 
drug exposure. In addition to alterations in 
FcRn and FcγR binding, hepatic impairment is 
associated with higher target-mediated drug 
disposition (TMDD), which can increase the 
drug clearance [23, 24]. Therefore, dose adjust-
ment of ICIs in patients with hepatic impair-
ment should be considered, especially for pa- 
tients with severe hepatic impairment. Based 
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Figure 1. The mechanisms of action of ICIs. Priming phase: In the priming phase, T cells are activated by dendritic 
cells through two interactions: the interaction of major histocompatibility complex (MHC) with T cell receptor (TCR) 
and the interaction of CD80/CD86 with CD28. T cells also express CTLA-4, which binds to CD80/CD86, and sends 
an inhibitory signal to inactivate T cells. CTLA-4 inhibitors can bind to CTLA-4 and block the interaction between 
CTLA-4 and CD80/CD86, thus leading to T cell activation and proliferation. Effector phase: In the effector phase, 
PD-1 is expressed on activated T cells, whereas PD-L1 and PD-L2 are expressed on tumor cells. The interaction of 
PD-1 with PD-L1 can inhibit the function of T cells. PD-1 and PD-L1 inhibitors can block this interaction and rein-
states T cell response against the tumor cells. 

Table 1. PK parameters for ICIs

PK Molecular 
weight (kDa)

IgG 
isotype

Volume of  
distribution (L) Metabolism T1/2

(day)
Clearance 

(mL/h) Elimination 

Pembrolizumab 149 IgG4 6.0 nonspecific lysosomal degradation 22 8.1 Intracellular catabolism

Nivolumab 146 IgG4 6.8 nonspecific lysosomal degradation 25 8.2 Intracellular catabolism

Cemiplimab 146 IgG4 5.3 nonspecific lysosomal degradation 20.3 8.3 Intracellular catabolism

Atezolizumab 145 IgG1 6.9 nonspecific lysosomal degradation 27 8.3 Intracellular catabolism

Durvalumab 149 IgG1 5.6 nonspecific lysosomal degradation 18 8.2 Intracellular catabolism

Avelumab 147 IgG1 4.7 nonspecific lysosomal degradation 6.1 24.6 Intracellular catabolism

Ipilimumab 148 IgG1 7.5 nonspecific lysosomal degradation 15.4 16.8 Intracellular catabolism

on population PK data and case reports, the 
effects of hepatic impairment on the PK of ICIs 
and dose adjustment recommendations for 
ICIs are provided and listed in Table 2.

Pembrolizumab 

A population PK analysis on patients with mild 
to moderate hepatic impairment showed that 
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model-derived clearance values in patients wi- 
th mild to moderate hepatic impairment were 
similar to those with normal hepatic function 
[25-27]. Therefore, dose adjustment is not 
required for patients with mild to moderate 
hepatic impairment [25-27]. Pembrolizumab 
has not been studied in patients with severe 
hepatic impairment, but a case report demon-
strated that treatment with pembrolizumab 
was effective and safe in patients suffering 
from severe hepatic impairment [28].

Nivolumab 

In a population PK analysis, no clinically signifi-
cant differences in the clearance of nivolumab 
were reported between patients with mild to 
moderate hepatic impairment and patients 
with normal hepatic function [29]. From a retro-
spective case series, the frequency of immu- 
ne-related adverse events (irAEs) was similar 
between patients with Child-Pugh class B and 
patients with Child-Pugh class A [30]. There- 
fore, dose adjustment is not recommended in 
patients with mild to moderate hepatic impair-
ment [31, 32]. The effects of severe hepatic 
impairment on the PK of nivolumab have not 
been conducted, but a case report demonstrat-
ed that a patient with severe hepatic impair-
ment was safely and effectively treated with 
nivolumab at a dose of 3 mg/kg every 2 weeks 
[33].

Cemiplimab 

A population PK analysis implied no clinically 
important differences in the exposure of ce- 

miplimab in patients with mild to moderate 
hepatic impairment compared with patients 
with normal hepatic function [34]. Therefore, 
dose adjustment is not required for these pa- 
tients [35, 36]. There are insufficient data in 
patients with severe hepatic impairment for 
dosing recommendations because cemiplimab 
has not been studied in these patients.

Atezolizumab 

The PK data showed no clinically important dif-
ferences in the clearance of atezolizumab in 
patients with mild to moderate hepatic impair-
ment compared with patients with normal he- 
patic function. Treatment was tolerable across 
groups [37]. Therefore, dose adjustment is not 
recommended in patients with mild or moder-
ate hepatic impairment [37-39]. Since no av- 
ailable data on patients with severe hepatic 
impairment, there are no dose adjustment rec-
ommendations for such patients.

Durvalumab 

From a population PK analysis, the PK of dur-
valumab did not appear to be affected by mild 
or moderate hepatic impairment [40-42]. The 
result indicates that dose adjustment is not 
required for these patients [40-42]. Data are, 
however, not sufficient to draw a definite con-
clusion about patients with severe hepatic 
impairment.

Avelumab 

The effects of hepatic impairment on the clear-
ance of avelumab was evaluated by a popula-

Table 2. Effects of hepatic or renal impairment on the PK of ICIs
Hepatic/renal impairment The effects are not significant and dose adjustment is not required (Refs.) Not known
Mild hepatic impairment  
(TBil ≤ ULN and AST > ULN, or TBil 
> 1 to 1.5 × ULN with any AST)

Pembrolizumab [25-28], Nivolumab [29-33], Cemiplimab [34-36], Atezolizumab [37-
39], Durvalumab [40-42], Avelumab [43-45], Ipilimumab [46-48]

Moderate hepatic impairment 
(TBil > 1.5 to 3 × ULN and any AST)

Pembrolizumab [25-28], Nivolumab [29-33], Cemiplimab [34-36], Atezolizumab [37-
39], Durvalumab [40-42], Avelumab [43-45]

Ipilimumab

Severe hepatic impairment 
(TBil > 3 to 10 × ULN and any AST)

Pembrolizumab [25-28], Nivolumab [29-33] Cemiplimab, Atezoli-
zumab, Durvalumab, 
Avelumab, Ipilimumab

Mild renal impairment 
(60-89 mL/min)

Pembrolizumab [25-27, 51-54], Nivolumab [29-32, 55-61], Cemiplimab [34-36], 
Atezolizumab [37-39, 62-65], Durvalumab [40-42, 66], Avelumab [43-45, 60, 67, 
68], Ipilimumab [46-48, 69-72]

Moderate renal impairment 
(30-59 mL/min)

Pembrolizumab [25-27, 51-54], Nivolumab [29-32, 55-61], Cemiplimab [34-36], 
Atezolizumab [37-39, 62-65], Durvalumab [40-42, 66], Avelumab [43-45, 50, 67, 
68], Ipilimumab [46-48, 69-72]

Severe renal impairment 
(15-29 mL/min)

Pembrolizumab [25-27, 51-54], Nivolumab [29-32, 55-61], Cemiplimab [34-36], At-
ezolizumab [37-39, 62-65], Avelumab [43-45, 50, 67, 68], Ipilimumab [46-48, 69-72]

Durvalumab

ESRD on dialysis 
(< 15 mL/min)

Pembrolizumab [25-27, 51-54], Nivolumab [29-32, 55-61], Atezolizumab [37-39, 62-
65], Avelumab [43-45, 55, 67, 68], Ipilimumab [46-48, 69-72]

Cemiplimab,  
Durvalumab

TBil, Total Bilirubin; AST, Aspartate Aminotransferase; ULN, Upper Limit of Normal.
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tion PK analysis [43]. The data showed that 
patients with mild to moderate hepatic im- 
pairment had comparable avelumab clearance 
to those with normal hepatic function [43]. 
Therefore, dose adjustment is not needed in 
patients with mild to moderate hepatic impair-
ment [43-45]. There are limited data from 
patients with severe hepatic impairment (n=1). 
Hence the effects of severe hepatic impair-
ment on the PK of avelumab are unknown. 

Ipilimumab 

According to the population PK results, mild 
hepatic impairment had no clinically important 
effects on the clearance of ipilimumab, sug-
gesting that dose adjustment is not required in 
this population [46-48]. As no data are avail-
able in patients with moderate or severe hepat-
ic impairment, the potential need for dose 
adjustment cannot be determined in these 
patients.

Effects of renal impairment on the PK of ICIs

The FDA guidance recommends that a study 
should be conducted to evaluate the effects of 
renal function on the PK of drugs with mole- 
cular weight less than 69 kDa. The molecular 
weight of seven ICIs is in the range of 140 to 
150 kDa, which is expected to prevent ICIs 
from being filtered through the glomeruli of the 
kidney and eliminated via the urine. Therefore, 
renal impairment may have little effect on the 
PK of ICIs [25, 31, 35, 38, 41, 44, 47]. However, 
the elimination mechanisms for ICIs are far 
more complicated than nonspecific and unsat-
urable catabolism. Similar to hepatic impair-
ment, renal impairment may alter the PK of  
ICIs via the regulation of neonatal FcRn and 
FcγR binding, TMDD, transport, tissue distri- 
bution, or other unknown mechanisms [6, 7]. 
Thus, renal impairment, especially severe re- 
nal impairment, may affect the PK of ICIs. 
Prospective studies on the safety and efficacy 
of ICIs in patients with renal impairment are 
limited. The use of ICIs in renal impaired pa- 
tients in clinical practice is almost based on 
population PK analyses and case reports [49, 
50]. Based on the population PK results and 
case reports, the effects of renal impairment 
on the PK of ICIs and dose adjustment recom-
mendations for ICIs are listed in Table 2.

Pembrolizumab 

A population PK analysis showed that mild to 
severe renal impairment had no clinically sig-
nificant effects on the PK of pembrolizumab 
[25-27]. A multi-center, single-arm, phase 2 
study revealed that pembrolizumab was active 
and had acceptable toxic effects as a first-line 
treatment in patients with mild to moderate 
renal impairment who were ineligible for cispla-
tin [51]. No PK analysis of pembrolizumab has 
been performed for patients with end-stage 
renal disease (ESRD) on dialysis. Only a few 
case reports have considered pembrolizumab 
administration for patients undergoing dialysis 
[52-54]. These case reports showed that pem-
brolizumab administered as a standard dose 
was safe and effective in ESRD patients on 
dialysis [52-54]. The above data suggest that 
dose adjustment is not needed for patients 
with renal impairment.

Nivolumab 

No clinically important differences in the clear-
ance of nivolumab were reported in a popula-
tion PK analysis between patients with mild to 
severe renal impairment and patients with nor-
mal renal function [29-32]. According to the 
results of the PIVOT-10 trial, bempegaldes-
leukin plus nivolumab has the potential to 
address a high unmet need for effective and 
well-tolerated treatment in cisplatin-ineligible 
patients with moderate to severe renal impair-
ment [55]. For ESRD patients on dialysis,  
several case reports showed that nivolumab 
seems to be similarly safe for these patients  
as for patients with normal renal function [56-
61]. Thus, dose adjustment might not be nec-
essary for patients with varying degrees of 
renal impairment.

Cemiplimab 

No clinically important differences in the PK of 
cemiplimab were found in a population PK anal-
ysis between patients with mild, moderate, or 
severe renal impairment and patients with nor-
mal renal function [34-36]. The result indicates 
that dose adjustment is unnecessary for these 
patients [34-36]. Cemiplimab has not been 
studied in ESRD patients; hence, there are no 
dose adjustment recommendations for this 
patient group.
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Atezolizumab 

The population PK data showed that mild and 
moderate renal impairment did not affect the 
clearance of atezolizumab [37-39]. In a sub-
group analysis from the EAP study, the clinical 
benefit of atezolizumab occurred in patients 
with mild, moderate, or severe renal function, 
and safety was comparable across subgroups 
[62]. Similarly, in a single-arm, multi-center, ph- 
ase 2 trial, atezolizumab demonstrated promis-
ing response durability and survival coupled 
with a low incidence of clinically relevant to- 
xicities in cisplatin-ineligible patients with mild 
to moderate renal impairment [63]. For ESRD 
patients on dialysis, several case reports re- 
vealed that atezolizumab administered as a full 
dose was effective and well-tolerated [61, 64, 
65]. Therefore, dose adjustment is not required 
for ESRD patients on dialysis.

Durvalumab 

A population PK analysis performed on patients 
with normal, mild, moderate, and severe renal 
impairment showed that the PK of durvalumab 
in patients with mild or moderate renal impair-
ment was similar to those with normal renal 
function [40-42]. A pilot combination neoadju-
vant trial showed that durvalumab plus treme- 
limumab had a tolerable safety profile and 
encouraging efficacy results in cisplatin-ineligi-
ble patients with eGFR < 60 mg/ml [66]. There- 
fore, dose adjustment is not required in patients 
with mild to moderate renal impairment. Since 
only two patients with severe renal impairment 
were included in the population PK analysis, 
the effects of severe renal impairment on the 
PK of durvalumab were unknown. Therefore, 
the dosing recommendation cannot be given in 
this situation.

Avelumab 

A population PK analysis showed that patients 
with mild, moderate, or severe renal impair-
ment had similar clearance relative to patients 
with normal renal function, suggesting that 
dose adjustment is not required [43-45]. Ac- 
cording to the pooled results from two expan-
sion cohorts of an open-label, phase 1 trial, 
treatment with avelumab was tolerable and 
confirmed responses were seen in six cisplatin-
ineligible patients with renal impairment [67]. 
Similarly, from an updated analysis of avelum-

ab in patients with previously treated urothelial 
carcinoma, avelumab showed prolonged effi-
cacy and acceptable safety in 113 patients 
with renal impairment (eGFR < 60 ml/min) [68]. 
Thus, dose adjustment is not required for 
patients with mild to severe renal impairment. 
A case report demonstrated that avelumab 
administered at 10 mg/kg every two weeks 
was tolerated and effective for an ESRD patient 
on dialysis [50].

Ipilimumab 

As shown in a population PK analysis, mild to 
severe renal impairment did not influence the 
clearance of ipilimumab [46-48]. In a single-
arm feasibility trial, ipilimumab plus nivolumab 
was well-tolerated and highly active as preop-
erative treatment in 13 cisplatin-ineligible pa- 
tients with eGFR < 60 mg/ml [69]. Several case 
reports demonstrated that a full dose of ipi- 
limumab could elicit clinical benefit in ESRD 
patients on dialysis, and the toxicity of ipilim-
umab was manageable [70-72]. Therefore, ipili-
mumab can be dosed without the consider-
ation of renal function.

Potential, hepatotoxicity and nephrotoxicity of 
ICIs

ICIs can cause irAEs, and hepatic and renal tox-
icities are the common irAEs reported in clinical 
studies [8-10]. However, it is difficult to obtain 
accurate data on the incidence or prevalence 
of ICIs-related hepatic or renal toxicities due to 
strict diagnosis standards, selection criteria, 
small sample sizes, and limited duration of fol-
low-ups. When patients do not exhibit pre-exist-
ing hepatic or renal impairment but develop 
ICIs-related hepatic or renal toxicities, the dose 
modification schedule is based on the grade  
of the adverse events. For example, if patients 
experience grade 2 or 3 increased blood cre- 
atinine during atezolizumab treatment, the rec-
ommendation is to withhold atezolizumab until 
blood creatinine recovers to grade 0 or 1. Ate- 
zolizumab should be permanently discontinued 
if patients experience grade 4 increased blood 
creatinine during treatment [38].

Discussion

In contrast to many cytotoxic anti-cancer 
agents and small-molecule targeted drugs, 
which undergo hepatic or renal elimination, ICIs 
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and other monoclonal antibodies are metabo-
lized to peptides and amino acids by circulating 
phagocytic cells [6, 7]. Therefore, renal or he- 
patic impairment would be expected to have 
minimal impact on the PK of ICIs. However, the 
elimination mechanisms for ICIs are complicat-
ed and not fully understood. Thus, hepatic or 
renal impairment, especially more advanced 
hepatic or renal impairment, may affect FcRn 
and FcγR binding, TMDD, or other factors to 
influence the elimination of ICIs [11, 22, 73]. 
Based on a PK study, the AUC of atezolizumab 
decreased by 8% and 12%, in patients with 
mild, moderate hepatic impairment, respec-
tively, compared with subjects with normal 
hepatic function [37]. However, as far as we 
know, there is a few prospective clinical studies 
to investigate the PK of ICIs in patients with 
hepatic or renal impairment. Furthermore, pa- 
tients with moderate or severe organ impair-
ment were often excluded from clinical trials  
of those drugs [74-79]. Therefore, information 
about the efficacy and safety of ICIs in patients 
with hepatic or renal impairment is basically 
from the population PK analyses and case 
reports.

Patients with ESRD on dialysis present a signifi-
cant challenge to clinicians. There are several 
considerations in treating this subset of pa- 
tients with anti-cancer therapy. One important 
consideration is the potential alteration in drug 
exposure caused by ultrafiltration. However, 
ICIs are not expected to be cleared by dialysis 
due to their high molecular weight [6, 73]. In 
addition, the elimination of ICIs seems to in- 
volve the clearance of IgG through the reticulo-
endothelial system. Thus, dialysis may not sig-
nificantly affect the PK of ICIs [6, 7]. Another 
consideration is drug efficiency in patients with 
ESRD on dialysis. The ICIs rely on the activation 
of the immune system for efficacy, and ESRD 
patients on dialysis have impaired immunity 
[80]. Theoretically, the efficiency of ICIs might 
be decreased in cancer ESRD patients on dialy-
sis. However, case reports and case series 
have showed that pembrolizumab, nivolumab, 
atezolizumab, avelumab, and ipilimumab can 
produce sufficient anti-cancer effects in dialy-
sis patients [52-54, 56-61, 64, 65, 70-72]. As 
for cemiplimab and durvalumab, there are no 
relevant reports.

As described above, the elimination mecha-
nisms for ICIs are complicated and not fully 

understood, and data about the safety and effi-
ciency of ICIs in patients with severe hepatic or 
renal impairment are lacking. In addition, ICIs 
can induce hepatic and renal toxicities, which 
can induce worsening organ dysfunction in 
patients with pre-existing hepatic or renal im- 
pairment. Thus, an appropriate dosage of ICIs 
is essential for maximizing efficacy and mini-
mizing the incidence of adverse events. To 
date, there are several methods are available 
to assess the effects of hepatic or renal impair-
ment on the drug PK, such as clinical PK study, 
physiology-based PK (PBPK) models and popu-
lation PK studies. In addition, therapeutic drug 
monitoring (TDM) is an option for dose adjust-
ment. Recent clinical studies have shown an 
increased benefit for TDM use in monoclonal 
antibody therapy, suggesting that TDM may be 
applicable to ICIs [81, 82]. According to current 
data, TDM strategies are particularly relevant 
for ipilimumab, which is already characterized 
by clear exposure-efficacy and exposure-safety 
relationships [46, 83]. Therefore, TDM can be 
considered when ICIs are used in patients with 
severe hepatic or renal impairment.

Conclusion

According to the population PK analyses, mild 
to moderate hepatic impairment and mild to 
severe renal impairment had no clinically sig-
nificant effects on the PK of most ICIs, and 
dose adjustment is not required for these 
patients. Whereas, there are very limited data 
regarding the use of ICIs in patients with severe 
hepatic impairment, or ESRD patients on dialy-
sis, making it challenging to select an appropri-
ate ICIs dosage for such patients. In practice, it 
is difficult to conduct a clinical study to evalu-
ate the drug PK in patients with severe hepatic 
impairment or ESRD patients on dialysis, there-
fore, the PBPK model and population PK analy-
sis may be suitable for predicting the drug PK  
in these patients. Moreover, in order to make a 
precision and individualized dosage, TDM can 
be used in patients with severe hepatic impair-
ment or ESRD patients on dialysis. In addition 
to the use of TDM, ICIs-related adverse reac-
tions should also be monitored for these pa- 
tients.
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