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Abstract: The homing of M1 and M2 macrophages may play distinct roles in the tumor microenvironment (TME). 
However, these roles of macrophages in the TME remain unclear. We downloaded RNA sequencing data from The 
Cancer Genome Atlas (TCGA) database for patients with CRC. Subsequently, Kaplan-Meier survival curves were 
generated to assess the differential infiltration of M1 and M2 macrophages based on CRC location. Differentially ex-
pressed gene (DEG) and functional analyses were performed to screen the roles of DEGs. Critical prognostic genes 
were identified using least absolute shrinkage and selection operator regression. The risk scores were calculated 
for each patient. In patients with right-sided CRC, reduced M1 macrophage infiltration was associated with poor 
prognosis. M1 macrophage infiltration positively correlated with CD8+ T cell infiltration. A risk model was developed 
and validated for performance using GSE103479 and GSE72970. Nine genes were identified as independent prog-
nostic genes that could be potential biomarkers for effectively predicting survival in patients with right-sided CRC. 
Kaplan-Meier curves for overall survival and progression-free survival analyses revealed that the high-risk group of 
patients with right-sided CRC had a poor prognosis. This novel M1 macrophage-related risk model may provide a 
gene signature for predicting the survival outcomes of patients with right-sided CRC and facilitate further studies 
examining the relationship between infiltration of M1 macrophages and the prognosis of such patients.

Keywords: Colorectal cancer, colorectal cancer location, M1 macrophage, tumor microenvironment, LASSO regres-
sion

Introduction 

Globally, colorectal cancer (CRC) is the second 
and third most common cancer among women 
and men, respectively [1], accounting for 
approximately 10% of cancer-related deaths 
[2]. By 2035, the worldwide incidence of CRC is 
estimated to increase to 2.5 million new cases 
[3]. The risk of CRC is reportedly enhanced by 
negative lifestyle choices, including smoking, 
excessive alcohol intake, obesity, and con-
sumption of red and processed meat [3, 4]. 
Distant metastasis primarily occurs in the liver 

and is a major cause of death in patients with 
CRC [5]. Adenomatous polyposis coli (APC), 
KRAS, and p53 are the predominantly mutated 
genes in CRC. Furthermore, activation of sever-
al pathways downstream of the epidermal 
growth factor receptor, including the RAS/
MAPK, PI3K/AKT, PLC, signal transducer and 
activator of transcription (STAT), and SRC/FAK 
pathways, can affect tumor proliferation, angio-
genesis, and cell survival [6-9]. 

CRC differs in incidence, pathogenesis, molecu-
lar pathways, and prognosis depending on the 
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primary tumor location as a crucial prognostic 
factor. Recently, clinical and biological differ-
ences between right- and left-sided CRC have 
been extensively discussed [10-13]. In right-
sided CRC, mutations in the DNA mismatch 
repair (MMR) system, BRAF mutations, and an 
overall worse prognosis have been typically 
documented; despite the high immune activity, 
the prognosis of right-sided CRC remains poor. 
In left-sided CRC, chromosomal instability path-
way-related mutations, including APC, PIK3CA, 
and p53 mutations, mainly occur, and the over-
all prognosis of patients is better than that of 
patients with right-sided CRC. Differences 
between right- and left-sided CRC, along with 
differences in molecular pathways, have been 
noted in the tumor stage at diagnosis. Patients 
with right-sided CRC are diagnosed at a more 
advanced tumor stage than patients with left-
sided CRC owing to the flat morphology of the 
colon as determined by colonoscopic screening 
[14, 15]; in addition, changes in bowel habits 
are more evident in left-sided CRC [12]. 
Therefore, it is essential to predict the survival 
outcomes of patients with right-sided CRC.

The tumor microenvironment (TME) comprises 
various immune cells, stromal cells, extracellu-
lar matrix molecules, and cytokines [16]. CRC 
exhibits heterogeneity in its pathogenic mecha-
nisms, corresponding to diverse types and sub-
types of tumor cell phenotypes, therapeutic 
outcomes, and prognosis. Although the role of 
TME cells in CRC is being explored, it remains 
unclear [17]. Currently, there exists a broad 
consensus that anatomical sites are crucial 
factors in CRC [18]. However, the difference 
between right- and left-sided TME in CRC 
remains poorly understood. Therefore, a com-
parative analysis of the TME according to CRC 
location is required. The objective of the pres-
ent study was to determine the association 
between the abundance of immune cell infiltra-
tion and patient survival according to the CRC 
location, and to identify a prognostic gene 
signature.

Material and methods

Data acquisition and processing

Gene expression data (HTSeq-FPKM and 
HTSeq-Counts) and clinical data were down-
loaded from TCGA-COAD (colorectal adenocar-
cinoma) and TCGA-READ (rectal adenocarcino-

ma) databases. Data are available on the 
Genomic Data Commons data portal (https://
portal.gdc.cancer.gov). We filtered the data by 
“primary tumor”. Data regarding overall survival 
(OS) and progression-free survival (PFS) were 
downloaded from the UCSC Xena Browser 
(http://xena.ucsc.edu). We selected GSE103- 
479 [19] and GSE72970 [20] from the Gene 
Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov) as validation sets. Data 
pre-processing was performed using R soft-
ware (version 4.1.1) [21]. 

Quantification of tumor-infiltrating immune 
cells

We estimated the proportions of infiltrating 
immune cell types in each sample using bulk 
RNA sequencing (HTSeq-FPKM) data, per-
formed using a quanTIseq deconvolution algo-
rithm in the R package “quantiseqr”. QuanTIseq 
quantifies fractions of immune cell types from 
bulk RNA sequencing data. QuanTIseq is 
designed as an analysis pipeline optimized for 
pre-processing raw RNA-seq data, quantifying 
and normalizing gene expression, re-annotat-
ing genes, and estimating cell fractions. Unlike 
previous deconvolution algorithm, quanTIseq is 
specifically designed for RNA-seq data, which is 
the current advanced technology for quantifica-
tion of high-throughput data. The results of 
extensive validation showed that quanTIseq 
can faithfully and quantitatively infer immune 
cell fractions from bulk RNA-seq data [22].

Differentially expressed gene (DEG) analysis

DEG analysis was performed between high lev-
els of M1 macrophages and low levels of M1 
macrophages in patients with right-sided CRC, 
and HTSeq counts of gene expression data 
were used. We used the edgeR R package 
(v3.34.1) to identify DEGs with an adjusted 
p-value < 0.05 and |logFC| > 1 as screening 
conditions [23]. The adjusted p-value was cal-
culated using the Benjamini-Hochberg method. 
We filtered out unexpressed and low counts 
using the edgeR function filterByExpr, with mini-
mum count required for at least some samples 
=10, minimum total count required =15, and 
minimum proportion of samples in the smallest 
group that expressed the gene =0.7. Next, 
trimmed mean of the M-values (TMM) normal-
ization was performed using the edgeR pack-
age. TMM-normalized data were statistically 
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processed using the edgeR function, glmQLFT-
est. The quasi-likelihood test, which computes 
data by fitting a quasi-likelihood negative bino-
mial generalized log-linear model, performed a 
gene-specific statistical test for a given  
coefficient or contrast. The EnhancedVolcano 
(v1.10.0) package in R was used to represent 
DEGs by plotting volcanoes [24].

Protein-protein interaction (PPI) network con-
struction and module selection

To identify relevant pathways and functions of 
DEGs, PPI networks were constructed using  
the Search Tool for Interaction Gene Search 
(STRING) database (http://www.string-db.org) 
[25] and Cytoscape software (Version 3.8.2) 
[26]. In the PPI network of DEGs, the minimum 
required interaction score of ≥ 0.4 was set as 
the screening condition. The Molecular Complex 
Detection (MCODE) plugin was utilized for the 
most significant module selection [27]. The  
cutoff values of MCODE were set as follows: 
degree cutoff =2, cluster finding = haircut, node 
score cutoff =0.2, K-score =2, and maximum 
depth =100.

Functional analysis of DEGs

Relevant DEG pathways were further explored 
by gene ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment 
analyses. The ClusterProfiler (v4.0.5) package 
in R was used for GO and KEGG enrichment 
analyses [28]. Adjusted p-values were calculat-
ed using the Benjamini-Hochberg method. 
Statistical significance was defined as a p-val-
ue of < 0.05. GO, and KEGG enrichment analy-
ses were performed using the enrichment plot 
(v1.12.3) R package [29].

Least absolute shrinkage and selection opera-
tor (LASSO) regression and development of 
M1 macrophages-related risk score

LASSO regression analysis was performed 
using the glmnet (v4.1-3) R package to obtain 
significant prognostic genes and establish  
an M1 macrophage-related risk model. The 
LASSO regression is a one of penalty regres-
sion analysis, and has the advantage of creat-
ing a simpler regression model by penalizing 
variables that do not significantly contribute to 
the performance of the model. We performed 
tenfold cross-validation (CV) to improve the 

model accuracy and avoid overfitting the model 
to the training data, only the most important 
predictors are selected. Optimal lambda valu- 
es as regularization tuning parameter were 
acquired from the mean squared error and 
selected representative prognostic genes. 
Thus, model parsimony could optimize model 
accuracy [30, 31]. Risk scores were calculated 
based on LASSO regression coefficients, and 
“High-risk” and “Low-risk” groups were classi-
fied according to the median risk score. The for-
mula is as follows:

Risk score = ∑[gene expression] × [regression 
coefficient]

To assess the predictive ability of the M1 mac-
rophage-related risk model, the OS and PFS of 
the risk group were analyzed using Kaplan-
Meier curves, and receiver operating character-
istic (ROC) curve analysis was performed to 
evaluate the specificity and sensitivity of the 
risk model. The pROC (v 1.18.0) package in R 
was used to display and analyze ROC curves 
[32].

Validation of the prognostic risk model

To evaluate the prognostic performance of the 
M1 macrophage-related risk model, two GEO 
datasets (GSE103479 [19] and GSE72970 
[20]) were selected to further validate the 
established model. LASSO regression analysis 
was performed to determine the optimal  
lambda values with tenfold CV. Risk scores 
were calculated based on LASSO regression 
coefficients and stratified into high- or low-risk 
groups according to the median value. Kaplan-
Meier and ROC curves were analyzed using OS 
and PFS in patients with right-sided CRC to vali-
date the predictive ability of the M1 macro-
phage-related risk model.

Statistical analysis

Box plots were plotted using the ggpubr (v0.4.0) 
function, ggboxplot [33]. The Wilcoxon signed-
rank test was used to compare differences in 
the mean values of genes according to M1 
macrophage infiltration. Statistical significance 
was set at P < 0.05. The five-year OS and PFS 
rates were calculated using Kaplan-Meier sur-
vival analysis, and log-rank p-values were cal-
culated. All statistical analyses and visualiza-
tions were performed using the R software (ver-
sion 4.1.1) [21].
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Results

Patient characteristics

We included 265 patients from The Cancer 
Genome Atlas (TCGA) project [34, 35]: 134 
patients with right-sided CRC (ascending colon, 
hepatic flexure of the colon, and cecum) and 
131 with left-sided CRC (descending colon,  
rectosigmoid junction, sigmoid colon, and 
splenic flexure of colon). The patient informa-
tion used in this study is listed in Table 1. We 
downloaded two validation datasets (GSE- 
103479 [19] and GSE72970 [20]). Each cohort 
included tumor origin and survival information 
of patients with CRC. Data on patients with 
right-sided CRC was used to validate the 
results. Table 2 lists patient information for the 
validation sets used in the present study.

Tumor-infiltrating immune cells and their prog-
nostic significance in patients with CRC 

We used the quanTIseq algorithm [22] to ana-
lyze bulk RNA-seq data and identify infiltrated 

immune cells in the TME. The results of  
the quanTIseq algorithm are shown in 
Supplementary Figure 1. Binarizing by median 
fractions, we grouped patients with CRC into 
two groups, “High” and “Low”. The Kaplan-
Meier survival method was used to examine 
the association between immune cell infiltra-
tion and OS. Kaplan-Meier survival curves for 
OS analyses revealed that reduced M1 macro-
phages from the right side of the colon was 
associated with poor prognosis in patients with 
right-sided CRC (Figure 1, log-rank P=0.02). 
Conversely, infiltration of M2 macrophages in 
patients with right-sided CRC and M1 and M2 
macrophage infiltration in patients with left-
sided CRC showed no significant correlation 
with OS (Figure 1). Kaplan-Meier survival analy-
sis of the other infiltrating immune cells in 
patients with right- (Supplementary Figure 2) 
and left-sided CRC (Supplementary Figure 3) 
revealed no significant correlation with OS. As 
shown in Supplementary Figure 2, infiltration  
of dendritic cells in patients with right-sided 
CRC showed significant correlation with OS. 

Table 1. Characteristics of patients with right- and left-sided CRC (TCGA dataset)
Right-sided CRC Left-sided CRC

Variable N Mean (SD*) Variable N Mean (SD*)
Age (years) 134 67.5 (12.9) Age (years) 131 62.14 (12.7)

N Percentage (%) N Percentage (%)
Sex 134 Sex 131
    Female 55 41     Female 64 48.9
    Male 79 59     Male 67 51.1
Race 125 Race 121
    White 93 74.4     White 101 83.5
    Asian 4 3.2     Asian 1 0.8
    Black 28 22.4     American indian 1 0.8
Primary Disease Stage 128     Black 18 14.9
    I-II 76 54.5 Primary Disease Stage 125
    III-IV 52 45.5     I-II 62 49.6
Sample type 134     III-IV 63 50.4
    Primary 134 100 Sample type 131
Origin 134     Primary 131 100
    Ascending colon 59 44 Origin 131
    Hepatic flexure of colon 11 8.2     Descending colon 14 10.7
    Cecum 64 47.8     Rectosigmoid junction 47 35.9
Death 134     Sigmoid colon 65 49.6
    No 95 70.9     Splenic flexure of colon 5 3.8
    Yes 39 29.1 Death 131

    No 102 77.9
    Yes 29 22.1

CRC, Colorectal Cancer; *SD, Standard Deviation.
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However, most of the fraction values of dendrit-
ic cells in patients with right-sided CRC were  
0, which was excluded from the further 
evaluation.

Molecular differences between high and low 
levels of M1 macrophages in patients with 
right-sided CRC

Based on the aforementioned screening condi-
tions, we identified 619 DEGs (405 upregulated 
genes and 214 downregulated genes in high 
levels of M1 macrophages) between high and 
low levels of M1 macrophages in patients with 
right-sided CRC (Supplementary Table 1). 
Volcano plots of DEGs are shown in Figure  
2A. To identify PPIs of DEGs, the STRING net-
work-based protein interaction assay using 
Cytoscape software was used to create a PPI 
network. The interaction between DEGs was 
confirmed by constructing a PPI network. The 
upregulated PPI network consisted of 293 
nodes and 4,119 edges (Figure 2B). Three sig-
nificant modules of upregulated genes were 

identified using MCODE. Among the PPI net-
work of upregulated genes, the module with the 
highest MCODE contained 33 genes (CCL4, 
CCR5, CD209, CD274, CD38, CD4, CD80, 
CD86, CD8A, CLEC7A, CSF2, CTLA4, CXCL11, 
CXCL13, CYBB, FASLG, FCGR2A, FCGR3A, 
FCGR3B, HAVCR2, IFNG, IL10, IL1B, IL2RA, 
IL2RB, IL6, ITGAM, ITGAX, PDCD1, PTPRC, 
SIGLEC1, TBX21, and TNF; Figure 2C). The  
second highest module comprised 16 upregu-
lated genes (CCR2, CD163, CSF3, CXCL1, 
CXCL10, CXCL9, FCGR1A, FCGR2B, ICAM1, 
IL10RA, IL1A, MRC1, TLR1, TLR2, TLR7, and 
TLR8; Figure 2D). The third highest module 
comprised upregulated human leukocyte anti-
gen (HLA)-related genes (HLA-DMB, HLA-DOA, 
HLA-DMA, HLA-DPB1, HLA-DPA1, HLA-DQA1, 
HLA-DRB5, HLA-DQB2, HLA-DQA2 and HLA-
DQB1; Figure 2E). The PPI network of downreg-
ulated genes consisted of 126 nodes and 204 
edges, and the largest module consisted of 
APOH, CALCA, CHGB, CPE, ELAVL4, F7, GAP43, 
KIF1A, MAPT, NEFL, PCSK1, SCT, SERPINA7, 
TAC1, and TTR (Figure 2F, 2G).

Table 2. Characteristics of patients in validation cohorts (GSE103479 and GSE72970)
GSE103479 GSE72970

Variable N Mean (SD*) Variable N Mean (SD*)
Age (years) 154 69.7 (11.4) Age (years) 124 61.7 (11.4)

N Percentage (%) N Percentage (%)
Sex 156 Sex 124
    Female 68 43.6     Female 50 40.3
    Male 88 56.4     Male 74 59.7
Contact country 156 Contact country 124
    United Kingdom 156 100     France 124 100
Primary Disease Stage 156 Pathological N stage 124
    II 84 53.8     pNX-pN0 43 34.7
    III 72 46.2     pN1-pN2 81 65.3
Sample type 156 Pathological T stage 124
    Primary 156 100     pTx-pT2 37 29.8
Origin 150     pT3-pT4 87 70.2
    Left colon 77 51.4 Sample type 124
    Right colon 59 39.3     Primary 124 100
    Transverse colon 14 9.3 Origin 124
Death 155     Left colon 88 71.0
    No 95 61.3     Right colon 34 27.4
    Yes 60 38.7     Transverse colon 2 1.6

Death 124
    No 32 25.8
    Yes 92 74.2

*SD, Standard Deviation.

http://www.ajcr.us/files/ajcr0146097suppltab1.xlsx
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Functional enrichment analysis of DEGs and 
infiltrated CD8+ T cells

We conducted GO and KEGG enrichment analy-
ses to determine the biological roles of 74 
genes (upregulated: 59, downregulated: 15) 
identified through the PPI network and MCODE. 
Statistically significant GO and KEGG enrich-
ment analyses are shown in Figure 3. 

GO analysis was organized into three catego-
ries: biological process (BP), cellular compo-
nent (CC), and molecular function (MF). The top 
BP of 59 upregulated genes were T-cell activa-
tion, cellular response to biotic stimulus, cell 
adhesion, and cellular response to lipopolysac-
charide. The external side of the plasma mem-
brane, endocytic vesicle membrane, MHC class 
II protein complex, and clathrin-coated endo-
cytic vesicles were enriched in CC, and the MF 
of these genes included cytokine receptor bind-

ing, immune receptor activity, and MHC class II 
receptor activity (Figure 3A). The top 3 GO cat-
egories of the top 15 downregulated genes 
were protein processing, neuronal cell bodies, 
and hormone activity (Figure 3B).

Figure 3C and 3D show the KEGG pathway 
analysis of 59 upregulated and 15 downregu-
lated genes, respectively. It was confirmed that 
the DEGs were mainly associated with tube- 
rculosis, leishmaniasis, rheumatoid arthritis, 
hematopoietic cell lineage, cell adhesion mole-
cules, phagosomes, graft-versus-host disease, 
inflammatory bowel disease, type 1 diabetes 
mellitus, and allograft rejection. Neuroactive 
ligand-receptor interactions and thyroid hor-
mone synthesis were included in the KEGG 
analysis of 15 downregulated genes.

Interestingly, GO results revealed that CD8+ T 
cell activation occurred in patients with high 

Figure 1. Kaplan-Meier curves for overall survival analysis. Survival curves of patients with right-sided CRC accord-
ing to expression levels of tumor-infiltrating (A) M1 macrophages and (B) M2 macrophages (n=115). Survival curves 
according to expression levels of tumor-infiltrating (C) M1 macrophages and (D) M2 macrophages in patients with 
left-sided CRC (n=114). Data used to generate this figure were downloaded from TCGA (The Cancer Genome Atlas) 
database. CRC, Colorectal Cancer.
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Figure 2. Volcano plot and protein-protein interaction (PPI) network construction and significant module selection involving the common differentially expressed 
genes (DEGs). A. Volcano plot of DEGs. In the plot, genes that meet the p-value and log2 fold-change cutoff value are denoted in red; Genes that pass only the p-
value are denoted in blue; A gene that passes only the log2 fold change is denoted in green; Genes that pass both the p-value and log2 fold change are denoted in 
black. B. PPI network of upregulated genes. C. The module with the highest Molecular Complex Detection (MCODE) among the PPI network of upregulated genes. D. 
Module with the second-highest MCODE among the PPI network of upregulated genes. E. Module with the third-highest MCODE among the PPI network of upregu-
lated genes. F. PPI network of downregulated genes. G. The module with the highest MCODE among the PPI network of downregulated genes.



Construction of prognostic gene signatures in colorectal cancer

5540 Am J Cancer Res 2022;12(12):5532-5551

Figure 3. Functional analysis and boxplot. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of 74 genes 
(upregulated: 59, downregulated: 15) identified through protein-protein interaction network and module with the Molecular Complex Detection (MCODE) section. 
GO results for (A) upregulated and (B) downregulated genes. The GO analysis result is composed of biological process (BP), cellular component (CC), and molecular 
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levels of M1 macrophages. Figure 3E shows 
the differences in fractions of CD8+ T cells 
according to the number of M1 macrophages. 
In patients with right-sided CRC, the relative 
mean of fractions was higher for high levels of 
M1 macrophages than for low levels of M1 
macrophages (Wilcoxon signed-rank test, P < 
2.2e-16; Figure 3E). 

LASSO regression analysis of prognosis-relat-
ed genes and construction of the risk model

Kaplan-Meier survival curves for OS analyses 
were constructed to identify the prognosis-
related DEGs, and 15 prognostic genes were 
used for LASSO regression analysis (Supple- 
mentary Figure 4). LASSO regression analysis 
was combined with tenfold CV to build a classi-
fier for the M1 macrophage-related risk model. 
The optimal lambda value was calculated using 
the penalty regularization parameter. Finally, 
nine DEGs were identified as independent prog-
nostic genes, including CTLA4, CD274, CXCL1, 
CXCL10, HLA-DPA1, IFNG, IL1A, IL1B, and 
TLR8 (Figure 4). The mean expression levels of 
nine prognosis-related genes were higher in the 
high level M1 macrophage group than in the 
low level M1 macrophage group in patients with 
right-sided CRC, as shown in Figure 5 (CTLA4, 
P=1.4e-06; CD274, P=8e-07; CXCL1, P= 
1.2e-12; CXCL10, P=3e-06; HLA-DPA1, P= 
5.4e-06; IFNG, P=0.00021; IL1A, P=0.0026; 
IL1B, P=2.2e-05; TLR8, P=7e-05). The coeffi-
cients for the nine DEGs were calculated using 
LASSO analysis, and the M1 macrophage-relat-
ed risk score was calculated according to the 
linear combination of the expression of each 
gene multiplied by LASSO coefficients: (0.0465 
× CTLA4) + (-0.2261 × CD274) + (-0.0038 × 
CXCL1) + (0.0012 × CXCL10) + (0.0003 × HLA-
DPA1) + (0.1002 × IFNG) + (-0.0141 × IL1A) + 
(-0.0096 × IL1B) + (-0.0439 × TLR8). ROC 
curve analysis was performed to verify the best 
predictive accuracy of the risk model using nine 
prognosis-related genes selected by LASSO 
analysis (Supplementary Figure 5). We divided 
patients with right-sided CRC into “High-risk” 
and “Low-risk” groups according to the median 
risk score. 

Construction and validation of M1 macro-
phages-related risk model

Kaplan-Meier survival curves for OS and PFS 
analyses showed that the high-risk group had a 
poorer prognosis than the low-risk group (OS, 
P=0.00058; PFS, P=0.0029; Figure 6A, 6B). 
The ROC curve was used to demonstrate the 
accuracy of the developed risk model for prog-
nosis in patients with right-sided CRC. Areas 
under the curve (AUC) values for OS and PFS 
were 0.743 and 0.702, respectively (Figure 6C, 
6D).

GSE103479 [19] and GSE72970 [20] datasets 
were used to validate the prediction perfor-
mance of the M1 macrophage-related risk 
model. In the GSE103479 dataset, Kaplan-
Meier survival curves for OS and PFS analyses 
revealed that the high-risk group had a poorer 
prognosis than the low-risk group (n=41; OS, 
P=0.0022; PFS, P=0.035; Figure 6E, 6F), and 
AUC values from the ROC curves for OS and 
PFS were 0.619 and 0.726, respectively (Figure 
6H, 6I). Kaplan-Meier survival curves for OS 
analysis of the GSE72970 dataset included 28 
patients with right-sided CRC, and OS in the 
high-risk group showed a poor prognosis 
(P=0.02; AUC=0.917; Figure 6G and 6J).

Functional enrichment analysis of nine genes 
from the M1 macrophages-related risk model

Table 3 presents GO and KEGG enrichment 
analyses of the nine genes included in the M1 
macrophage-related risk model. The GO enrich-
ment assay showed that DEGs were primarily 
enriched in positive regulation of T-cell activa-
tion (GO: 0050870; P=1.24e-07), positive regu-
lation of leukocyte cell-cell adhesion (GO: 
1903039; P=1.24e-07), external side of the 
plasma membrane (GO: 0009897; P=8.44e- 
04), and cytokine activity (GO: 0005125; 
P=1.20e-06). The top 10 enriched KEGG path-
ways included: rheumatoid arthritis (P=1.15e- 
08), graft-versus-host disease (P=2.06E-06), 
type I diabetes mellitus (P=2.06E-06), inflam-
matory bowel disease (P=6.75E-06), influenza 
A (P=6.75E-06), leishmaniasis (P=1.11E-05), 

function (MF) terms. Dot plots show p-values of < 0.05 for GO results. The size of the circle indicates the number of 
genes corresponding to each term. The closer to red, the lower the p-value. KEGG pathway enrichment analysis of 
(C) upregulated and (D) downregulated genes. The size of the circle indicates the number of genes corresponding to 
each term. Dot plots show p-values of < 0.05 for KEGG results. The closer to red, the lower the p-value. (E) Boxplot 
of the fractions of CD8+ T cells according to levels of M1 macrophages. 
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Figure 4. Prognostic gene selection using least absolute shrinkage and selection operator (LASSO) regression model. A. Distribution of LASSO coefficients. B. Tuning 
parameter selection in the LASSO risk model for tenfold cross-validation. Nine genes significantly related to prognosis were selected.



Construction of prognostic gene signatures in colorectal cancer

5543 Am J Cancer Res 2022;12(12):5532-5551

interleukin (IL)-17 signaling pathway (P=2.13E- 
05), cytokine-cytokine receptor interaction 
(P=6.27E-05), tuberculosis (P=2.20E-04), he- 
matopoietic cell lineage (P=9.89E-04).

Discussion

In the present study, we developed an M1 mac-
rophage-related risk model based on M1 mac-

Figure 5. Boxplot of nine prognosis-related genes according to levels of M1 macrophages in patients with right-sided 
CRC. (A) CTLA4, (B) CD274, (C) CXCL1, (D) CXCL10, (E) HLA-DPA1, (F) IFNG, (G) IL1A, (H) IL1B, and (I) TLR8. Groups 
were evaluated using the Wilcoxon signed-rank test to generate the p-value. CRC, Colorectal Cancer.
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Figure 6. Development and validation of the prognostic risk model. Patients were classified into high-risk and low-risk groups based on their prognostic risk score 
in The Cancer Genome Atlas (TCGA) training cohort (n=115), GSE103479 validation cohort (n=41), and GSE72970 validation cohort (n=28). A, C. Kaplan-Meier 
survival curves and receiver operating characteristic (ROC) curves for overall survival (OS) analysis of TCGA training cohorts, respectively. B, D. Kaplan-Meier survival 
curves and ROC curves for progression-free survival (PFS) analysis of TCGA training cohort, respectively. E, H. Kaplan-Meier survival curves and ROC curves for OS 
analysis of GSE103479 validation cohort, respectively. F, I. Kaplan-Meier survival curves and ROC curves for PFS analysis of GSE103479 validation cohort, respec-
tively. G, J. Kaplan-Meier survival curves and ROC curves for OS analysis of GSE72970 validation cohort, respectively.
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Table 3. GO and KEGG pathway enrichment analysis for nine prognosis-related genes
Category Description ID Count p.adjust1 Gene symbol
GO: Biological process positive regulation of T cell activation GO: 0050870 6 1.24E-07 CD274/CTLA4/HLA-DPA1/IFNG/IL1A/IL1B

positive regulation of leukocyte cell-cell adhesion GO: 1903039 6 1.24E-07 CD274/CTLA4/HLA-DPA1/IFNG/IL1A/IL1B
positive regulation of cell-cell adhesion GO: 0022409 6 2.24E-07 CD274/CTLA4/HLA-DPA1/IFNG/IL1A/IL1B
regulation of T cell activation GO: 0050863 6 3.93E-07 CD274/CTLA4/HLA-DPA1/IFNG/IL1A/IL1B
regulation of leukocyte cell-cell adhesion GO: 1903037 6 3.93E-07 CD274/CTLA4/HLA-DPA1/IFNG/IL1A/IL1B

GO: Cellular component external side of plasma membrane GO: 0009897 4 8.44E-04 CD274/CTLA4/CXCL10/TLR8
clathrin-coated endocytic vesicle GO: 0045334 2 6.10E-03 CTLA4/HLA-DPA1
clathrin-coated vesicle GO: 0030136 2 4.19E-02 CTLA4/HLA-DPA1
endolysosome membrane GO: 0036020 1 4.19E-02 TLR8
MHC class II protein complex GO: 0042613 1 4.19E-02 HLA-DPA1

GO: Molecular function cytokine activity GO: 0005125 5 1.20E-06 CXCL1/CXCL10/IFNG/IL1A/IL1B
cytokine receptor binding GO: 0005126 5 1.20E-06 CXCL1/CXCL10/IFNG/IL1A/IL1B
receptor ligand activity GO: 0048018 5 1.18E-05 CXCL1/CXCL10/IFNG/IL1A/IL1B
signaling receptor activator activity GO: 0030546 5 1.18E-05 CXCL1/CXCL10/IFNG/IL1A/IL1B
interleukin-1 receptor binding GO: 0005149 2 1.63E-04 IL1A/IL1B

KEGG pathway Rheumatoid arthritis hsa05323 6 1.15E-08 CTLA4/CXCL1/HLA-DPA1/IFNG/IL1A/IL1B
Graft-versus-host disease hsa05332 4 2.06E-06 HLA-DPA1/IFNG/IL1A/IL1B
Type I diabetes mellitus hsa04940 4 2.06E-06 HLA-DPA1/IFNG/IL1A/IL1B
Inflammatory bowel disease hsa05321 4 6.75E-06 HLA-DPA1/IFNG/IL1A/IL1B
Influenza A hsa05164 5 6.75E-06 CXCL10/HLA-DPA1/IFNG/IL1A/IL1B
Leishmaniasis hsa05140 4 1.11E-05 HLA-DPA1/IFNG/IL1A/IL1B
IL-17 signaling pathway hsa04657 4 2.13E-05 CXCL1/CXCL10/IFNG/IL1B
Cytokine-cytokine receptor interaction hsa04060 5 6.27E-05 CXCL1/CXCL10/IFNG/IL1A/IL1B
Tuberculosis hsa05152 4 2.20E-04 HLA-DPA1/IFNG/IL1A/IL1B
Hematopoietic cell lineage hsa04640 3 9.89E-04 HLA-DPA1/IL1A/IL1B

1. P-values adjusted by the Benjamini-Hochberg correction. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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rophage infiltration in patients with right-sided 
CRC using the TCGA RNA-seq dataset and per-
formed external validation of the model perfor-
mance using GSE103479 and GSE72970 
microarray data. Based on our observed find-
ings, the M1 macrophage-related risk model, 
including nine prognostic genes (CTLA4, CD274, 
CXCL1, CXCL10, HLA-DPA1, IFNG, IL1A, IL1B, 
and TLR8), was an independent prognostic fac-
tor in predicting the outcomes of patients with 
CRC. The performance of the risk model was 
assessed using AUCs of the ROC curve for both 
training and validation sets. The nine identified 
prognostic genes could be potential biomark-
ers for effectively predicting the outcomes of 
patients with right-sided CRC.

Herein, our findings indicated that reduced infil-
tration of M1 macrophages from the right side 
of the colon could be associated with poor 
prognosis in patients with CRC. The homing of 
pro-inflammatory (M1) and anti-inflammatory 
(M2) macrophages reportedly display different 
roles during inflammation [36]. More impor-
tantly, M1 and M2 macrophages exert distinct 
effects on the TME. In particular, M1 macro-
phage activation is triggered by interferon-γ 
(IFN-γ), bacterial lipopolysaccharide (LPS), or 
tumor necrosis factor α and can be induced by 
several signal transduction pathways involving 
STAT and nuclear factor kappa-light-chain-
enhancer of activated B cells (NFκB) [37]. 
Chemokines are major inducers of macrophage 
chemotaxis; however, their involvement in the 
differential regulation of M1 and M2 macro-
phages and CD8+ T cell recruitment in the TME 
of patients with CRC remains unclear. M1 mac-
rophages are potent effector cells that kill 
microorganisms, inhibit tumor growth, and pro-
duce pro-inflammatory cytokines [38, 39]. 
Although most tumor-associated macrophages 
exhibit immunosuppressive M2 macrophages, 
they retain plasticity for polarization. Moreover, 
efforts are ongoing to re-polarize tumor-pro-
moting M2 macrophages from tumoricidal M1 
macrophages. One potential antitumor strategy 
involves altering the tumor immune microenvi-
ronment (TIME) by engineering macrophages. 
M1 macrophages alter immune suppression 
within the TME by facilitating antitumor T cells 
and directly attacking tumor cells. Specifically, 
chimeric antigen receptor macrophages (CAR-
Ms) can induce antigen-specific phagocytosis 
and tumor removal in vitro. In humanized 

mouse models, CAR-Ms have been shown to 
induce a pro-inflammatory TME and promote 
antitumor T-cell activity [40-42]. In the current 
study, M1 macrophage is significantly associ-
ated with prognosis of right-sided CRC patients 
and it is correlated with CD8+ T cells. Although 
the survival analysis result is not statistically 
significant, patients with high CD8+ T cells tend 
to live longer than patients with low CD8+ T 
cells. In the gene set analysis, M1 macrophage 
in right-sided CRC induces T cell activation and 
has potent inflammatory function. Therefore, 
we believe that the M1 macrophage affects the 
survival of right-sided CRC patients in various 
ways such as anti-tumor function of M1 macro-
phage and CD8+ T cells activation. Future  
studies need to generate additional evidence 
regarding the association between M1 macro-
phage infiltration, T-cell activation, and patient 
survival according to CRC location. 

We observed that high expression levels of 
CTLA4 and CD274 were associated with a good 
prognosis in patients with right-sided CRC. This 
finding is consistent with the report that both 
overexpression of cytotoxic T-lymphocyte-as- 
sociated antigen 4 (CTLA-4) and programmed 
death ligand-1 (PD-L1, encoded by the CD274 
gene) can be crucial suppressors of antitumor 
immunity, associated with a better therapeutic 
response. Moreover, Li et al. have reported that 
overexpression of PD-1 and PD-L1 correlated 
with better prognosis in patients with CRC. 
Tumor-infiltrating lymphocyte (TIL)-PD-1 is an 
independent prognostic factor for survival in 
patients with CRC [43]. Interestingly, KEGG 
pathway analysis revealed that IFNG, IL1A, 
IL1B, and HLA-DPA1 are associated with chron-
ic diseases, including rheumatoid arthritis, 
graft-versus-host disease, type I diabetes mel-
litus, and inflammatory bowel disease. IFN-γ 
plays an essential role in the innate immune 
response to intracellular bacterial pathogens. 
In addition, IFN-γ coordinates several biological 
responses, primarily involved in host defense 
and immune surveillance, as well as in the 
establishment of adaptive immunity and  
modulation of pro-inflammatory macrophages. 
IFN-γ reportedly induces M1 macrophages. 
Upregulation of MHC class I by IFN-γ plays a 
crucial role in the host response to intracellular 
pathogens and tumor cells owing to cytoto- 
xic T-cell activation, promoting cell-mediated 
immunity. IFN-γ functions as a cytotoxic CD8+ T 
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cell differentiation signal and is essential for 
inducing cytotoxic T-cell precursor proliferation 
[44, 45]. HLA-DPA1 belongs to HLA class II 
alpha chain paralogs. High expression level of 
HLA-DPA1 can be associated with a good host 
immune response, positive regulation of chron-
ic inflammation, and a better prognosis in CRC 
[46]. Recently, Singh et al. have reported that 
five genes, CXCL3, MET, IL1A, IL1B, and TNS1, 
identified through an integrated bioinformatics 
approach, can potentially serve as biomarkers 
for the regulatory function of the inflammatory 
response and cellular homeostasis in patients 
with early-age onset CRC. Consistently, our 
data suggest that IL1A and IL1B play important 
roles in patients with right-sided CRC [47].

Wang et al. have reported that CXCL1 and 
CXCL10 are pivotal for initiating malignancy 
and cancer progression. The authors suggest-
ed that high CXCL1 expression level is signifi-
cantly correlated with breast cancer lymph 
node metastasis, poor OS, and the basal-like 
subtype [48]. However, in our study, we deter-
mined that high expression levels of CXCL1 and 
CXCL10 were associated with better survival 
rates in patients with CRC, not only in the train-
ing set but also in the two validation sets. 
Accordingly, additional evidence and discus-
sions are needed to comprehensively clarify 
how chemokines function as major inducers of 
macrophages. In addition, the role of macro-
phage phenotypes on the prognosis of patients 
with CRC needs to be elaborated. Toll-like 
receptors are the most frequently examined 
RNA sensors for intestinal diseases. He et al. 
have reported lower expression levels of TLR7 
and TLR8 in CRC tissues than in controls, indi-
cating potential antitumor effects [49]. This 
result is consistent with the conclusions of the 
present study.

Various studies have developed risk models 
using LASSO regression [16, 50, 51], demon-
strating the performance of risk models using 
tenfold CV to avoid overfitting. In the present 
study, we systematically developed a risk model 
based on M1 macrophage infiltration in right-
sided CRC. Our study had the advantage of 
evaluating the performance of the risk model, 
given that it was validated in two GEO datasets, 
including patients with right-sided CRC. Both 
OS and PFS were evaluated using ROC curves. 
AUC values revealed that the M1 macrophage-

related risk model demonstrated good accura-
cy in predicting survival in TCGA training set 
and two GEO validation sets. Multifaceted 
strategies are warranted to develop precision 
medicine for cancer therapy. We suggest that 
the M1 macrophage-related risk model may 
provide valuable prognosis of patients with 
right-sided CRC. 

There are several limitations to this study. First, 
we performed only based on bioinformatics 
methods for the analysis. Second, we couldn’t 
evaluate association with between immune cell 
infiltration and drug responsiveness in patients 
due to the lack of datasets including drug 
responsiveness. Therefore, further in vivo and 
in vitro experiments are needed to validate 
patient prognosis as well as drug responsive-
ness. Nevertheless, the risk model for predict-
ing OS and PFS in patients with right sided CRC 
we developed showed superior performance in 
both TCGA and two GEO cohorts. The prognos-
tic gene signature we generated may provide a 
direction for further research finding about 
mechanism of TME in CRC.

In Conclusions, our study constructed an M1 
macrophage-related risk model to predict the 
outcomes of patients with right-sided CRC. The 
score generated from our risk signature based 
on the nine prognosis-related genes was an 
independent prognostic marker for predicting 
OS and PFS in both TCGA and GEO cohorts. 
This study provides a novel gene signature for 
the prognosis of patients with right-sided CRC 
and offers a vital principle for future studies to 
examine the relationship between infiltration of 
M1 macrophages and the prognosis of patients 
with right-sided CRC.
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Supplementary Figure 1. Quan-
tiplot for immune cell fractions 
of patients with (A) right- and (B) 
left-sided CRC. CRC, Colorectal 
Cancer.
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Supplementary Figure 2. Kaplan-Meier curves for overall survival analysis of patients with right-sided CRC accord-
ing to expression levels of tumor-infiltrating (A) NK cells, (B) Neutrophils, (C) Dendritic cells, (D) CD8+ T cells, (E) 
CD4+ T cells, and (F) B cells. CRC, Colorectal Cancer; NK, Natural Killer.
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Supplementary Figure 3. Kaplan-Meier curves for overall survival analysis of patients with left-sided CRC according 
to expression levels of tumor-infiltrating (A) NK cells, (B) Neutrophils, (C) Dendritic cells, (D) CD8+ T cells, (E) CD4+ 
T cells, and (F) B cells. CRC, Colorectal Cancer; NK, Natural Killer.



Construction of prognostic gene signatures in colorectal cancer

4 

Supplementary Figure 4. Kaplan-Meier curves for overall survival analysis of 15 prognosis-related differentially expressed genes (DEGs). (A) CCL4, (B) CD38, (C) 
CD274, (D) CTLA4, (E) CXCL1, (F) CXCL10, (G) CXCL13, (H) ICAM1, (I) IFNG, (J) IL1A, (K) IL1B, (L) IL2RA, (M) PTPRC, (N) TLR8 and (O) HLA-DPA1.
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Supplementary Figure 5. ROC curves of nine prognosis-related genes used for risk score calculation. (A) CD274, (B) 
CTLA4, (C) CXCL1, (D) CXCL10, (E) HLA-DPA1, (F) IFNG, (G) IL1A, (H) IL1B, and (I) TLR8. ROC, Receiver Operating 
Characteristic.


