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The roles of KLHL family members in human cancers
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Abstract: The Kelch-like (KLHL) family members consist of three domains: bric-a-brac, tramtrack, broad complex/
poxvirus and zinc finger domain, BACK domain and Kelch domain, which combine and interact with Cullin3 to form 
an E3 ubiquitin ligase. Research has indicated that KLHL family members ubiquitinate target substrates to regulate 
physiological and pathological processes, including tumorigenesis and progression. KLHL19, a member of the KLHL 
family, is associated with tumorigenesis and drug resistance. However, the regulation and cross talks of other KLHL 
family members, which also play roles in cancer, are still unclear. Our review mainly explores studies concerning the 
roles of other KLHL family members in tumor-related regulation to provide novel insights into KLHL family members.
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Introduction

Ubiquitin is a small protein composed of 76 
amino acids with highly conserved sequences; 
it is widely present in all eukaryotic cells and is 
involved in ubiquitination modification [1]. 
Ubiquitination, an important post-translational 
modification type, links ubiquitin to target a 
protein and then triggers protein degradation 
by the 26S proteasome complex or regulates 
the biological functions of substrates [2, 3]. 
This type of regulation is catalyzed by the 
sequential enzymatic reactions of ubiquitin-
activating enzyme (E1), ubiquitin-binding en- 
zyme (E2) and ubiquitin-ligase enzyme (E3). 
First, the ATP-dependent activation of ubiquitin 
occurs when the cysteine residues of E1 con-
nect to the C-terminal lysine residues of ubiqui-
tin. Second, activated ubiquitin is transferred 
and binds E2. Finally, through the action of E3, 
ubiquitin is transferred to a substrate’s lysine 
via a covalent bond; the transfer results in the 
ubiquitination of a target protein [4]. Notably, a 
ubiquitin molecule has seven lysine (K) resi-
dues (K6, K11, K27, K29, K33, K48, and K63) 
and one methionine residue (M1). And a variety 
of linkages can be formed in poly-ubiquitin 
chains; the linkage type determines the ulti-

mate fate of target proteins [5, 6] and affects 
various biological functions, including DNA 
damage repair [7, 8], cell cycle regulation [9], 
autophagy [10], and immune response [11, 12]. 
The main destination of ubiquitinated proteins 
is degradation by the ubiquitin-proteasome sys-
tem (UPS), which is the main pathway of more 
than 80% of intracellular protein turnovers and 
plays significant roles in regulation of cellular 
proteins’ activities and functions [13, 14]; thus, 
the aberrant regulation of the UPS is associated 
with various types of cancer [15]. 

A total of 2 species of E1, 40 species of E2, and 
over 600 species of E3 are found in mammals 
[16]. E3 ligases, which transfer ubiquitin to sub-
strates, determine the fate of substrate pro-
teins and regulate biological functions [17-19]. 
According to structural features and functional 
mechanisms, E3 ligases can be divided into 
three categories: the really interesting new 
gene (RING) family, homologous to the E6AP 
carboxyl terminus (HECT) family, and RING-
between-RING (RBR) family [17]. At least one 
catalytically active cysteine residue is present 
in the HECT and RBR families and binds with 
the C-terminal amino acid residues of ubiquitin 
through thioester bonds, and E3 specifically 
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recognizes its substrates and facilitates ubiqui-
tin-substrate conjugation. However, the RING 
family has no active cysteine; E2 is necessarily 
involved in the combination of ubiquitin and 
then completes conjugation with E3 and sub-
strates [20, 21].

The Cullin-RING E3 ligases (CRLs) constitute 
the largest E3 ligase family, including CRL1, 
CRL2, CRL3, CRL4A, CRL4B, CRL5, CRL7 and 
CRL9, and are responsible for the ubiquitina-
tion of substrate proteins [22]. A CRL consists 
of four components: a Cullin protein functioning 
as a scaffold protein, a substrate-recognizing 
receptor that is vital to the identification of  
target substrates, an adaptor protein linking a 
Cullin protein to adaptor proteins, and one 
RING-Box (RBX) protein, which is crucial to 
recruitment to E2 [17]. CRL3 is a highly con-

served member of the CRL family, consisting of 
a Cullin3 protein, an RBX1 protein, and a bric-a-
brac tramtrack, broad complex (BTB) protein 
which serves as the roles of both the adaptor 
protein and the substrate-recognizing receptor 
[23, 24].

Kelch-like (KLHL) family members (KLHLs), 
regarded as the substrate-binding subunits of 
CRL3, commonly possess a BTB/poxvirus and 
zinc finger (POZ) domain, a BACK domain, and 
Kelch domain with 4-6 Kelch repeated motifs 
[25]. In a Cullin3-RBX1-KLHLs complex, the 
BTB/POZ domain is responsible for binding 
Cullin3, the Kelch domain determines sub-
strate specificity, and the BACK domain forms a 
link between the BTB and Kelch domains. To 
date, 42 kinds of KLHLs in mammals have  
been identified [26] (Figure 1). Among these, 

Figure 1. A: The Diagram of 42 KLHL family members with Amino acid numbers are listed on the right. B: The 
structural components of the Cullin3-RING-KLHLs complex and its ability to regulate tumor occurrence and devel-
opment. A. Kelch-like protein family members (KLHLs) consist of the bric-a-brac, tramtrack, broad complex (BTB)/
poxvirus and zinc finger (POZ) domain, the BACK domain and the Kelch repeated domain, the BTB/POZ domain is 
responsible for binding cullin3, the Kelch domain determines substrates recruitment, and the BACK domain forms 
a linker between BTB domain and Kelch domain. Data comes from the Uniprot and the Smart databases. B. The 
Cullin3-RBX1-KLHLs complex consists of three components, including the Cullin3 protein functioning as the scaf-
fold protein, the KLHLs protein responsible for identifying the targeted substrates and binding the Cullin3 protein, 
and the RING-box protein crucial to recruitment to E2. The KLHLs have the abilities of triggering several substrates 
ubiquitination modification to influence its stability and localization, thereby taking part in the regulation of tumor 
occurrence and development. 
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KLHL19, also called Kelch-like-ECH-associated 
protein 1 (KEAP1), has been the most exten-
sively studied, which is the substrate adaptor 
protein of the Cullin3 ubiquitin ligase complex, 
consisted of an N-terminal region, a BTB do- 
main, an intermediate region (IVR), a double-
glycine repeat (DGR) domain/Kelch domain 
with six repeated Kelch motifs, and a C-terminal 
region. The BTB domain is responsible for the 
dimerization of KLHL19 and promotes its bind-
ing to Cullin3 ligase. The Kelch repeated domain 
contains important binding sites interacting 
with specific substrates, such as nuclear factor 
E2-related factor 2 (NRF2) and P62. The IVR 
contains nuclear export-signals that regulate 
the cytoplasmic localization of KLHL19 [27]. A 
growing body of research has focused on other 
family members involved in regulating several 
biological functions, such as cell division, brain 
development, and blood pressure regulation 
[28-30]. A detailed classification of KLHLs and 
substrates are shown in Tables 1, 2 and Figures 
2, 3.

Ubiquitination is closely involved in the physio-
logical and pathological regulation of cancer, 
particularly through epithelial-to-mesenchymal 
transition (EMT) [31], stemness maintenance 
[32, 33], resistance to radiotherapy [34, 35], 
chemotherapy [36, 37], endocrine therapy [38], 
and tumorigenesis, metastasis, and invasion 
[39-41]. Interestingly, the abnormal levels of 
KLHLs are tightly related to tumorigenesis and 
progression [42-44], and KLHLs are engaged in 
many signal pathways, including phosphati-
dylinositol 3-kinase (PI3K)/the protein kinase B 
(AKT), Wnt/β-catenin signaling, mammalian tar-
get of rapamycin (mTOR) signaling, hippo signal-
ing, nuclear factor kappa-B (NF-κB) signaling 
and autophagy-lysosome pathway (Figure 2). 
Therefore, identifying the underlying mecha-
nisms of KLHLs may be of great significance  
to tumor prevention, screening, precise treat-
ment, prognosis assessment, and drug deve- 
lopment. 

PI3K/AKT signaling

The PI3K/AKT pathway is a signaling pathway 
activated by various growth factors, cytokines 
and insulin, and regulates normal physiological 
and pathological events, including glucose 
metabolism, lipid metabolism, biosynthesis, 
tumorigenesis, and tumor progression [45, 46]. 

In addition, it is widely aberrantly upregulated 
in human cancer [47, 48] and involved in the 
regulation of tumor metabolism, cell cycle, and 
angiogenesis [49]. 

PI3K is an intracellular phosphatidylinositol 
kinase activated by a series of upstream  
signals. Activated PI3K phosphorylates phos-
phatidylinositol 4,5-bisphosphate (PIP2) into 
phosphatidylinositol 3,4,5-triphosphate (PIP3). 
Then, PIP3 facilitates the membrane recruit-
ment of AKT and promotes its phosphorylation 
at T308 [50, 51]. Further, phosphorylated-AKT 
(p-AKT) activates downstream signaling [52, 
53], including mTOR [46], VEGF [54], MAPK [55] 
and NF-κB [56] signaling. PIK3CA, the gene 
encoding PI3K, is usually genetically dysregu-
lated by amplification and somatic point muta-
tions in various human cancer types [57]. At the 
protein modification level, the E3 ligase TRAF6 
degrades P85α (the regulatory subunit of PI3K) 
through UPS, which promotes prostate cancer 
(PCa) migration [58]. 

In addition, the phosphatase and tensin homo-
log (PTEN) is a tumor suppressor that can 
antagonize the PI3K phosphorylation effect by 
dephosphorylating PIP3 into PIP2, thereby 
strictly regulating PIP3 levels and AKT signaling 
in normal cells [59, 60]. PTEN (gene) loss or its 
decreased expression has been detected in a 
range of human cancer types [13], which is 
related to poor prognosis [61] and chemothera-
py resistance of lung cancer (LC) [62]. 

Ubiquitination plays significant roles in various 
modes of signal transduction, including PI3K/
AKT signaling, which participates in tumorigen-
esis, cell proliferation, invasion, apoptosis  
and chemotherapy resistance [55, 63-66]. 
Currently, several studies have observed that 
KLHL38 and KLHL18 are involved in LC-related 
processes through ubiquitination degradation 
to associated substrates (PI3K and PTEN, 
respectively).

KLHL38-PTEN

As a member of the KLHL family, KLHL38 was 
found to be involved in heart failure formation 
due to its-mediated excessive degradation of 
myocardin, one protein essential in the differ-
entiation and development of myocardium and 
smooth muscle [67]. In tumor-related research, 
KLHL38 is an oncogenic protein that partici-
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Table 1. The biological functions of interactions between KLHLs and different substrates
KLHLs Substrates Degraded or not Roles References
KLHL2 WNK4 Yes Anti-hypertension effect [306]

WNK3 Yes Anti-hypertension effect [331]
NPCD No Regulation of neuronal development [332]

KLHL3 WNK1 Yes Anti-hypertension effect [333]
WNK4 Yes Anti-hypertension effect [334-338]

cMyBP-C Yes Regulation of heart development [339]
Claudin-8 Yes Anti-hypertension effect [340]

NCC Yes Anti-hypertension effect [28]
KLHL6 HBXIP/Lamtor5 No Inhibition of B cell maturation [341]
KLHL7 TUT1 Yes (K48) Maintaining nucleolar integrity [342]
KLHL8 Rapsyn Yes Regulation of neuromuscular junction [343]
KLHL9 Aurora B No Regulation of Mitotic progression [284]

IRS1 Yes Insulin resistance [283]
KLHL10 dBruce Yes Regulation of spermiogenesis and male fertility [344, 345]
KLHL12 DVLs Yes Inhibition of Wnt pathway [140, 141, 147]

Lunapark Yes Regulation of neurodevelopment [144]
DRD4 No - [346-348]
SEC31 No Promotion of collagen secretion [142, 143]
KHSRP No Inhibition of enterovirus ires-mediated translation [349]

KLHL13 Aurora B No Regulation of mitotic progression [284]
IRS1 Yes Insulin resistance [283]

KLHL15 DCX, DCLK1 and DCLK2 Yes Regulation of neurogenesis [350]
PP2A Yes Regulation of cellular dephosphorylation events [351]
CTIP Yes DNA-end resection and DSB repair [352]

KLHL16 MAP1B-LC Yes Regulation of neuronal function [161]
ATG16L1 Yes (K48) Regulation of autophagosomes production [353]

MAP8 Yes Regulation of neuronal function [354]
GFAF Yes Regulation of neuronal function [162]
TBCB Yes Regulation of neuronal function [355]

IFs Yes Regulation of neuronal function [356]
KLHL17 GluR6 Yes Maintaining synaptic normality among neurons [357]
KLHL18 Aurora-A Yes Regulation of mitotic entry [73]

UNC119 Yes Protection of cells from light damage [358]
KLHL19 MCM3 No Maintaining the stability of cell cycle [359, 360]

PGAM5 Yes Regulation of oxidative stress [361]
PALB2 No Regulation of cell cycle [362]

P62 No Promotion of anti-oxidant response and autophagy [363, 364]
MIRO-2 Yes Regulation of mitochondrial transport [365]
NRF1 Yes Cellular oxidative stress response [237]
NRF2 Yes Cellular oxidative stress response [237]

PGAM5, BCL2L1 Yes Promotion of cell apoptosis [366]
BCL2 Yes Promotion of cell apoptosis [367]

KLHL20 Coronin 7 No (K33) Protein Trafficking [368]
PDZ-RhoGEF Yes Neurite outgrowth [369]
DAPK, PML Yes Inhibition of apoptotic and autophagic death [281]

KLHL21 EB No Promotion of cell migration [370]
Aurora B No Regulation of mitosis [371]

KLHL22 PLK1 No Regulation of mitosis [98, 372-374]
KLHL24 KRT14 Yes Regulation of skin integrity [375]

Keratin 14, 15 Yes Regulation of hair maintenance [376]
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KLHL25 4E-BP1 Yes Promotion of translational activity [377]
ACLY Yes Promotion of iTreg cell differentiation [264]

KLHL31 FLNC Yes Maintenance of muscle function [378]
KLHL38 Myocardin Yes Promotion of heart failure [67]
KLHL40 DP Yes Regulation of skeletal muscle myogenesis [379]
KLHL41 Nebulin No Maintenance of muscle function [380]

NRAP Yes Maintenance of muscle function [381]
KLHL42 PPP2R5 Yes Promotion of connective tissue fibrosis [382]

P60/Katanin Yes Regulation of mitosis [383]
Abbreviations: WNK1: WNK Lysine Deficient Protein Kinase 1; WNK3: WNK Lysine Deficient Protein Kinase 3; WNK4: WNK Lysine Deficient 
Protein Kinase 4; NPCD: Neuronal Pentraxin with Chromo Domain; cMyBP-C: Myosin Binding Protein C3; NCC: Na+-Cl- Cotransporter; HBXIP/Lam-
tor5: Late Endosomal/Lysosomal Adaptor; TUT1: Terminal Uridylyl Transferase 1; IRS1: Insulin Receptor Substrate 1; dBruce: One of the Inhibitor 
of Apoptosis Family of Proteins Family; DVLs: Disheveled Family Members; DRD4: Dopamine D4 Receptor; SEC31: Protein Transport Protein 
SEC31; KHSRP: KH-Type Splicing Regulatory Protein; DCX: Doublecortin; DCLK1: Doublecortin-Like Kinase 1; DCLK2: Doublecortin-Like Kinase 
2; PP2A: Protein Phosphatase 2A; CTIP: Carboxy-Terminal Binding Protein 1 Interacting Protein; DSB: DNA Double Strand Breaks; MAP1B-LC: The 
Light Chain (LC) of Microtubule-Associated Protein 1B (MAP1B); ATG16L1: Autophagy Related 16 Like 1; MAP8: Microtubule-Associated Protein 8; 
GFAF: Glial Fibrillary Acidic Protein; TBCB: Tubulin Folding Cofactor B; IFs: Intermediate Filaments; GluR6: Glutamate Ionotropic Receptor Kainate 
Type Subunit 2; UNC119: Unc-119 Lipid Binding Chaperone; MCM3: Minichromosome Maintenance Complex Component 3; PGAM5: Phospho-
glycerate Mutase Family Member 5; PALB2: Partner and Localizer of BRCA2; RHOT2/MIRO-2: Ras Homolog Family Member T2; NRF1: Nuclear 
Factor Erythroid-2-Related Factors 1; NRF2: Nuclear Factor Erythroid-2-Related Factors 2; BCL2L1: BCL2 Like 1; BCL2: BCL2 Apoptosis Regulator; 
PDZ-RhoGEF: Rho Guanine Nucleotide Exchange Factor 11 (also called ARHGEF11); DAPK: Death Associated Protein Kinase; PML: Promyelocytic 
Leukemia Protein; EB: End Binding Protein; PLK1: Polo Like Kinase 1; KRT14: Filamin-C (FlnC) Keratin 14; 4E-BP1: Eukaryotic Translation Initia-
tion Factor 4E Binding Protein 1; ACLY: ATP-Citrate Lyase; iTreg: Inducible Regulatory T Cells; FLNC: Filamin C; DP: Dimerization Protein; NRAP: 
Nebulin-Related Anchoring Protein; PPP2R5: Phosphatase 2 Regulatory Subunit B’.

Table 2. The interaction between KLHLs and specific substrates about cancers
KLHLs Substrates Degraded or not Roles References
KLHL2 ARHGEF7 Yes Inhibition of ccRCC progression [322]

UCK1 Yes Promotion of AML progression and 5-AZA resistance [313]
KLHL6 CDK2 Yes Inhibition of AML progression [305]

Roquin2 Yes Inhibition of DLBCL progression [191]
KLHL7 p53 Yes Promotion of BC progression [42]
KLHL9 C/EBPβ, C/EBPδ Yes Inhibition of GBM progression [289]
KLHL12 DVL1 Yes Inhibition of HCC progression [147]
KLHL14 BCR Yes Inhibition of DLBCL progression [156]
KLHL16 NF-κB Yes Maintaining chemotherapy sensitivity of HNC [155]
KLHL18 PI3K Yes Inhibition of LC progression [72]
KLHL19 IKKβ Yes Inhibition of tumorigenesis [154]

Myosin 9b Yes Inhibition of NSCLC progression [256]
SOX9 Yes Inhibition of tumorigenesis [263]

KLHL20 ULK1 Yes (K48) Maintaining chemotherapy sensitivity of CML [236]
PML Yes Promotion of PCa progression [44]

DAPK, PML Yes Promotion of CRC progression [282]
KLHL22 DEPDC5 Yes (K48) Promotion of BC progression [103]

PD-1 Yes Inhibition of CRC progression [99]
KLHL25 ACLY Yes Maintaining lipid metabolism balance to suppress LC progression [273]
KLHL37 LATS1/2 Yes Promotion of radio-resistance of BC [34]
KLHL38 BECN1 Yes Promotion of BC and OC progression [68]

PTEN Yes Promoting of NSCLC progression [71]
Abbreviations: ARHGEF7: Rho Guanine Nucleotide Exchange Factor 7; ccRCC: Clear Cell Renal Cell Carcinoma; UCK1: Uridine-Cytidine Kinase 1; 
AML: Acute Myeloid Leukemia; 5-AZA: 5-Azacytidine; CDK2: Cyclin-Dependent Kinase 2; DLBCL: Diffused Large B-Cell Lymphoma; BC: Breast Can-
cer; C/EBP: CCAAT Enhancer Binding Protein; GBM: Glioblastoma; DVL1: Dishevelled Segment Polarity Protein 1; HCC: Hepatocellular Carcinoma; 
BCR: B Cell Receptor; NF-κB: Nuclear Factor Kappa-B; HNC: Head and Neck Cancer; PI3K: Phosphatidylinositol 3-Kinase; LC: Lung Cancer; IKKβ: 
IkB Kinase β; NSCLC: Non-Small Cell Lung Cancer; SOX9: Sex-Determining Region Y (SRY)-Box Transcription Factor 9; ULK1: UNC-51-Like Kinase 
1; CML: Chronic Myelogenous Leukemia; PML: Promyelocytic Leukemia Protein; PCa: Prostate Cancer; DAPK: Death Associated Protein Kinase; 
CRC: Colorectal Cancer; DEPDC5: Dishevelled, Egl-10 and Pleckstrin Domain-Containing 5; PD-1: Programmed Death-1; ACLY: ATP-Citrate Lyase; 
LATS1/2: Large Tumor Suppressor Kinase 1/2; BECN1: Beclin1; OC: Ovarian Cancer; PTEN: Phosphatase and Tensin Homolog.
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Figure 2. The Role of KLHLs in signaling pathways in cancer. The abnormity of signaling pathways is always closely 
related to tumor occurrence and development. KLHLs, as substrate adaptor proteins of Cullin3 E3 ligases, are 
involved in the occurrence and development of several types of cancers and regulates various signal pathways, 
including the PI3K/AKT pathway, mTOR signaling, Wnt/β-catenin signaling, NF-κB signaling, hippo signaling and 
autophagy-lysosome pathway. 

Figure 3. The Role of KLHLs in cancers. KLHLs are involved in the occurrence and progression of a variety of tumors 
via promoting ubiquitination of a series of substrate proteins, including NRF2, Myosin 9b, SOX9, ACLY, PD-1, PML, 
DAPK, C/EBPs, p53, CDK2, UCK1 and ARHGEF7. 

pates in the regulation of the autophagy path-
way and promotes tumor progression in breast 
cancer (BC) and ovarian cancer (OC) [68]. PTEN 
was recently found to be a substrate of KLHL38 
in one LC-associated study.

One of the most common cancer types and  
the leading cause of death due to cancer [69], 
LC can be divided into non-small cell lung can-
cer (NSCLC) and small cell lung cancer, which 
account for approximately 85% and 15% of LC 
cases, respectively [70]. Xu et al. [71] showed a 
negative relationship existed between the sur-
vival times of patients with NSCLC and KLHL38 

protein levels. They found that the mRNA and 
protein levels of KLHL38 in clinical LC tissues 
were dramatically higher than those in normal 
bronchi and alveoli, and also discovered that 
KLHL38 promoted the ubiquitination and pro-
teasome degradation of PTEN to activate AKT 
signaling. Specifically, KLHL38 overexpression 
promoted LC cell proliferation by positively  
regulating CYCLIN D1, CYCLIN B, and C-MYC, 
simultaneously downregulating P21, and stimu-
lated LC migration and invasion by upregulat- 
ing RHOA and MMP9 and downregulating 
E-CADHERIN [71]. In general, KLHL38 acts as 
an oncoprotein facilitating LC occurrence and 
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progression by degrading PTEN and activating 
the PI3K/AKT pathway. However, another re- 
search confirmed KLHL18 as a tumor suppres-
sor inhibiting the PI3K/AKT pathway [72].

KLHL18-PI3K

KLHL18 was shown to interact with Aurora-A, a 
mitotic serine/threonine kinase essential to 
the regulation of mitosis and cell cycle progres-
sion, and promote its ubiquitination and protea-
some degradation [73]. Moreover, it was sug-
gested that KLHL18 inhibited LC progression 
by degrading PI3K [72]. Jiang et al. [72] have 
found that the expression of KLHL18 in LC tis-
sues is much lower than that in normal bron-
chial epithelial tissues, and negatively correlat-
ed with tumor size, differentiation level, lymph 
node metastasis and TNM stage. A series of 
experiments in vivo and in vitro have indicated 
that KLHL18 inhibits NSCLC cells proliferation, 
migration and invasion by promoting the ubiqui-
tination and proteasome degradation of P85α, 
an essential regulatory subunit of PI3K, thereby 
inhibiting the activity of PI3K/AKT pathway. In 
addition to this, KLHL18 is negatively correlat-
ed with the programmed death-1 ligand 1 (PD-
L1) level.

PD-L1 is a transmembrane protein frequently 
expressed in human tumor cell membranes 
and interacts with programmed death-1 (PD-1), 
a co-inhibitory receptor expressed on immune 
cells, contributing to tumor immune escape 
[74]. The PI3K/AKT/mTOR pathway plays an 
essential role in carcinogenesis [75] and en- 
hances the protein levels of PD-L1 by inhibiting 
the autophagy pathway, thus facilitating tumor-
al immune escape [76]. KLHL18 might sup-
press the PI3K/AKT pathway, which attenuates 
such pathway-induced inhibitory effects on 
PD-L1’s autophagy lysosomal degradation. 
Overall, KLHL18 is a tumor suppressor in LC 
and its low protein levels are closely relevant to 
high invasion, metastasis, immune tolerance 
and poor prognosis. 

MTOR signaling

The mTOR is an atypical serine/threonine 
kinase in the PI3K-related kinase family [77]. It 
is the catalytic subunit existing in two complex-
es: mTOR complex 1 (mTORC1) and mTOR com-
plex 2. mTORC1 is a trimer protein kinase com-
posed of three core components: mTOR, Raptor, 

and mammalian lethal with Sec13 protein 8 
[78], and plays a critical role in promoting anab-
olism processes (lipid synthesis, glycolysis, 
angiogenesis, and mitochondrial biogenesis) 
and inhibiting catabolism processes (autopha-
gy and lysosome biogenesis). The mTOR is reg-
ulated by a series of upstream signals, which 
include growth factor, energy state, oxygen, 
and amino acid [79], and then signals to vari-
ous downstream transcription factors, such as 
hypoxia-inducible factor-1 (HIF-1), peroxisome 
proliferators-activated receptor α/β, C-MYC, 
and transcription factor EB, which regulates 
physiological and pathological processes, in- 
cluding protein translation, cell proliferation, 
and normal cell cancerization [80-83]. 

Rag GTPases (Rags), heterodimers composed 
of RagA/RagB and RagC/RagD, can be activat-
ed and bind with the Raptor of mTORC1 to 
accelerate the activation of mTORC1 in res- 
ponse to amino acid stimulus [84, 85]. GTPase-
activating protein (GAP) activity toward Rags 1 
complex (GATOR1) is composed of three pro-
teins: dishevelled, Egl-10, and pleckstrin do- 
main-containing 5 (DEPDC5); nitrogen perme-
ase regulator 2-like (NPRL2); and NPRL3 [86]. 
GATOR1, as one of the upstream-inhibiting reg-
ulators of Rags, has GAP activity and inacti-
vates Rags [87, 88], which further suppresses 
the mTORC1’s aggregation and activation as 
well as downstream pathways. Even so, the 
structure of GATOR1 and its specific forms that 
inhibit Rags are still unknown. 

DEPDC5 is an integral component of GATOR1 
involved in the inhibition of the mTOR pathway 
and plays an important role in maintain- 
ing embryonic and brain development [89]. 
DEPDC5 mutations are tightly associated with 
brain dysplasia and epilepsy occurrence [90]. 
Moreover, the aberrant activation of the mTOR 
pathway induced by DEPDC5 mutation is 
responsible for tumor occurrence and progres-
sion, including gastrointestinal stromal tu- 
mors [91] and hepatocellular carcinoma (HCC)  
[92]. Regarding the inhibition modes between 
DEPDC5 and mTORC1, scientists previously 
believed that DEPDC5 exerts its effect by pro-
moting GTP hydrolysis to turn RagA/B into its 
inactive GDP state [93]. However, a recent 
study by Shen et al. revealed that at least two 
binding modes between Rag GTPases and a 
GATOR1 complex are required in the inhibition 
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of mTORC1 in amino acid deficiency. A strong 
direct inhibiting interaction has been found 
between RagA and the SHEN domain of 
DEPDC5, and a weak interaction exists between 
the NPRL2-NPRL3 heterodimer and RagA, 
which stimulates GAP activity [94]. 

The mTORC1 signaling pathway is closely cor-
related with tumor occurrence and progression 
and is hyper-activated in many kinds of human 
cancer types, including BC [87, 95, 96] and 
renal carcinoma [97]. It has been shown that 
KLHL20 and KLHL22 promote the ubiquitina-
tion and degradation of promyelocytic leukemia 
protein (PML) and DEPDC5, respectively, there-
by enhancing the mTOR signaling and acceler-
ating cancer progression.

KLHL22-DEPDC5

As the substrate-specific adaptor of the Cullin3 
E3 ligase, KLHL22 interacts with substrates 
and promotes its ubiquitination in mitosis [98] 
and tumor immunity [99]. It has been shown 
that KLHL22 can inhibit colorectal cancer (CRC) 
metastasis and invasion by suppressing the 
Wnt/β-catenin signaling [100] and promote 
malignant melanoma (MM) growth by activat-
ing the PI3K/AKT/mTOR signaling [101]. More- 
over, KLHL22 promotes BC progression by acti-
vating the mTOR signaling.

BC is the most common malignant carcinoma 
in women worldwide, posing a considerable 
threat to women’s health and their lives; its inci-
dence increases annually in aging populations 
[102]. At the protein level, Chen et al. observed 
that KLHL22 expression in human BC tissues 
was obviously higher than those in adjacent 
normal tissues. Their experiments at the cellu-
lar level showed that the depletion of KLHL22 
negatively influenced BC cell proliferation [103]. 
Their research revealed that KLHL22 might be 
an oncogene of BC, promote its encoding pro-
tein aggregation on the lysosome surface, and 
initiate DEPDC5 K48-linked ubiquitination and 
proteasome degradation, thus activating the 
mTORC1 signaling pathway to promote BC 
growth [103]. 

KLHL20-PML

As an adaptor of CRL3, KLHL20 can promote 
Unc-51-like autophagy activating kinase 1 
(ULK1) ubiquitination and proteasome degra-

dation, a serine/threonine-protein kinase, whi- 
ch emerges as a regulator of autophagy termi-
nation [104, 105]. In addition, KLHL20 is 
involved in regulation of tumor hypoxia environ-
ment [44] and tumor progression [106] through 
promoting specific substrates ubiquitination 
and proteasome degradation. 

Clear cell renal cell carcinoma (ccRCC) is the 
most common kidney cancer [107]. The Von 
Hippel-Lindau (VHL) is a substrate-binding sub-
unit of Cullin2 ubiquitin ligase and targets 
HIF1/2α for degradation. In clinical practice, 
VHL is lost or inactivated in the vast majority of 
ccRCCs, and this effect increases the expres-
sion level of HIF1/2, which in turn promotes 
angiogenesis and renal tumor growth [108, 
109]. PML inhibits neovascularization by inhib-
iting the activation of mTOR and downstream 
synthesis of HIF-1α [110]. 

First identified in patients with acute promyelo-
cytic leukemia (APL) [111], PML is a tumor sup-
pressor. Under normal conditions, it usually 
accumulates in the nucleus and forms PML 
nuclear bodies, which participates in the repair 
of DNA damage and regulation of protein syn-
thesis, gene transcription and other biological 
functions [112]. In the regulation of the path-
ways, such as PTEN/AKT [113] and mTOR [110] 
signaling pathway, PML is essential to antitu-
mor function, such as inhibition of tumor cell 
proliferation, invasion, migration and angiogen-
esis as well as activation of tumor cell apopto-
sis [110, 114, 115]. PML is downregulated in a 
range of tumors [116], and ubiquitination is key 
to PML’s dysregulation in tumors [117]. Intri- 
guingly, with regard to PCa, Yuan et al. found 
that KLHL20 can promote PCa growth by 
degrading PML [44]. 

By investigating the relationship between PML 
and ccRCCs, Chen et al. observed that the 
small C-terminal domain phosphatases (SCPs) 
dephosphorylated PML at S518, blocking PML 
ubiquitination and proteasome degradation 
mediated by the prolyl isomerase 1 and 
KLHL20. They also found that the SCP1 expres-
sion was significantly downregulated compared 
with those in normal tissues, and the dephos-
phorylation effect of SCP1 can promote PML 
degradation, alleviate the inhibitory effect of 
PML on mTOR activity and increase the levels of 
downstream HIF1. Maintaining PML stability by 
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suppressing KLHL20-mediated degradation 
can inhibit the mTOR-HIF1 pathway and ccRCC 
cell proliferation, migration, invasion and angio-
genesis [106].

Wnt/β-catenin signaling

Wnt signaling is mainly divided into two types 
[118]: the canonical Wnt/β-catenin-dependent 
signaling cascade and noncanonical Wnt sig-
naling cascades (Wnt/PCP and Wnt/Ca2+ path-
ways). The classic Wnt/β-catenin signaling pa- 
thway has been a focus of research in the areas 
of tumorigenesis, and the abnormal expression 
or activation of β-catenin is essential to tumori-
genesis [119] and metastasis [120]. β-catenin 
in its inactivated state forms a degradation 
complex with Axin protein, casein kinase-1 
(CK1), the kinases glycogen synthase kinase-3, 
and adenomatous polyposis coli protein, which 
induces the β-catenin phosphorylation [121-
123] and β-TrCP-mediated ubiquitination and 
proteasome degradation [124, 125]. Conver- 
sely, this signaling pathway is activated by the 
secretory glycoprotein, Wnt, which binds to the 
heterodimeric receptor complex consisting  
of frizzled (FZD) receptor and low-density-lipo-
protein-related (LRP5/6) protein to stabilize 
β-catenin in the cytoplasm [126, 127] and pro-
mote β-catenin nuclear translocation and the 
subsequent activation of T cell factor/lymphoid 
enhancer binding factor (TCF/LEF) transcrip-
tion factors, thus regulating the expression of 
downstream target genes [128, 129]. The Wnt/
β-catenin signaling pathway is closely involved 
in the regulation of cell proliferation, differenti-
ation and migration [130], and its dysregulation 
promotes carcinogenesis and progression in 
almost all human cancer types, including BC 
[131, 132]. 

The three homologs of dishevelled (DVL) family 
members have been described: DVL1, DVL2 
and DVL3, which all contain three domains:  
the N-terminal dishevelled, axin (DIX) domain 
responsible for DVL aggregation and interac-
tion with Axin1 [133], the central postsynaptic 
density 95, disc large, zonula occuldens-1 
domain responsible for interacting with the FZD 
receptor [134] and C-terminal Dvl, Egl-10, 
pleckstrin (DEP) domain responsible for DVL 
dimerization [122]. Upon stimulation by the 
Wnt protein, DVLs are rapidly phosphorylated 
and recruited to the FZD receptor, which inhib-
its the formation of degradation complex [126, 

127], thereby blocking the ubiquitination and 
proteasome degradation of β-catenin and pro-
moting its nuclear translocation. DVLs are 
involved in tumorigenesis and are highly 
expressed in many human cancer types [135, 
136]. Several E3 ligases, such as SMURF2 
[137], ITCH [138], and NEDD4L [139], perform 
DVLs ubiquitination and proteasome degrada-
tion. KLHL12 interacts with DVLs through the 
β-propeller regions of Kelch domains and trig-
gers DVL1 ubiquitination and proteasome deg-
radation, thereby suppressing the Wnt signal-
ing [140, 141]. 

KLHL12-DVL1

As an adaptor of CRL3 in KLHL family, KLHL12 
regulates collagen secretion [142, 143], neuro-
development [144], and the Wnt signaling path-
way [141] by ubiquitinating and degrading tar-
get substrates.

The sixth most common cancer, and the third 
leading cause of cancer death worldwide, pri-
mary liver cancers mainly consist of HCC (75%-
85%) and intrahepatic cholangiocarcinoma 
(10%-15%) [145]. Abnormal spindle microtu-
bule assembly (ASPM) is regarded as an oncop-
rotein highly expressed in HCC tissues. Its over-
expression in HCC cells is associated with  
the activation of the Wnt signaling, which facili-
tates cell proliferation, invasion, migration, and 
induces EMT [146]. Kelvin et al. found that 
ASPM was upregulated in superpotent cancer 
stem cells (spCSCs) in HCC. They screened  
cancer stem cells (CSCs) from HCC cells with 
knockdown of ASPM and found that protein 
expression levels of β-catenin, DVL1 and CK1 
were significantly downregulated compared 
with those in the control group. Furthermore, 
through co-immunoprecipitation and a series 
of experiments, they confirmed that ASPM reg-
ulated the Wnt pathway by modulating the sta-
bility of DVL1 rather than β-catenin and CK1. 
Finally, they demonstrated that ASPM and 
KLHL12 competitively bind with DVL1, which 
inhibited its degradation and activated the Wnt 
pathway in spCSCs to actively regulate its stem-
ness and tumorigenic potential, thus leading to 
the progression of HCC [147]. 

NF-κB signaling 

The NF-κB pathway is involved in regulating a 
variety of biological processes, including innate 
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and adaptive immunity to infection, inflamma-
tion, stress responses, B cell development, 
lymphoid organogenesis, tumorigenesis and 
tumor progression [148-150]. The mammalian 
NF-κB family consists of five members: RelA/
P65, C-REL, RelB, P50 (NF-κB1) and P52 (NF-
κB2), which can form a variety of heterodimers 
or homologous dimers. The P50/P65 dimer 
(commonly referred to as NF-κB) is the most 
common dimer and exists in almost all cells. In 
mammals, the inhibitory proteins of κB family 
(IκB) consists of IκBα, IκBβ, IκBγ, IκBδ, IκBε, 
P100 and P105, which inhibits the NF-κB activ-
ity in the cytoplasm. Under resting conditions, 
IκB binds to the NF-κB dimer and forms a tri-
meric complex, which maintains its inactivated 
state [151]. The NF-κB signaling pathway can 
be divided into classical or nonclassical signal-
ing cascades [152]. In mammalian cells, the 
classical pathways can be activated upon a 
variety of stimuli, such as tumor necrosis factor 
α (TNFα), lipopolysaccharide, and interleukin 
1β (IL-1β). When the conformation of receptors, 
such as IL-1R, toll-like receptor (TLR) and TNFR, 
changes upon the binding of upstream signal-
ing factors, it delivers the signals into IκB 
kinase (IKK), which induces the phosphoryla-
tion and ubiquitination of IκB, and dissociates 
IκB from trimers [153]. Subsequently, NF-κB 
rapidly enters nucleus from the cytoplasm and 
binds to specific sequences on the nuclear 
DNA, and further promotes the transcription of 
associated genes, including CYCLIN D1, C-MYC, 
and VEGF.

Under physiological conditions, NF-κB can pro-
mote cell apoptosis and inhibit tumorigenesis. 
Conversely, when the NF-κB is aberrantly acti-
vated, it can promote cell carcinogenesis by 
accelerating cell cycle evolution and inhibiting 
cell apoptosis. KLHL19 exerts adverse effects 
on LC and HCC progression by inhibiting the 
NF-κB signaling pathway [154]. Meanwhile, 
KLHL16 maintains chemotherapy sensitivity to 
head and neck cancer (HNC) by inhibiting the 
NF-κB signaling pathway [155]. Besides, sever-
al studies have demonstrated that KLHL14 
[156] and KLHL6 [157] can suppress the NF-κB 
signaling pathway and then inhibit the progres-
sion of diffused large B-cell lymphoma (DLBCL). 

KLHL19-IKKβ 

IKKβ, as a serine/threonine kinase, contains 
four domains, including kinase domain (KD), 

scaffold/dimerization domain, ubiquitin-like 
domain and C-terminal NEMO binding domain 
[158]. It acts as a critical regulator in the NF-κB 
cascade. IKKβ undergoes phosphorylation and 
activation in response to multiple proinflamma-
tory stimuli, which promotes the nuclear trans-
location of NF-κB and induces downstream 
gene transcription, playing an important role in 
the regulation of tumor invasion, metastasis 
and EMT. In addition, IKKβ is considered an 
oncogenic kinase promoting tumorigenesis and 
progression [159]. 

KLHL19 acts as a substrate-specific adaptor to 
IKKβ, inhibiting tumor progression by downreg-
ulating the NF-κB signaling [154]. During the 
physiologic motion, the Kelch domain of 
KLHL19 is primarily responsible for IKKβ KD 
domain binding, which promotes its K48-linked 
ubiquitination and proteasome degradation 
[160]. KLHL19 mutations occur frequently in 
tumors, and its abnormal mutation-induced 
IKKβ dysregulation has been also demonstrat-
ed in a variety of tumors. KLHL19 Kelch domain 
mutants (S404X and D479G) in liver cancer 
and Kelch domain mutants (G333C, G364C, 
G430C and R413L) in NSCLC can attenuate 
binding affinity and inhibit subsequent IKKβ 
ubiquitination and proteasome degradation, 
thereby activating NF-κB signaling to promote 
tumor progression [154]. In conclusion, KLHL19 
may act as a tumor suppressor, inhibit IKKβ 
ubiquitination and proteolysis to suppress 
NF-κB signaling, and subsequently curb tumor 
progression. 

KLHL16-NF-κB 

Multiple studies have shown that KLHL16 
(Gigaxonin) is critical for neuronal maintenance 
and survival [161, 162]. KLHL16 mutations 
occur frequently in various tumors, including 
bone tumors, CRCs and hematopoietic/lym-
phocytic tumors [163]. Research has also sug-
gested that KLHL16 mutations enhance NF-κB 
signaling in HNC cells and result in chemother-
apy resistance [155].

HNC is the seventh most common type of can-
cer in the world and has many different histo-
logical types, the most common of which is 
squamous cell carcinoma (SCC) [164]. So far, 
platinum-based drugs remain the mainstays of 
chemotherapy regiments for HNC [165]. P16 is 
a tumor suppressor gene that plays a role in 
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cell cycle regulation, and its mutations are 
associated with tumor progression and chemo-
therapy resistance [166, 167]. In addition, cis-
platin inhibits head and neck squamous cell 
carcinoma growth through P16-mediated cell 
cycle arrest, and reduction in P16 expression is 
associated with cisplatin resistance [168]. In 
HNC, Veena et al. have found that the inhibition 
of IKKβ leads to arrested tumor growth, and 
cisplatin treatment reduces NF-κB nuclear 
expression. Cisplatin treatment leads to the 
nuclear translocation of P16, which induces 
the recruitment of KLHL16 and promotes the 
ubiquitination and degradation of NF-κB.

KLHL14-BCR

KLHL14 is critical to cortical development by 
regulating the axon extension of corticospinal 
neurons [169]. In addition, KLHL14 has been 
found upregulated in OC and endometrial carci-
noma (EC) tissues, and high KLHL14 expres-
sion in OC and EC patients is associated with 
poor prognosis [170, 171]. Notably, KLHL14 is 
highly expressed in B cells and crucial to its dif-
ferentiation and development [172]. Moreover, 
its encoded gene KLHL14 has been identified 
frequently mutated in mature B-cell malignan-
cies [173]. 

DLBCL is the most common histological type  
of non-Hodgkin’s lymphoma, which is mainly 
divided into three subtypes: germinal center 
B-cell-like, activated B cell-like (ABC) and un- 
classified subgroups. Many patients still experi-
ence drug resistance or relapse during or after 
treatment [174] despite the rapid progress in 
DLBCL treatment. The B cell receptor (BCR) is a 
molecule on the surface of B cells responsible 
for specific recognition and conjugation to anti-
gens. The BCR signaling pathway is closely 
associated with the pathogenesis and develop-
ment of B cell malignancies and plays a signifi-
cant role in DLBCL progression [175, 176]. TLR, 
an important protein in nonspecific immune 
responses, is involved in the activation of NF-κB 
by binding myeloid differentiation factor 88 
(MYD88), an important adaptor protein essen-
tial to innate immune responses and inflamma-
tory response signal transduction [177]. In 
DLBCL-ABC cells, the BCR combines with 
MYD88 and TLR9 to form MyD88-TLR9-BCR 
(My-T-BCR) supramolecular complex, which 
facilitates the NF-κB signaling into the nucleus 
[178]. NF-κB activation is a principal feature of 

the DLBCL-ABC subgroup, which depends on 
constitutive NF-κB signaling to decrease tumor 
cell apoptosis and maintains its viability, called 
“chronic active” BCR signaling [179]. Blocking 
the BCR signaling pathway can inhibit NF-κB 
signaling and result in cell cycle arrest and 
apoptosis, thereby suppressing DLBCL progres-
sion [180, 181].

George et al. have demonstrated that KLHL14, 
as a tumor suppressor, promotes the ubiquiti-
nation and degradation of BCR subunits, 
CD79A, CD79B and IgM, thus inhibiting My-T-
BCR complex formation to block NF-κB signal-
ing. In 574 DLBCL biopsy samples, KLHL14 
mutations were most common in DLBCL-ABC 
(10.8%). They confirmed that the deletion of 
KLHL14 induced DLBCL resistance to brutinib, 
a bruton tyrosine kinase inhibitor that inhibits 
the degradation of BCR subunits and promotes 
the assembly of a My-T-BCR super complex, 
thereby promoting NF-κB activation and DLBCL 
progression [156]. 

KLHL6-Roquin2

KLHL6 is highly expressed in gastric cancer 
(GC) cells and tissues, promoting GC cell growth 
and lymphangiogenesis [182]. KLHL6 disrupts 
the formation of germinal centers in chronic 
lymphocytic leukemia (CLL) and its high level 
predicts poor clinical prognosis [183]. The 
recurrent mutations of KLHL6 have been found 
in CLL [184] and other mature B-cell malignan-
cies, including DLBCL. The high frequency of 
KLHL6 mutations facilitated the proliferation of 
DLBCL-ABC cells [185].

Roquin2 is an RNA-binding protein in the Roquin 
family [186] and composed of a RING domain, 
conserved ROQ domain and zinc finger domain 
[187]. Roquin2 decays target mRNAs by bind-
ing with the conserved stem-loop motif in  
the 3’UTR of mRNA and its ROQ domain [187]. 
The tumor necrosis factor-α-inducible gene 3 
(TNFAIP3) is a tumor suppressor gene in DLBCL 
[188, 189], and its encoding protein, TNFα-
induced protein 3 (TNFAIP3/A20), is a key 
NF-κB regulator and inhibits IKKγ activation 
[190]. Zhou et al. have shown that Roquin2 can 
induce the mRNA decay of TNFAIP3 and then 
suppress the accumulation of TNFAIP3. It has 
been shown that roquin2 is one of the sub-
strates of KLHL6 which mediating roquin2 deg-
radation through UPS [191]. Under physiologi-
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cal conditions, KLHL6 is upregulated during 
antigen-induced BCR/NF-κB activation and 
induces roquin2 degradation, which inhibits 
mRNA decay of TNFAIP3 and further leads to 
TNFAIP3 accumulation. Further, TNFAIP3 inhib-
its the IKK complex, which negatively regulates 
BCR signaling to maintain the homeostasis of 
the NF-κB signaling. By contrast, the high-fre-
quency mutations of KLHL6 in DCLBC cells  
suppress the roquin2 degradation, accelerate 
TNFAIP3 decay and attenuate the inhibitory 
effect of TNFAIP3 on the IKK complex, which in 
turn induces the abnormal activation of NF-κB 
pathways. In conclusion, Zhou et al. suggested 
that the KLHL6-Roquin2 axis was of great 
importance to the regulation of B lymphoma 
cell proliferation, and regulated the mRNA 
decay and NF-κB activity [191, 192].

Hippo pathway

The hippo pathway is composed of a series  
of conserved kinases and is involved in the reg-
ulation of several biological processes, includ-
ing tumorigenesis [193-196]. The core compo-
nents of the pathway in mammals include ma- 
mmalian STE20-like protein kinase (MST1/2), 
cofactor human salvadorhomology 1, large 
tumor suppressor kinase 1/2 (LATS1/2) and its 
cofactor MOB kinase activator (MOB1) [197, 
198]. Under normal conditions, an extracellular 
growth signal induces a series of phosphoryla-
tion reactions of kinases: the phosphorylated 
MST1/2 (p-MST1/2) promotes LATS1/2 phos-
phorylation, and p-LATS1/2 induces the phos-
phorylation of downstream effector factors, 
Yes-associated protein (YAP) [199] and Tafazzin 
(TAZ) [200]. Then, p-YAP and p-TAZ interact to 
form a complex and stabilizes in the cytoplasm 
by binding 14-3-3 proteins and promote the 
β-TrCP-dependent proteasome degradation, 
which inhibits β-TrCP nuclear translocation and 
downstream transcription activation function 
[201-204]. A series of missense mutations in 
the hippo pathway appear in the early stage of 
tumor [205], which inhibits this pathway by 
affecting the phosphorylation cascade of key 
components and attenuating YAP/TAZ protea-
some degradation. The accumulative unphos-
phorylated YAP/TAZ in the cytoplasm is trans-
ported to the nucleus and binds with TEAD 
transcription factors, thereby modulating the 
transcriptional activity of downstream onco-
genes to facilitate cell proliferation and inhibit 
cell apoptosis [206]. 

Several E3 ligases have been suggested asso-
ciated with tumor-related processes via regu-
lating the hippo signaling pathway. For example, 
E3 ligase PARK2 can promote YAP K48-linked 
ubiquitination and proteasome degradation to 
inhibit esophageal squamous cell carcinoma 
procession [207]. E3 ligase ITCH can ubiquiti-
nate and degrade LATS1 to promote BC pro-
gression [208]. Likewise, KLHL37 can induce 
radio-resistance in BC by ubiquitinating and 
degrading the key protein, LATS. 

KLHL37-LATS1/2

KLHL37 is involved in various pathophysiologic 
processes, acting a vital role in nervous system 
development [209] and tumorigenesis and pro-
gression [210-212]. LATS [213], YAP [213, 214] 
and TAZ [215-217] are closely associated with 
the regulation about BC progression. Li et al. 
have clarified that the overexpression of 
KLHL37 results in the hyperactivation of the 
hippo pathway in RaR (radio-resistant) BC cells. 
They found the expression of KLHL37 in BC 
samples from patients resistant to radiothera-
py were significantly higher than those from 
patients sensitive to radiotherapy. In line with 
the histological outcome, the expression of 
KLHL37 are significantly higher in RaR BC cells 
compared with in non-RaR BC cells [34]. 
Specifically, they observed that the overexpres-
sion of KLHL37 degraded LATS1/2 through 
UPS and suppressed YAP/TAZ phosphorylation, 
promoting its nuclear translocation, further 
increasing the expression of the downstream 
anti-apoptotic genes GLI1, CTGF and FGF1, and 
enhancing radio-resistance in BC cells [34]. 

Autophagy-lysosome pathway 

Autophagy is a tightly regulated pathway that 
plays an important role in basic metabolic func-
tions and cellular homeostasis [218], and its 
dysregulation is closely related to tumor occur-
rence and progression [219, 220]. The ULK1 
complex and VPS34 complex are vital to 
autophagic processes and regulate autophagy 
initiation [221, 222]. Under several types of 
autophagic stress, such as starvation, hypoxia 
and DNA damage, the ULK1 complex is activat-
ed and transmits signals that activate the 
VPS34 complex, which promotes autophagic 
protein localization to the phagophore [223]. 
The Beclin1 (BECN1), a protein of the VPS34 
complex, plays a key role in autophagy regula-
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tion involved autophagosome formation, exten-
sion and maturation [224]. Several E3 ligases, 
such as HUWE1 [225] and WWP1 [226], pro-
mote the ubiquitination and proteasome degra-
dation of crucial proteins in the autophagy 
pathway, affecting tumor progression. Among 
KLHL family, KLHL38 induces BECN1 degrada-
tion and promotes BC progression, and KLHL20 
is vital to chemotherapy sensitivity by regula-
tion of ULK1 degradation.

KLHL38-BECN1

As mentioned above, KLHL38 often acts as an 
oncoprotein and promotes tumor progression. 
It has been suggested that protein levels of 
BECN1 in tumor tissues are significantly lower 
than those in normal tissues, and its deficiency 
is closely related to tumorigenesis and tumor 
progression [227, 228]. Xuan et al. analyzed 
817 BC samples from the TCGA database and 
found the inconsistency between protein and 
mRNA expression levels of BECN1 in BC sam-
ples. They hypothesized that the reduced ex- 
pression of BECN1 in tumor is due to post-
translational modification, and discovered an 
obvious increase of BECN1 expression in BC 
cells after treatment with proteasome inhibi-
tors. Through the TCGA database, they discov-
ered elevated expression of KLHL12 and 
KLHL38 in triple-negative breast cancer (TNBC) 
tissues, and observed that BECN1 was signifi-
cantly elevated only when KLHL38 was knock- 
ed down. Through a series of confirmatory 
experiments, they revealed that KLHL38 inter-
acted with BECN1 and induced its K48-linked 
ubiquitination and proteasome degradation, 
thereby inhibiting autophagy and inducing BC 
progression [68].

KLHL20-ULK1

It has been established that KLHL20 can pro-
mote ULK1 ubiquitination and proteasome deg-
radation to regulate autophagy termination 
[104]. ULK1 is a serine/threonine-protein 
kinase necessary for phagophore formation, 
which is directly regulated by mTOR and AMP-
activated protein kinase and negatively corre-
lates with the bone metastasis of BC [229]. 

Chronic myelogenous leukemia (CML) is an 
acquired clonal disease originating from plurip-
otent hematopoietic stem cells [230], and the 
inhibition of autophagy may increase therapeu-

tic efficacy and improve patient prognosis 
[231]. Imatinib is a tyrosine kinase inhibitor 
widely used to treat CML and has a good thera-
peutic effect. However, a small number of 
patients still acquire therapeutic resistance to 
imatinib in the treatment process [232, 233]. 
Autophagy dysregulation can result in imatinib 
resistance in CML therapy [234]. Grancalcin 
(GCA) is a cytoplasmic protein translocated to 
the cytoplasmic membrane when neutrophils 
are activated [235]. Seung et al. found that 
GCA was upregulated in peripheral blood mono-
nuclear cells from patients with CML and ima-
tinib resistance at the mRNA and protein levels 
[236] and showed that GCA can inhibit the ima-
tinib-induced apoptosis of CML cells. They fur-
ther confirmed that GCA facilitated the dimer-
ization and activation of ULK1 by inducing the 
K63-linked ubiquitination of TRAF6 and inhibit-
ed the KLHL20-mediated proteasome degra-
dation of ULK1, thus synergistically promoting 
the autophagy pathway to induce imatinib 
resistance.

Others

KLHL19-NRF2

NRF2, encoded by NFE2L2, belongs to the 
Cap’n’collar basic leucine zipper transcription 
factor family and can be divided into seven con-
served functional domains (Neh1-Neh7). The 
Neh2 domain is located in the N-terminus and 
contains two important conserved regions 
(DLG and ETGE) responsible for the binding 
between NRF2 and KLHL19, which can induce 
NRF2 degradation and inhibit its transcriptional 
activity [237]. NRF2 is an important regulator of 
many antioxidant enzymes, such as superoxide 
dismutase, glutathione peroxidase, and heme 
oxygenase-1, and interacts with the antioxidant 
response elements (AREs) of antioxidant and 
cell-protective genes, maintaining intracellular 
redox equilibrium [238]. 

Discovered in 1999, KLHL19 is an important 
negative regulator of NRF2 [239]. Under normal 
physiological conditions, NRF2 is strictly regu-
lated by KLHL19. Through its N-terminal BTB 
domain, KLHL19 dimerizes and forms an E3 
ligase complex with Cullin3 and RBX1, which 
promotes NRF2 ubiquitination and degradation 
to maintain NRF2 steady state. In the presence 
of multiple redox stimuli, the highly reactive 
cysteine residues of KLHL19 are immediately 
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modified, and this effect inhibits the binding of 
KLHL19 to Cullin3 and facilitates NRF2 stabili-
zation. And then, accumulative NRF2 is trans-
ported to the nucleus and binds to AREs locat-
ed within the promoter region of a specific tar-
get gene, inducing the expression of a large 
number of cell-protective proteins with antioxi-
dant and detoxification effects [27]. In recent 
years, the regulation of the KLHL19-NRF2  
axis has attracted considerable interest. In 
addition to the crucial role in cell physiology 
and stress response, the abnormal regulation 
of the KLHL19-NRF2 axis has been confirmed 
involved in the progression of various cancer 
types, specifically promoting tumor progres-
sion, metastasis formation, drug resistance 
and radiotherapy resistance [240-242]. In the 
last few years, many scholars have extensively 
explored the KLHL19-NRF2 signaling pathway 
[240, 242-248]. In this review, we mainly 
describe the regulation of KLHL proteins on 
specific substrates (other than NRF2) related to 
cancer progression.

KLHL19-myosin 9b

Myosin is a motor molecule based on actin with 
ATPase activity. The myosin family has fourteen 
distinct classes (1-14), which all contain a head 
(motor) domain containing ATP and actin bind-
ing sites, a neck domain containing one or more 
light chain binding sites, and a tail domain vary-
ing in size and structure [249]. Myosin 9 is an 
unconventional member of the myosin family 
because its tail domain contains a Rho-GTPase-
activating protein and is closely associated 
with the regulation of cell motility [250]. Yang et 
al. found that the inhibition of myosin 9 can 
enhance LC cell migration [251]. Wang et al. 
discovered that tissue factor pathway inhibitor 
2, a tumor suppressor, may inhibit the prolifera-
tion and invasion of BC cells partially by inter-
acting with myosin 9 [252]. In neoplastic hema-
tologic disorders, the expression levels of myo-
sin 9 are positively correlated with the percent-
age of apoptosis in acute myeloid leukemia 
(AML) and CML cells [253].

RhoA, a member of the Rho-GTPase family, 
plays a significant role in the regulation of actin 
cytoskeleton dynamics and is crucial to the 
regulation of malignant transformation and cell 
migration [254]. The DGR domain of KLHL19 is 
responsible for interaction with the actin cyto-

skeleton [255]. KLHL19 promotes F-actin for-
mation and inhibits the conversion of focal 
adhesion by enhancing RhoA activity. Zhou et 
al. have demonstrated that KLHL19 overex-
pression significantly inhibits the migration and 
invasion of LC cells, they have observed that its 
overexpression not only promotes the forma-
tion of stress fibers, but also inhibits the con-
version of focal adhesion. Their study has indi-
cated that KLHL19 triggers myosin 9b ubiquiti-
nation and proteasome degradation, which 
indirectly upregulates RhoA activity to stabilize 
the F-actin cytoskeleton, thereby inhibiting the 
migration and invasion of NSCLC [256]. 

KLHL19-SOX9

Sex-determining region Y-box transcription fac-
tor 9 (SOX9) is one of the transcription factors 
playing key roles in chondrocyte differentiation 
and bone development [257]. Ubiquitination 
modification is essential to the regulation of the 
activity, expression levels, and localization of 
SOX9 [258, 259]. In recent years, the associa-
tion among its abnormal protein levels, tumor 
development and progression have been inves-
tigated, particularly in HCC [260] and LC [261]. 
In addition, SOX9 is a potential therapeutic tar-
get based on human cancers [262].

Liu et al. found that KLHL19 negatively regu-
lated the stability of SOX9 through UPS. In data-
bases (https://cancer.sanger.ac.uk/cosmic and 
http://www.cbioportal.org/), at least fifty differ-
ent mutations in KLHL19 have been recorded 
in a variety of cancer types and are largely con-
centrated in the BTB and Kelch domains. To 
explore the action mechanisms between 
KLHL19 and SOX9, they carried out a series of 
experiments and demonstrated that KLHL19 
triggered SOX9 ubiquitination and degradation 
through the Kelch domain. In summary, they 
found that tumor-related KLHL19 mutations 
may impair the substrate recruitment function 
of the Kelch domain and thereby inhibit the 
oncoprotein SOX9 ubiquitination and degrada-
tion, which accelerates the progression of LC 
and HCC [263]. 

KLHL25-ACLY

KLHL25 is involved in the regulation of transi-
tion from fatty acid synthesis to fatty acid oxi-
dation through the ubiquitination and degrada-



The roles of KLHLs in cancers

5119 Am J Cancer Res 2022;12(11):5105-5139

tion of ATP-citrate lyase (ACLY), which facilitates 
inducible regulatory T cell differentiation [264].

ACLY, a key enzyme in de novo lipid synthesis, 
links glucose metabolism to de novo lipid syn-
thesis [265, 266], is frequently overexpressed 
and activated in many types of cancer, includ-
ing LC, and promotes lipid synthesis in cancer 
[267, 268]. Abnormal lipid metabolism is a hall-
mark of cancer cells, which plays an important 
role in cancer progression [269-271], including 
LC [272]. To explore the relationship between 
KLHL25 and ACLY in LC progression, Zhang et 
al. conducted a series of experiments and 
revealed that KLHL25 can target ACLY and 
induce its ubiquitination and proteasome deg-
radation to maintain lipid metabolism balance, 
thus suppressing LC cell proliferation and 
tumor progression [273]. 

KLHL22-PD-1

KLHL22 is involved in the regulation of the 
occurrence and progression of many tumors, 
including BC, MM and CRC. CRC is a high-inci-
dence disease, ranking third among all diseas-
es in terms of incidence and second in terms of 
mortality. PD-1 is an important immune-sup-
pressive molecule expressed on the surfaces 
of activated T cells, suppresses T cell prolifera-
tion and function, and prevents the immune 
system from killing cancer cells [274]. The regu-
lation of the PD-1/PD-L1 axis is significant for 
tumor occurrence, progression and therapy, 
and PD-1 inhibitors benefit a subset of patients 
with CRC [275]. 

PD-1 is regulated by post-translational modifi-
cation, including a series of E3-mediated ubiq-
uitination, which may influence immunosup-
pression effects [276]. Albert et al. have deter-
mined that KLHL22 is a major PD-1 interacting 
protein and maintains the homeostasis of PD-1 
through UPS before PD-1 is transported to the 
cell surface [99]. In vitro cell experiments 
showed that KLHL22 knockdown increased the 
expression of PD-1 and leaded to excessive T 
cell suppression. And, the nude mouse tumori-
genicity assays showed that nude mice injected 
subcutaneously with KLHL22 knockout CRC 
and MM cells have stronger tumor-forming abili-
ties and shorter survival times compared to 
control group. In conclusion, their research 
showed that KLHL22 can regulate PD-1 expres-
sion through ubiquitination and maintain prop-

er levels of PD-1 and T cell homeostasis, there-
by inhibiting tumorigenesis and progression. 

KLHL20-KLHL39

KLHL39 has been traditionally known as “influ-
enza virus NS1A binding protein” in the past, 
which antagonizes the primary host anti-viral 
response by binding to the ubiquitin-like ISG15 
protein and inhibiting its binding to a range of 
proteins [277]. In tumor-associated research, 
KLHL39 is considered a tumor suppressor 
inhibiting tumor invasion and migration [278]. It 
interacts with KLHL20 and inhibits the ubiquiti-
nation and degradation of the target substrates 
by KLHL20, which inhibits CRC progression. 

The death-associated protein kinase (DAPK) is 
a calmodulin-regulated associated serine/thre-
onine kinase that transmits apoptosis or 
autophagy death signals in presence of various 
cellular stress signals [279]. It acts as a sup-
pressor protein and is downregulated in a vari-
ety of tumors [280]. PML, as mentioned above, 
is a pleiotropic tumor suppressor protein down-
regulated in many tumors [116]. KLHL20, as an 
adaptor of E3 ligase, promotes DAPK [281] and 
PML [44] ubiquitination and degradation, thus 
promoting tumor progression. 

Hatano et al. showed that highly expressed 
KLHL39 inhibits the migration and invasion of 
colon cancer cells, and mice inoculated with 
colon cancer and melanoma cells with overex-
pressed KLHL39 tended to exhibit low rates of 
lung and liver metastasis and long survival peri-
ods [278]. To explore the underlying mecha-
nisms of the anticancer effects of KLHL39, 
Chen et al. confirmed the interaction between 
KLHL20 and KLHL39 by yeast two-hybrid 
screening and co-immunoprecipitation. Inter- 
estingly, they have shown that KLHL39 inter-
acts with the Kelch domain of KLHL20, is not a 
substrate for CRL3-KLHL20 ubiquitin ligase, 
and is not degraded through KLHL20-mediated 
ubiquitination modification. They hypothesized 
that KLHL39 might act as a pseudo-substrate 
preventing target substrate recruitment to the 
KLHL20 complex. Consistent with this hypoth-
esis, a series of in vitro and in vivo experiments 
have demonstrated that KLHL39 overexpres-
sion can inhibit the binding of KLHL20 with its 
substrates, PML, and DAPK and mediated ubiq-
uitination degradation, thereby suppressing 
CRC cell migration and invasion. Additionally, 
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they observed that KLHL39 overexpression  
disrupted the formation of the Cullin3-RBX1-
KLHL20 complex. In summary, their research 
indicated that KLHL39 not only blocked the 
binding of KLHL20 to its substrate but also dis-
rupted the formation of E3 ligase complex, 
thereby inhibiting CRC progression [282].

KLHL9-C/EBPs

KLHL9 induces insulin receptor substrate 1 
(IRS1) ubiquitination and proteasome degrada-
tion, therefore leading to insulin resistance 
[283], and regulates mitotic progression via 
inducing Aurora degradation [284]. In addition, 
the linkage between KLHL9 and brain tumor 
progression has been found, recently. 

Glioblastoma (GBM) is the most common malig-
nant tumor of the human brain and has a poor 
prognosis even after a series of aggressive 
treatments [285]. The mesenchymal subtype 
of GBM (MES-GBM) has the worst prognosis, 
and the regulation of the transition of GBM to a 
mesenchymal state is largely unknown. The 
CCAAT/enhancer binding protein (C/EBP) family 
consists of six transcription factors: C/EBPα,  
C/EBPβ, C/EBPγ, C/EBPδ, C/EBPε, and CHOP, 
which contain three structural regions: a 
C-terminal leucine-zipper, basic DNA-binding 
region, and N-terminal transactivating region 
[286]. C/EBPδ promotes the metastasis of pan-
creatic cancer [287], and C/EBPβ and C/EBPδ 
are necessary for the transition to mesenchy-
mal-like states in GBM [288]. Michael et al. 
found that GBM cells with KLHL19 knockdown 
tended to have enhanced tumorigenicity ability. 
They confirmed C/EBPβ and C/EBPδ were sub-
strates for KLHL9, and KLHL9 induced their 
degradation through UPS, which inhibited mes-
enchymal characteristics and reduced tumori-
genesis in vitro and in vivo [289].

KLHL7-p53

KLHL7 plays crucial roles in maintaining nucle-
olar integrity by inducing terminal uridylyl trans-
ferase 1 ubiquitination and proteasome degra-
dation [290]. Additionally, it has been observed 
that the tumor protein p53 is a substrate of 
KLHL7 and undergoes KLHL7-mediated ubiqui-
tination and proteasome degradation, which 
promotes BC progression. 

Tumor suppressor protein p53 participates in 
the coordination of multiple responses, includ-

ing cell cycle arrest, DNA repair, antioxidant 
effects and anti-angiogenesis, thereby prevent-
ing tumor occurrence and progression [291]. 
The p53 mutations are in more than 50% 
tumors and provide selective advantages to 
tumor cells, enabling them to prevent apoptosis 
and senescence, and maintain proliferation 
when normal cells cannot proliferate [292]. Its 
role in the dysregulation of ubiquitination in 
tumor cells has been explored [293]. Two E3 
ligases, MDM2 [294] and CRL4A [295], can 
promote BC progression by degrading p53, and 
E3 ligase TRIM47 can facilitate renal cell carci-
noma (RCC) progression by degrading p53, 
[296]. Kurozumi et al. showed that patients 
with high KLHL7 levels tended to have shorter 
survival times despite that the mRNA levels of 
KLHL7 were not highly expressed in most BC 
specimens. They also found that KLHL7 protein 
expression increased in high histologic grade, 
ER (-) or HER-2(+) tumors and TNBC [42], and 
patients with higher expression of KLHL7 in BC 
tissues often have shorter survival times. 
Overall, their study indicated that KLHL7 might 
function as an adaptor protein and induce p53 
ubiquitination and proteasome degradation, 
thereby boosting BC procession [42]. 

KLHL6-CDK2

KLHL6 is involved in the regulation of the for-
mation of germinal centers about CLL, and the 
high expression of its encoded gene KLHL6 is 
considered a poor prognostic indicator [183]. 
Many studies have demonstrated the associa-
tion between KLHL6 and hematological malig-
nancies, including AML. 

The disorder of hematopoietic stem cell differ-
entiation is one of the principal hallmarks of 
AML, and altering differentiation stasis may be 
a potential treatment for AML. For example, all-
trans retinoic acid (ATRA) functions as a differ-
entiation-inducing drug and significantly im- 
proves the prognoses of patients with APL 
[297]. Cyclin-dependent kinase 2 (CDK2) is a 
serine/threonine-protein kinase and is essen-
tial to cell cycle regulation [298] and involved in 
DNA damage [299], intracellular material trans-
port [300], protein degradation [301]. The over-
expression of CDK2 is directly related to cancer 
progression and is considered a potential can-
cer therapeutic target [302, 303]. It has been 
suggested that CDK2 in AML is specifically 
degraded during ATRA differentiation therapy 
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[304]. Ying et al. found that CDK2 in AML cells 
was specifically degraded during intramedul-
lary differentiation progression and this degra-
dation can be blocked by proteasome inhibi-
tors. Peroxiredoxin 2 (PRDX2) is one of the 
mercaptan-specific peroxidases, and its inhibi-
tion may promote the differentiation of AML 
cells [303]. They hypothesized the existence of 
E3 ligases interacting with CDK2, and identified 
that KLHL6 induced CDK2 ubiquitination and 
proteasome degradation to inhibit PRDX2 acti-
vation, promote AML cell differentiation [305] 
and suppress AML progression.

KLHL2-UCK1

As an adaptor of Cullin3-E3 ligase, KLHL2 pro-
motes WNK kinase ubiquitination and protea-
some degradation to regulate electrolyte bal-
ance in kidneys [306]. KLHL2 inhibits ccRCC 
progression by targeting a specific substrate 
and triggering its degradation.

AML is a malignant disease of the myeloid 
hematopoietic stem or progenitor cells. Cur- 
rently, 5-azacytidine (5-AZA) is the first-line 
therapy and has a significant efficacy for AML, 
but the challenge of chemotherapy resistance 
remains persistent. [307-309]. Uridine-cytidine 
kinase 1 (UCK1) is an important member of the 
UCK family and phosphorylates uridine and 
cytidine into uridine monophosphate and cyti-
dine monophosphate [310]. UCK1 is essential 
for the activation and metabolism of 5-AZA 
[311] with a low level in mononuclear cells from 
5-AZA-resistant AML patients [312]. Huang et 
al. identified that KLHL2 and USP28 (one deu-
biquitinating enzyme) participated in the regu-
lation of the ubiquitination of UCK1 in AML 
cells. In vitro, they observed that silencing 
KLHL2 not only inhibited the proliferation of 
AML cells but also enabled AML cells to be sen-
sitive to 5-AZA. Overall, they revealed that 
KLHL2, as an oncoprotein, can facilitate AML 
cell proliferation and inhibit 5-AZA-induced cell 
apoptosis via inducing UCK1 ubiquitination and 
proteasome degradation [313]. 

KLHL2-ARHGEF7

Rho guanine nucleotide exchange factor 7 
(ARHGEF7) is a guanine nucleotide exchange 
factor for Rho GTPases and plays a significant 
role in cell migration [314, 315], cell spreading 
[316], cytoskeletal rearrangements [317], and 

protein polymerization in the trans-Golgi net-
work [318]. In many types of cancer, such as BC 
and CRC, it acts as an oncoprotein and is highly 
expressed [319-321]. Zhang et al. found that 
ARHGEF7 levels in ccRCC tissues were signifi-
cantly higher than that in normal tissues, in 
contrast to the low KLHL2 expression in 
ccRCCs. This result suggested that the protein 
expression levels of KLHL2 were negatively  
correlated with ARHGEF7 in ccRCCs. Further, 
they confirmed that ARHGEF7 was a substrate 
to KLHL2, promoted ubiquitination and protea-
some degradation, and inhibited ccRCC cell 
growth, migration and invasion [322].

Discussion 

KLHL family members, as the significant sub-
strate-recognizing proteins of CRL3, play impor-
tant biological functions, particularly in immune 
response, skeletal muscle maintenance and 
brain development [25, 323]. Notably, emerg-
ing evidence has suggested the maladjustment 
of KLHLs in a series of human tumors [42-44, 
324]. Among the KLHL family, KLHL19 has 
been a subject of interest in research for sev-
eral years, and many reviews have systemati-
cally introduced its association with tumor 
occurrence and progression [27, 244, 248, 
325]. Otherwise, the dysregulation of other 
KLHL family members may be also associated 
with tumorigenesis and progression by dysreg-
ulating the specific substrates, thus affecting 
their stability and localization. As mentioned 
earlier in this review, several signaling path-
ways are involved in tumor-associated regula-
tion by KLHLs. Exploring the underlying mecha-
nisms involved in tumor occurrence and pro-
gression may be of great significance to the 
precise treatment of malignancy. Our review 
mainly focuses on the role of KLHLs and their 
target substrates in tumorigenesis and pro-
gression, providing the potential insight for the 
discovery of diagnostic and prognostic markers 
as well as the development of KLHLs-targeted 
drugs. 

Even though the members of the KLHL family 
have similar structural domains, their biological 
functions are varied due to the specificity of 
substrate selection. It has been found that the 
different or even same members recognize var-
ied substrates, which exerts disparate effects 
on different tumor contexts. A better under-
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standing of KLHLs molecular structures and 
their substrate selection mechanisms will be 
beneficial in finding more undetected sub-
strates and further comprehending tumor path- 
ogenesis and therapy. To date, only the crystal 
structure of KLHL19 has been elucidated. The 
Kelch domain of KLHL19 consists of six Kelch 
repeated motifs that form a highly conserved 
β-propeller structure. Specifically, each Kelch 
motif forms a β-fold structure consisting of four 
anti-parallel chains, and the loop structure 
between the four anti-parallel chains is com-
plex and varies [326]. This variation may partly 
account for the specificity of the substrate. 
And, mountainous research has been devoted 
to KLHL19 not only due to its relatively lucid 
structure but also due to the discovery of a 
“star substrate”, NRF2. As noted above, NRF2, 
as a crucial substrate, is tightly associated with 
a series of physiological and pathological pro-
cesses, including tumor occurrence, progres-
sion and metastasis [242]. This may provide us 
some hints and may be useful in determining 
whether other substrates with vital biological 
significance remain undiscovered. 

Before this study, limited number of research 
explored the relationship between KLHL14  
and tumor, one study first determined that 
KLHL14 induced BCR ubiquitination and prote-
asome degradation, which inhibited the NF-κB 
signaling to suppress DLBCL progression [156]. 
Moreover, KLHL37 was previously considered 
essential to nervous system development 
[209], and recent studies revealed that it not 
only inhibited the hippo signaling by ubiquitinat-
ing and degrading LATS1/2 to induce BC radio-
therapy resistance [34], but also activated the 
Wnt/β-catenin signaling to facilitate BC growth, 
migration and invasion [327]. The activation 
mechanism of the Wnt/β-catenin signaling by 
KLHL37 is not yet fully understood, therefore, 
we raise a question: is there an unknown 
KLHL37 target-substrate which is closely 
involved in regulating the Wnt/β-catenin signal-
ing in BC? No doubt, a large number of KLHLs 
target-substrates involved in tumor-associated 
regulations are waiting to be found, which may 
bring benefits to the tumor treatment. 

With the rapid development of molecular biolo-
gy in the past two decades, molecular targeted 
therapy has widely applied in tumor clinical 
therapy. Conventional one-target therapy has 

shown its advantages for tumor treatment 
indeed, however, there still exists many prob-
lems such as suboptimal therapy efficacy and 
drug resistance. Multi-target combination treat-
ment, as a future direction, is one of the most 
promising approaches in tumor therapy, thus, 
discovering more promising therapeutic targets 
is of great urgency [328]. Several key proteins, 
such as ULK1, CDK2, PD-1 and p53, have been 
demonstrated to be the substrates targeted by 
a series of KLHLs and also the target molecules 
of various molecular-targeted drugs [302, 329, 
330]. KLHLs function as their upstream regula-
tors influencing their stability, structure, local-
ization and function. Is it possible that KLHLs 
play roles as potential targets in development 
of molecular targeted drugs? There are still 
numerous unknown questions waiting to be 
answered. With further research and techno-
logical development, KLHLs may become mark-
ers or therapeutic targets in the near future. 
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