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Abstract: Breast cancer (BRCA) is the most commonly diagnosed cancer and among the top causes of cancer 
deaths globally. The abnormality of the metabolic process is an important characteristic that distinguishes can-
cer cells from normal cells. Currently, there are few metabolic molecular models to evaluate the prognosis and 
treatment response of BRCA patients. By analyzing RNA-seq data of BRCA samples from public databases via 
bioinformatic approaches, we developed a prognostic signature based on seven metabolic genes (PLA2G2D, GNP-
NAT1, QPRT, SHMT2, PAICS, NT5E and PLPP2). Low-risk patients showed better overall survival in all five cohorts 
(TCGA cohort, two external validation cohorts and two internal validation cohorts). There was a higher proportion 
of tumor-infiltrating CD8+ T cells, CD4+ memory resting T cells, gamma delta T cells and resting dendritic cells 
and a lower proportion of M0 and M2 macrophages in the low-risk group. Low-risk patients also showed higher 
ESTIMATE scores, higher immune function scores, higher Immunophenoscores (IPS) and checkpoint expression, 
lower stemness scores, lower TIDE (Tumor Immune Dysfunction and Exclusion) scores and IC50 values for several 
chemotherapeutic agents, suggesting that low-risk patients could respond more favorably to immunotherapy and 
chemotherapy. Two real-world patient cohorts receiving anti-PD-1 therapy were applied for validating the predictive 
results. Molecular subtypes identified based on these seven genes also showed different immune characteristics. 
Immunohistochemical data obtained from the human protein atlas database demonstrated the protein expression 
of signature genes. This research may contribute to the identification of metabolic targets for BRCA and the optimi-
zation of risk stratification and personalized treatment for BRCA patients.

Keywords: Metabolism-related genes, prognostic signature, breast cancer, immune infiltration, bioinformatics 
methods

Introduction

Breast cancer (BRCA) is a highly malignant 
female tumor and its incidence ranked first 
among cancers in 2020 worldwide [1]. Tradi- 
tionally, breast cancer can be classified into 
Luminal A, Luminal B, HER2 (human epidermal 
growth factor receptor 2)-enriched and Basal-
like type according to the status of specific 
receptors. The classification helps to assess 
the pathological features and prognosis of 
patients more accurately and thus adopt more 
precise treatments [2]. Although clinical treat-
ment methods including surgery, hormonal 
therapy, adjuvant chemotherapy and radiother-

apy for breast cancer have made great progress 
in recent years, problems such as recurrence, 
metastasis, drug resistance and low response 
rates to immunotherapy still limit the further 
improvement of the survival rate of BRCA pa- 
tients [3]. Therefore, it is of great significance  
to find novel molecular targets with prognostic 
and therapeutic value to help with the stratifi- 
cation, prognosis evaluation and individualized 
treatment of patients. 

With advances in high-throughput sequencing, 
multi-omics and spatial biology, researchers 
now master more tools to discover key mole-
cules regulating tumor heterogeneity and micro-
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environment. Metabolic reprogramming is one 
of the characteristic biological processes of 
cancer cells [4]. Various metabolic processes, 
such as glycolysis, the tricarboxylic acid cycle, 
amino acid, nucleotide and lipid metabolism, 
are altered to varying degrees compared with 
normal cells. Oncogenes play a role in promot-
ing metabolic dysregulation, which in turn pro-
vides favorable conditions for the survival of 
cancer cells [5]. Metabolites could also direct- 
ly or indirectly affect the signal transduction 
involved in the growth and migration of cancer 
cells. Changes in nucleotide metabolism were 
shown to be correlated with chemotherapeutic 
drug resistance and the progression of breast 
cancer [6]. 

In addition, altered tumor metabolism interacts 
with other cells in the tumor microenvironment 
(TME), such as fibroblasts and immune cells, 
and shapes an environment conducive to the 
proliferation and immune evasion of tumors 
[7]. More and more studies have focused on 
the interaction between the metabolic process-
es of cancer cells and their microenvironment. 
For example, enhanced glycolytic activity in 
cancer cells produces large amounts of lactate 
and acidifies the microenvironment, which can 
inhibit the function of effector T cells by affect-
ing their proliferation and IFN-γ production [8]. 
Cancer cells could also compete for glutamine 
with immune cells. On the one hand, limited 
glutamine inhibited immune cell proliferation; 
on the other hand, low glutamine level in the 
microenvironment could also promote the tr- 
ansformation of CD4+ T cells into Tregs, shap-
ing the immunosuppressive environment, ac- 
celerating the exhaustion of effector T cells and 
undermining the effectiveness of immunother-
apy [9, 10]. In breast cancer models, targeting 
the glutamate metabolism could also facili- 
tate M1-like polarization of macrophages and 
reduce the recruitment of myeloid-derived sup-
pressor cells (MDSC) [11]. And inhibiting the 
glycolysis could reduce the expression of gran-
ulocyte-macrophage colony-stimulating factor 
(GM-CSF) and tumor granulocyte colony-stimu-
lating factor (G-CSF), decrease MDSC infiltra-
tion, and further enhance the anti-tumor immu-
nity [12]. Additionally, a glycolytic molecular 
subtype of triple-negative breast cancer (TNBC) 
characterized by upregulation of carbohydrate 
and nucleotide metabolism was newly identi-

fied, and inhibition of LDH in this subtype sig-
nificantly improved the efficacy of anti-PD-1 
immunotherapy. The role of altered metabolism 
on the tumor microenvironment and anti-tumor 
immunity is still gaining considerable attention 
[13]. However, metabolic biomarkers or molec-
ular models for predicting the immunotherapy 
response of breast cancer patients are still 
lacking. Therefore, targeting the metabolic pro-
cess of cancer cells and studying the interac-
tion with components of the microenvironment, 
such as immune cells, is of great significance to 
help us discover key molecules with prognostic 
and therapeutic value and further improve the 
effectiveness of immunotherapy.

In this study, we established a robust prognos-
tic signature based on 7 metabolism-related 
genes for breast cancer, which performed well 
in stratifying the risk of patients, distinguishing 
the characteristics of tumor immune microenvi-
ronment and immune function, and predicting 
the sensitivity to immunotherapy and chemo-
therapy. These results may help provide in- 
sights into the discovery of novel molecular bio-
markers for breast cancer, as well as the se- 
lection of individualized treatment for breast 
cancer patients.

Methods

Data acquisition and preprocessing

The general workflow of this study is shown in 
Figure 1. The RNA sequencing data and corre-
sponding clinical information of female patients 
with breast cancer were downloaded from The 
Cancer Genome Atlas database (TCGA, https://
portal.gdc.cancer.gov). We obtained 113 nor-
mal tissue samples and 1109 tumor samples 
from the TCGA database for differential analy-
sis. 1023 tumor samples were used for subse-
quent prognostic analysis because 86 patients 
with less than 60 days of follow-up were exclud-
ed. Then we used the TCGA cohort (N = 1023) 
as a training cohort, from which we also ran-
domly selected two groups of patients (2:1 
ratio, N = 682 and N = 341) as internal valida-
tion cohorts. Two expression array datasets of 
BRCA patients serving as external validation 
cohorts, GSE21653 (N = 241) and GSE20685 
(N = 327) and their corresponding clinical in- 
formation were obtained from the Gene Ex- 
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pression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/). When evaluating the prognostic 
value and clinical relevance of the signature, 
samples with incomplete TNM staging data 
were also excluded. 

RNA-sequencing and clinical response data of 
a real-world cohort (IMvigor210, n = 348) of 
patients with urothelial carcinoma receiving 
anti-PD-1 therapy were obtained from the R 
package “IMvigor210CoreBiologies” [14]. Da- 
taset GSE78220 (n = 28) containing transcrip-
tome and response data of a cohort of meta-
static melanoma patients undergoing anti-PD-1 
therapy was downloaded from the GEO data-
base, and one sample with incomplete clini- 
cal information was excluded [15]. These two 
cohorts were applied for validating the role of 
the signature in predicting the immunotherapy 
response. 

Identification of metabolism-related genes 
and development of the metabolism-related 
signature

We used the Perl script to extract the metabo-
lism-related genes (MRGs) from the pathway 
dataset “c2.cp.kegg.v7.4.symbols.gmt”, which 
was downloaded from the MsigDB (https://
www.gsea-msigdb.org). Differentially express- 
ed metabolic genes were screened using the  
R package “Limma”, with parameters set as 
|log2(FoldChange)| > 0.585 and FDR < 0.01 

[16]. Then the R package “ClusterProfiler” was 
applied to carry out the Gene Ontology (GO)  
and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses to explore the func-
tion of these differentially expressed MRGs 
[17]. 

Univariate Cox regression analysis was per-
formed to screen the prognostic MRGs. Diffe- 
rentially expressed MRGs satisfying P < 0.01 
would be considered as prognostic MRGs. 
Next, the least absolute shrinkage and selec-
tion operator (LASSO) regression analysis was 
applied to control the number of prognostic 
MRGs and prevent the overfitting using the R 
package “glmnet”. Finally, we adopted multi-
variate Cox regression analysis to confirm the 
MRGs for model construction and output their 
hazard values and coefficients. Then the risk 
score of each patient could be calculated using 
this formula: 

Risk Score ( ) ( )Exp i Coef i1i

n= #
=
/

(N represents the number of MRGs used for sig-
nature construction. Exp(i) and Coef(i) repre-
sent the expression level and coefficient of 
each gene, respectively).

Patients in the TCGA cohort (the training cohort) 
were divided into high- and low-risk groups 
based on the median risk score. We used the  
R package “survival” to draw the Kaplan-Meier 
(K-M) curve to show differences in survival 

Figure 1. Flow chart of this study.
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between high- and low-risk groups. “Pheat- 
map” package was applied to visualize the 
patient survival status, risk score distribution 
and gene expression in the risk group. Time-
dependent receiver operating characteristic 
(ROC) curves were drawn using the R package 
“survivalROC” to evaluate the predictive effi-
ciency of the signature. We utilized two external 
independent cohorts (GSE21653 cohort and 
GSE20685 cohort) and two internal cohorts to 
validate the prognostic signature. Furthermore, 
univariate and multivariate regression analyses 
were performed to assess the independence of 
the signature as well as other clinical factors in 
predicting the overall survival of patients. 

Protein expression of signature MRGs

Apart from analyses at the RNA level, we also 
explored protein abundance of the signature 
MRGs in normal breast and BRCA tissues 
through immunohistochemical data obtained 
from the HPA (The Human Protein Atlas) data-
base (https://www.proteinatlas.org/) [18]. Im- 
munohistochemical images of samples with 
well-defined tissue and using the same anti-
body may be selected.

Gene set enrichment analysis

Firstly, we applied the R package “Limma” to 
obtain the differentially expressed genes bet- 
ween the high-risk and low-risk groups. Then 
the gene set enrichment analysis was per-
formed using the “org.Hs.eg.db” and “cluster-
Profiler” packages to explore the biological 
functional differences between the high-risk 
and low-risk tumors. The top 5 enriched GO 
terms or KEGG pathways were visualized. 

Evaluation of tumor-infiltrating immune cells 
(TIICs) and immune function status

Multiple algorithms for estimating the tumor-
infiltrating immune cells were used in this sec-
tion. We obtained the immune cell infiltration 
data of breast cancer samples in TCGA us- 
ing the TIMER database (http://timer.cistrome.
org/) and analyzed the correlation between our 
risk score and the abundance of tumor-infiltrat-
ing cells estimated by three different algori- 
thms (xCELL, MCPcounter and CIBERSORT) 
[19]. Then we used box plots to show differenc-
es in TIICs estimated by CIBERSORT between 

the high- and low-risk groups. The violin plot 
was used to visualize the differences in micro-
environment scores between the two groups. 
By running the “GSVA” package, we analyzed 
the characteristics of immune function in differ-
ent risk tumors. 

Correlation between the signature and clinico-
pathological variables

To evaluate the relationship between our risk 
signature and other clinicopathological indica-
tors, we adopted the “ComplexHeatmap” pack-
age to show the distribution of patients with 
different clinicopathological features between 
risk groups. We also divided patients into sub-
groups based on different clinicopathological 
information to further confirm whether the sig-
nature is still valuable for each subgroup. The 
expression levels of MRGs used for signature 
construction in each clinicopathological sub-
group were also presented via R software. 

Evaluation of patient response to immunother-
apy and chemotherapy

Firstly, we assessed the expression levels of 
common immune checkpoints and some 
costimulatory or coinhibitory molecules in two 
risk groups. Then we utilized two approaches, 
Immunophenoscore (IPS) and TIDE (Tumor Im- 
mune Dysfunction and Exclusion) algorithms,  
to analyze the immunogenicity and immunore-
activity characteristics of tumors, and further 
explored the performance of the risk signature 
in predicting the response of patients to ICB 
therapy. IPS scores of patients were download-
ed from the TCIA (The Cancer Immunome Atlas) 
database (https://tcia.at/home) and TIDE scor- 
es were calculated using the TIDE database 
(http://tide.dfci.harvard.edu/) [20]. After pre-
dictive analyses, two real-world cohorts re- 
ceiving anti-PD-1 therapy, IMvigor210 and 
GSE78220, were applied to validate the perfor-
mance of the signature. The responses to che-
motherapeutic or targeted drugs including me- 
thotrexate, lapatinib and others were predicted 
and analyzed based on the GDSC database 
(the Genomics of Drug Sensitivity in Cancer, 
https://www.cancerrxgene.org/). Then the half-
maximal inhibitory concentration (IC50) values 
were compared using the R package “pRRo-
phetic” [21]. 
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Molecular subtype exploration

To further study whether breast cancer tumors 
could be classified based on these signature 
MRGs, we performed the “ConsensusClus- 
terPlus” algorithm on R software. In addition, 
differences between subgroups in overall sur-
vival, immune microenvironment, immune fun- 
ction, and immunotherapeutic response were 
also investigated using the same method as 
above.

Statistical analysis

Data processing and analyses were imple- 
mented by R (version: 4.0.3) and Perl software 
(version: 5.26.1). Multiple R packages (limma, 
survival, GSVA, ClusterProfiler, ggplot2, etc.) 
were adopted in this study. A subset of data 
such as IPS scores and TIDE scores were cal- 
culated by online databases and further pro-
cessed and visualized by R software. The 
Student’s t-test was used to evaluate continu-
ous variables, whereas the χ2 test was used to 
compare categorical variables. For all statisti-
cal analyses, a p-value less than 0.05 was 
regarded as statistical significance. 

Results

Screening and protein expression analysis of 
prognostic MRGs for signature construction

RNA-seq data containing 113 normal samples 
and 1109 breast cancer samples were down-
loaded from the TCGA database. After inter-
secting with metabolism-related genes (MRGs) 
and performing differential analysis, 267 differ-
entially expressed MRGs (DE-MRGs) were iden-
tified (Figure 2A, 2B), which were mainly en- 
riched in the oxidoreductase, lyase and coen-
zyme binding function, the membrane and mi- 
tochondria components, the small molecule 
catabolic metabolism and nucleotide-related 
metabolism bioprocesses or pathways (Figure 
2C, 2D). After excluding samples with less than 
60 days of follow-up, 1023 BRCA samples were 
retained in the TCGA cohort, which served as 
the training group. Combined with the overall 
survival information of patients in the training 
group, we screened the 7 most statistically sig-
nificant MRGs with prognostic value using the 
univariate Cox regression. The hazard ratios 
(HR) and 95% confidence interval (95% CI) of 7 

prognostic MRGs are shown in Table 1. 
Accordingly, PLA2G2D was a protective factor 
with a HR < 1, while the other six were risky 
ones (HR > 1, P < 0.01). We confirmed their 
coefficients for signature construction by LA- 
SSO regression (Figure 2E, 2F). Among these 
seven prognostic MRGs, except for NT5E, which 
was down-regulated, the other 6 MRGs were 
up-regulated (Figure 2B). 

To further confirm the expression characteris-
tics of 7 MRGs at the protein level, we obtained 
the immunohistochemical data from the HPA 
database for these MRGs except PLA2G2D. 
Consistent with their mRNA expression (Figure 
2B), the protein levels of GNPNAT1, QPRT, 
PLPP2, SHMT2 and PAICS were higher in breast 
cancer tissues than in normal tissues (Figure 
S1). But for NT5E, no obvious difference in its 
protein level between normal tissue and tumor 
tissue was observed (Figure S1). 

Development, validation and clinical relevance 
evaluation of the prognostic signature

The coefficients of seven signature MRGs are 
shown in Table 1. Then the risk score for each 
patient in the TCGA cohort (N = 1023) can be 
calculated using this formula: Risk score = 
-0.124668 × Exp (PLA2G2D) + 0.012631 × Exp 
(GNPNAT1) + 0.025496 × Exp (QPRT) + 
0.011223 × Exp (SHMT2) + 0.026805 × Exp 
(PLPP2) + 0.077629 × Exp (NT5E) + 0.018399 
× Exp (PAICS). Patients in the TCGA cohort were 
divided into the low-risk group (N = 512) and 
high-risk group (N = 511) according to the 
median value of risk scores, which would also 
be taken as the cutoff for external validating 
groups. The Kaplan-Meier curve showed that 
high-risk patients had worse overall survival in 
the TCGA cohort (P < 0.001) (Figure 3A). 
Moreover, poorer outcomes of high-risk pa- 
tients were verified in two external validation 
cohorts, the GSE21653 cohort (n = 241) (P < 
0.01) and the GSE20685 cohort (n = 327) (P < 
0.001) (Figure 3B, 3C). Consistent results were 
also achieved in two internal validation cohorts 
(P < 0.01) (Figure S3A). Figure 3D-F showed 
risk scores and survival status of patients and 
expression of the 7 MRGs in different risk gr- 
oups. The 7 MRGs were highly expressed main-
ly in the tumors of high-risk patients, except for 
PLA2G2D, which may indicate that PLA2G2D 
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Figure 2. Screening of prognostic MRGs in breast cancer for signature construction. (A, B) Heatmap and volcano map of the expression of MRGs in normal and tu-
mor samples. Red grids or dots represent high-expression MRGs, and blue grids or dots represent low-expression MRGs. Signature MRGs have been labeled in the 
figure. (C, D) GO and KEGG analyses of differentially expressed MRGs. In (C), the categories of enrichment analysis and the corresponding bar colors are shown in 
the legend (BP, Biological Process; CC, Cellular Component; MF, Molecular Function; KEGG, the Kyoto Encyclopedia of Genes and Genomes). (E, F) LASSO analysis 
determined the lambda parameter and coefficients of signature MRGs.
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Table 1. Hazard ratio and coefficients of signature MRGs
id Description HR HR. 95L HR. 95H P value Coefficient
PLA2G2D Phospholipase A2 Group IID 0.89759 0.83035 0.97027 0.00654 -0.124668

GNPNAT1 Glucosamine-Phosphate N-Acetyltransferase 1 1.02507 1.00645 1.04402 0.00810 0.012631

QPRT Quinolinate Phosphoribosyltransferase 1.02965 1.00925 1.05048 0.00422 0.025496

SHMT2 Serine Hydroxymethyltransferase 2 1.02144 1.00636 1.03674 0.00518 0.011224 

PLPP2 Phospholipid Phosphatase 2 1.03105 1.01072 1.05179 0.00262 0.026805

NT5E 5’-Nucleotidase Ecto 1.05447 1.01650 1.09386 0.00459 0.077629

PAICS Phosphoribosylaminoimidazole Carboxylase And  
Phosphoribosylaminoimidazolesuccinocarboxamide Synthase

1.01909 1.00877 1.02951 0.00027 0.018399

Figure 3. Construction, validation and evaluation of the metabolism-related prognostic signature. A-C. Kaplan-Meier 
curves of overall survival between high- and low-risk groups in the TCGA cohort (N = 1023), GSE21653 cohort  
(N = 241) and GSE20685 cohort (N = 327), respectively. D-F. Risk score distribution, survival status of patients and 
heatmaps of expression profiles of 7 MRGs involved in the signature. G-I. Time-dependent ROC curves for assessing 
the prognostic efficacy of the signature.

was a favorable factor (Figure 3D-F). Then the 
time-dependent ROC curves were applied to 
evaluate the prediction sensitivity of the prog-
nostic signature; the 1-, 5- and 10-year area 
under the curve (AUC) values were 0.737,  
0.687 and 0.750 in the TCGA cohort (Figure 

3G). In external validating groups, the 1-, 5-  
and 10-year AUC values of two GEO cohorts 
were 0.666, 0.681, 0.633 and 0.908, 0.715 
and 0.683, respectively (Figure 3H, 3I). The 
AUC of the signature can be around 0.7 at th- 
ree time points in the TCGA cohort, but mostly 
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Figure 4. Clinicopathological relevance of the prognostic signature. (A-C) Heat maps of patients with different clini-
cal or pathological characteristics in the high- and low-risk groups. The association between the expression of 7 
MRGs and clinical factors including age (D), stage (E), T-stage (F), N-stage (G) and M-stage (H). In this figure, group-
ing variables including stage, T (tumor), N (node), and M (metastasis) were derived from the AJCC (American Joint 
Committee on Cancer) breast cancer staging system (ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001).

between 0.65-0.7 in the GSE21653 cohort. In 
the GSE20685 cohort, the AUC values at 1-  
and 5-year were also still satisfactory, show- 
ing a relatively reliable performance of the 
signature.

To assess the association between the prog-
nostic signature and clinicopathological fac-
tors, we presented the distribution of patients 
with different clinicopathological features in 
the low- and high-risk groups using heatmaps 
(Figure 4A). There were more stage-1 patients 
in the low-risk group and more stage-3 or sta- 
ge-4 patients in the high-risk group (P =  
0.028) (Figure 4B). Patients with T1 and T3 
were enriched in the low-risk group and those 
with T2 and T4 in the high-risk group (P = 0.01) 
(Figure 4C). In addition, we also analyzed the 
relationship between the expression of signa-
ture MRGs and clinicopathological factors.  
The expression levels of NT5E, PLA2G2D and 
SHMT2 differed between the two groups sepa-
rated by the age of 60 (all P < 0.05) (Figure 4D). 

With the increase of clinicopathological stage, 
T stage and M stage, the expression of PLPP2 
and SHMT2 elevated significantly (all P < 0.05) 
(Figure 4E, 4F, 4H). The expression of QPRT 
also increased in the T2-T4 group, while the  
statistical difference was not significant (P = 
0.08) (Figure 4F). Consistent with GNPNAT1, 
QPRT expressed higher in the group with a 
higher N stage (all P < 0.01) (Figure 4G). More- 
over, QPRT expression showed a certain incre- 
asing tendency with the advancing of the clini-
copathological stage and N stage (Figure S4B, 
S4C). The changing trend of SHMT2 expression 
with clinicopathological stage and T stage also 
showed a similar feature (Figure S4A, S4C). It 
can be found that signature MRGs such as 
PLPP2, SHMT2 and QPRT are correlated with 
clinicopathological factors to a certain extent. 

Furthermore, univariate and multivariate Cox 
regression analyses showed that the signature 
could be regarded as a prognostic indicator 
independent of other clinicopathological fac-
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Figure 5. Gene Set Enrichment Analysis (GSEA). Significantly enriched biological processes (A) and KEGG pathways 
(B) in the high-risk group. Significantly enriched biological processes (C) and KEGG pathways (D) in the low-risk 
group. 

tors (Figures S2A, S3B). In combination with 
the risk score and the age, a clinicopathologi- 
cal factor capable of independently indicating 
prognosis, a nomogram was developed to pre-
dict patient survival (Figure S2B). Decision 
curve analyses (DCA) indicated that the metab-
olism-related signature and integrated nomo-
gram did better than other clinical factors in- 
cluding age and stage in predicting 5- and 
10-year survival, especially the 10-year survival 
(Figure S2C).

To further explore whether the signature could 
distinguish survival outcomes of patient sub-
groups with different clinicopathological fea-
tures, patients were regrouped according to 
clinicopathological features and survival analy-
ses were performed. The signature still show- 
ed good risk stratification effect in patients 
with Luminal A subtype and Basal subtype  
(P < 0.05) (Figure S3C). The overall survival was 
shorter for high-risk patients in Her2-enriched 
subgroup and Luminal B subgroup, yet not sta-

tistically significant (P = 0.07 and P = 0.235) 
(Figure S3C). In other clinicopathological sub-
groups of the TCGA cohort, high-risk patients 
still demonstrated significantly worse survival 
outcomes (P < 0.01) (Figure S3C). Among the 
clinicopathological subgroups of the GSE206- 
85 cohort, only the T3-T4 subgroup showed no 
significant difference due to the limited number 
of patients (P = 0.26), and the overall survival 
differences between high- and low-risk patients 
in the remaining subgroups were all significant 
(P < 0.05) (Figure S4D).

Gene set enrichment analysis (GSEA)

To identify biological processes associated 
with the metabolism-related risk signature, we 
conducted GSEA. The biological processes ma- 
inly enriched in the high-risk group included 
chromosome segregation, DNA replication and 
repair and cell cycle-related processes (Figure 
5A). While in the low-risk group, biological pro-
cesses that were significantly enriched were 
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immunity-related processes including activa-
tion of the immune response, adaptive immu-
nity and alpha-beta T cell activation and so on 
(Figure 5C). For KEGG pathways, there were 
also some cell cycle- and division-related ones 
enriched in the high-risk group, as well as some 
immune and cytokine-related pathways enri- 
ched in the low-risk group (Figure 5B, 5D). 
These results suggest that differences in the 
prognosis of patients with different risks may 
be strongly linked to immune responses and 
immune regulation, and therefore we may need 
to characterize the immune microenvironment 
of different risk tumors.

Analysis of tumor immune microenvironment 
and immune function

Four algorithms (ESTIMATE, xCELL, MCPcoun- 
ter and CIBERSORT) were utilized to analyze 
the characteristics of tumor-infiltrating immune 
cells between different risk groups. Figure 6A 
showed the relationship between risk score 
and immune cell abundance analyzed by differ-
ent algorithms. It can be found that risk score 
has a significant negative correlation with the 
proportion of tumor-infiltrating CD8+ T cells, B 
cells, myeloid dendritic cells, etc. A positive cor-
relation between risk scores and the propor-
tions of M0 macrophages, M2 macrophages 
and CD4+ Th2 cells was also observed (Figure 
6A). High-risk group had lower Stromal, Im- 
mune, and ESTIMATE scores than the low-risk 
group and these three scores all negatively cor-
related with the risk score (Figure 6A, 6C). From 
the results calculated by the CIBERSORT algo-
rithm we found that high-risk tumors had a 
lower proportion of naïve B cells, CD8+ T cells, 
CD4+ memory resting T cells, gamma delta T 
cells, resting dendritic cells and resting mast 
cells, and a higher proportion of M0 macro-
phages and M2 macrophages (Figure 6B). 
There were significant differences in stemness 
scores (RNAss) between high- and low-risk 
groups, and a significant positive correlation 
between risk score and RNAss was observed 
(Figure 6D, 6E).

Furthermore, the relationship between the ex- 
pression of 7 signature MRGs and the abun-
dance of immune cells was shown in Figure 6F. 
As we can notice, PLA2G2D showed a strong 
positive correlation with CD8+ T cells, M1 mac-

rophages and CD4+ memory activated T cells 
and so on, and a strong negative correlation 
with M0 macrophages and M2 macrophages, 
indicating its potential anti-tumor effect (Figure 
6F). NT5E expression positively correlated with 
the infiltration of CD4+ memory T cells, resting 
NK cells, neutrophils and M2 macrophages, 
and negatively correlated with the infiltration of 
plasma cells, activated NK cells, follicular help-
er T cells and CD8+ T cells, which were similar  
to those characteristics of GNPNAT1 (Figure 
6F). In addition, the expression of PLPP2 and 
SHMT2 had a similar effect on immune cell infil-
tration, which was reflected in that they were 
both positively correlated with regulatory T 
cells, follicular helper T cells, activated NK cells 
and M0 macrophages, and both negatively cor-
related with CD4+ memory resting T cells, rest-
ing mast cells and resting dendritic cells (Figure 
6F). Differences in immune function between 
the low- and high-risk groups were shown in 
Figure 6G. Most of the immune function scores 
such as the CD8+ T cell, cytolytic activity, and 
type-II IFN response activity scores were higher 
in the low-risk group than in the high-risk group, 
except for some functional scores that were not 
statistically different, which may indicate that 
the immune function of low-risk patients was 
more active, consistent with the GSEA results 
above. 

Moreover, the expression levels of immune 
checkpoint genes, m6A mRNA methylation reg-
ulator genes and main mismatch repair (MMR) 
genes were compared. Most of the immune 
checkpoints including PDCD1 (PD-1), CTLA4, 
CD274 (PD-L1), HAVCR2 (TIM-3) and ICOS etc., 
expressed higher in the low-risk group, but 
CD276 (B7-H3) expressed lower (P < 0.01) 
(Figure 7A). In the low-risk group, expression 
levels of crucial MMR genes including MSH2, 
MSH6 and EPCAM were lower, and expression 
levels of MLH3, MLH1, and MSH3 were higher 
(P < 0.05) (Figure 7B). The risk score was nega-
tively correlated with the expression of PDCD1, 
CTLA4 and CD274, while positively correlated 
with the expression of CD276 (all P < 0.001) 
(Figure S5). In addition, Figure 7C showed sig-
nificantly decreased expression levels of YT- 
HDF3, YTHDF1, HNRNPC, HNRNPA2B1, FMR1, 
and RBM15 in the low-risk group, which are key 
regulatory molecules of m6A mRNA methyla-
tion. The other molecules, ZC3H13, YTHDC2, 
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Figure 6. Characteristics of tumor immune microenvironment and immune function indifferent risk groups. A. 
The correlation between risk score and the tumor-infiltrating immune cells estimated by three algorithms (xCELL,  
MCPcounter and CIBERSORT). B. Differences in the TIICs calculated by CIBERSORT between two groups. C. Compari- 
son of tumor microenvironment scores calculated by ESTIMATE between two groups. D, E. The correlation between 
risk score and stemness score. F. The correlation between the TIICs and expression of MRGs involved in the signa- 
ture. G. Comparison of the immune function scores calculated by ssGSEA between different risk groups (*P < 0.05, 
**P < 0.01, ***P < 0.001).

METTL16, METTL3, FTO, and ALKBH5, ex- 
pressed higher in the low-risk group (P < 0.05) 
(Figure 7C). 

Immunotherapy response prediction and 
validation

Immune subtype information of cancer sam-
ples was obtained from the TCGA database. 

There were 6 immune subtypes reported in 
2018, wound healing (Immune C1), IFN-γ domi-
nant (Immune C2), inflammatory (Immune C3), 
lymphocyte depleted (Immune C4), immuno-
logically quiet (Immune C5) and TGF-β domi-
nant (Immune C6) subtypes [22]. The propor-
tions of immune subtypes differed between the 
high- and low-risk groups, and there was no 
Immune C5 subtype in our cohort. The propor-
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Figure 7. Differential expression of 
immune checkpoints (A), mismatch 
repair-related genes (B), and m6A 
methylation regulators (C) in different 
risk groups (*P < 0.05, **P < 0.01, 
***P < 0.001).

tion of C3 subtypes was lower, while the propor-
tion of C1 and C2 subtypes, which are those 
with higher proliferative activity, angiogenic 
activity and macrophage polarization, was high-
er in high-risk patients (Figure 8A). Multiple 
approaches were utilized to evaluate the value 
of the signature in predicting immunotherapy 
response. Firstly, the expression of PD-1, PD-L1 
and CTLA-4 was higher in the low-risk group 
(Figure 7A). Secondly, the TIDE scoring system 
calculated the dysfunction score, exclusion 
score, MSI score, TIDE score and predicted 
response of each patient. The high-risk group 
had lower dysfunction scores and higher TIDE 
scores, suggesting that immune escape may 
be more likely to occur in high-risk patients 
(Figure 8C-F). By comparing the distribution of 
patients responding to immunotherapy bet- 
ween two groups, we found that the proportion 
of patients with response to immune check-
point blockade (ICB) therapy in the low-risk 

group (19%, 80/851) was higher than that in 
the high-risk group (11%, 47/851) (P = 0.002) 
(Figure 8B). To further confirm this finding, we 
also conducted the Immunophenoscores (IPSs) 
analysis. Consistently, patients in the low-risk 
group showed higher IPS scores, regardless of 
whether they were regrouped by CTLA-4 and 
PD-1 expression, suggesting that low-risk 
patients were more sensitive to immunothera-
py (P < 0.001) (Figure 8G). 

Since the above analyses were predictive, we 
still wanted to determine whether our signature 
could be used to distinguish responders and 
non-responders in the real-world immunothera-
py cohort. Due to the lack of immunotherapy 
cohort data of BRCA patients, we used ICB 
therapy data of the urethral epithelial cancer 
(IMvigor210) and melanoma (GSE78220) for 
validation. High-risk patients from the IMvi- 
gor210 cohort showed worse overall survival 
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Figure 8. The value of the signature in differentiating immune subtypes and immunotherapy responses. (A) The 
distribution of patients with different immune subtypes in the high- and low-risk groups. (B) The predicted response 
of patients to immune checkpoint blockade (ICB) therapy in the high- and low-risk groups; (C-G) Comparison of  
dysfunction score (C), exclusion score (D), MSI signature score (E), TIDE score (F) and IPS score (G) between the  
two groups; (H) Risk stratification and survival analysis of external cohort, IMvigor210; (I, J) Patients responding to 
ICB therapy had lower risk scores in the IMvigor210 cohort and GSE78220 cohort (ns: not significant, *P < 0.05, 
**P < 0.01, ***P < 0.001).

than low-risk patients (Figure 8H). Patients with 
disease progression or stabilization (PD/SD) 
had higher risk scores than patients with com-
plete or partial response (CR/PR) (P = 0.033) 
(Figure 8I). In the melanoma patient cohort, 
though the difference was not statistically sig-
nificant (P = 0.068), the risk score of the CR/PR 
group was lower, consistent with our predictive 
results above (Figure 8J). These analyses con-
firmed the value of our signature in predicting 
the response of patients to immunotherapy. 

Chemotherapeutic sensitivity prediction

We analyzed the sensitivity to specific chemo-
therapy or targeted agents by calculating and 
comparing their IC50 values. We found that 
low-risk patients had a decreased IC50 of 
Lapatinib, Gefitinib, Axitinib, Bosutinib, Imati- 
nib, Cytarabine, Methotrexate, Bexarotene, Br- 

yostatin.1, Vinorelbine, Temsirolimus and Ele- 
sclomol, and an increased IC50 of Sorafenib, 
Mitomycin.C, Thapsigargin and S.Trityl.L.cyste- 
ine than the high-risk group (P < 0.05) (Figure 
9A-P), which demonstrated that low-risk pa- 
tients might be more sensitive to the first 12 
drugs including Lapatinib, Gefitinib and Axitinib 
and so on. High-risk patients were less sensi-
tive to immunotherapy and targeted agents 
such as Lapatinib, but those latter including 
Sorafenib, Mitomycin.C, etc., may be more 
effective. 

Identification of molecular subtypes based on 
signature MRGs

We further used the 7 MRGs in the signature to 
explore whether these 7 genes could be used 
for molecular subtype classifying of patients. 
Patients were clearly divided into two groups 
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Figure 9. Prediction of the sensitivity to chemotherapeutic drugs and targeted drugs. Low-risk patients showed 
higher sensitivity to Lapatinib (A), Gefitinib (B), Axitinib (C), Bosutinib (D), Imatinib (E), Cytarabine (F), Methotrexate 
(G), Bexarotene (H), Bryostatin.1 (I), Vinorelbine (J), Temsirolimus (K) and Elesclomol (L), and lower sensitivity to 
Sorafenib (M), Mitomycin.C (N), Thapsigargin (O) and S.Trityl.L.cysteine (P). 

after consensus clustering based on the 7 
MRGs (Figure 10A, 10B). The two molecular 
subtypes showed different overall survival pr- 
ognosis and the cluster-A survived better (P < 
0.001) (Figure 10C). There were significant dif-
ferences in the characteristics of infiltrating 
immune cells and immune function scores 
between the two molecular types of tumors 
(Figure 10D, 10E). Subtype-B patients had 
lower dysfunction, exclusion, and TIDE scores 
and a higher proportion of immunotherapy 
responders (Figure 10F-J). These results fur-
ther demonstrated the potential of these seven 
metabolic molecules for signature developing 
as new prognostic indicators and intervention 
targets. 

Discussion

Metabolic reprogramming is regarded as an 
important hallmark of cancer because it direct-
ly affects the growth and survival of cancer 
cells by generating phenotypes more adapta- 
ble to the environment [6]. Nowadays, the 
crosstalk between the metabolic reprogram-
ming and the tumor microenvironment has al- 
so gained much attention [23]. The metabolic 
adaptions of cancer cells contribute to the 
shaping of the immunosuppressive tumor 
microenvironment, thus promoting the vascu-
larization and immune escape. For example, 
increased glycolysis activity can lead to a 
decreased glucose available in the microenvi-
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Figure 10. Identifying subtypes based on 7 MRGs in the signature. (A) Consensus matrix for k = 2. (B) Selection of 
CDF. (C) Kaplan-Meier curves of OS in subtypes. (D, E) Differences in tumor-infiltrating immune cells and immune 
function scores between subtypes. Comparison of dysfunction score (F), exclusion score (G), MSI score (H) and TIDE 
score (I) between subtypes. (J) The distribution of responders to ICB therapy in subgroups (ns: not significant, *P < 
0.05, **P < 0.01, ***P < 0.001).

ronment, limiting the function and altering the 
apoptosis sensitivity of effector T cells. Low  
glucose could also induce the expression of 
genes such as FOXP3 that promote the differ-
entiation of T cells into Tregs [24]. Not only the 
glucose metabolism, other molecules such as 
fatty acid, amino acid and nucleotide metabo-
lism and small molecule metabolites are close-
ly associated with the tumorigenesis, progres-

sion and crosstalk with the microenvironment 
of breast cancer [10]. For instance, acetyl-CoA, 
a molecule derived from glycolysis and gluta-
mine metabolism, could promote mevalonate 
(MVA) biosynthesis to produce metabolites th- 
at sustain the survival and rapid growth of vari-
ous cancer cells [25]. Up-regulated cholesterol 
synthesis promotes immune surveillance eva-
sion and causes chemotherapy resistance [26]. 
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However, the value of metabolic molecules in 
predicting prognosis, assessing drug sensitivity 
and even acting as potential therapeutic tar-
gets remains to be further explored.

In this study, a robust prognostic signature 
based on seven metabolic genes (PLA2G2D, 
GNPNAT1, QPRT, PLPP2, NT5E, SHMT2, PAICS) 
was constructed for breast cancer patients. 
High-risk patients distinguished by the signa-
ture showed worse survival than low-risk pa- 
tients in the TCGA cohort and two external in- 
dependent cohorts. There were more patients 
with lower tumor stage or T-stage in the low-risk 
group, indicating the good clinicopathological 
relevance of the signature. ROC curves, DCA, 
clinicopathological subgroup survival curves 
and independence analyses showed that the 
metabolic signature performed well and could 
act as an independent prognosis indicator. 
Though some of genes involved in this signa-
ture have been reported to express low or high 
in tumors, we found differences in their expres-
sion with clinicopathological features and their 
relationship with immune cell infiltration and 
used immunohistochemical data from the HPA 
database to validate their protein levels.

PLA2G2D, phospholipase A2 Group IID, a kind 
of lipid metabolism-associated protein, could 
be secreted and involved in inflammatory res- 
ponses via hydrolyzing membrane phospholip-
ids and releasing unsaturated fatty acids [27]. 
In this analysis, PLA2G2D was identified as a 
low-risk gene, consistent with reports from 
other researchers [28-30]. Liu et al. reported 
that there were more tumor-infiltrating CD8+ T 
cells inside the tumor of cervical squamous cell 
carcinoma with high expression of PLA2G2D, 
and patients with higher PLA2G2D expression 
were more likely to benefit from immunothera-
py [30]. Consistently, our analysis found that 
low-risk patients had higher PLA2G2D expres-
sion and were more sensitive to immunothe- 
rapy.

GNPNAT1, glucosamine-phosphate N-acetyl- 
transferase 1, a key enzyme involved in the 
branching processes of glucose metabolism, 
the hexosamine biosynthetic pathway, was fo- 
und to be up-regulated in breast cancer, lung 
cancer and prostate cancer tissues and asso- 
ciated with poor prognosis [31-33]. GNPNAT1 

expression was positively correlated with the 
infiltration of CD4+ memory T cells and M2 mac-
rophages, and negatively correlated with the 
infiltration of Tregs, CD8+ T cells and memory B 
cells in breast cancer. Similarly, its correlation 
with B cells and CD4+ T cells was also found in 
lung adenocarcinoma [32, 34]. 

Quinolinate phosphoribosyltransferase (QPRT), 
a rate-limiting enzyme regulating the gene- 
ration of nicotinamide adenine dinucleotide 
(NAD+), participated in the cell cycle and essen-
tial metabolism processes of cancer cells [35, 
36]. The high expression of QPRT was associ-
ated with poor prognosis and pathological pro-
gression of breast cancer patients in the pres-
ent and previous studies [37]. A positive co- 
rrelation between the QPRT expression and the 
abundance of infiltrating Tregs, plasma cells, 
activated NK cells and follicular helper T cells 
was found in this study. 

PLPP2 (phospholipid phosphatase 2), also 
known as PPAP2C or LPP2, was a lipid-metabo-
lism gene participating in regulating cell cycle 
and proliferation [38]. PLPP2, along with its 
family members PLPP1 and PLPP3, could 
dephosphorylate extracellular lysophosphatid-
ic acid and sphingosine-1-phosphate on the cell 
surface [39]. And PLPP2 played a role in regu-
lating cell proliferation by influencing the entry 
into the S-phase of the cell cycle [40]. High 
expression of PLPP2 was found in various can-
cers including breast, lung, ovarian and clear 
cell renal cell carcinoma, and was significantly 
associated with poor prognosis and progres-
sion of pathological stage in breast and clear 
cell renal cell carcinoma, which was partly veri-
fied in this study [38, 41]. 

NT5E encodes CD73, an important 5’exonucle-
ase for the synthesis and homeostasis of extra-
cellular adenosine levels [42]. CD73 has been 
found correlated with prognosis in breast, liver, 
pancreatic, and colon cancers and is expected 
to be a therapeutic target [43-47]. Adenosine 
could play a potent immunosuppressive role in 
the tumor microenvironment to inhibit the ac- 
tivity of various immune cells, such as the anti-
gen-presenting process, T cell proliferation and 
cytokine production [48]. Recently, researchers 
found that tumor-derived adenosine could also 
act synergistically with GM-CSF released by 



A metabolism-related prognostic signature for breast cancer patients

5456	 Am J Cancer Res 2022;12(12):5440-5461

activated macrophages to promote the prolif-
eration of immunosuppressive macrophages  
in hepatocellular carcinoma (HCC) [49]. More- 
over, the interaction between CD39+ macro-
phages and CD73+ HCC cells, accompanied by 
elevated adenosine, could induce the resis-
tance to ICB therapy in HCC [44]. And CD73 
could promote the progression and metastasis 
of cancer cells and act on a specific fibroblast 
population leading to immunosuppression [46, 
47]. 

Serine Hydroxymethyltransferase 2 (SHMT2) is 
a key enzyme participating in amino acid and 
one-carbon metabolism, redox homeostasis 
and nucleotide synthesis. We found the asso-
ciation between the expression of SHMT2 and 
poor prognosis, advanced stage and metasta-
sis in breast cancer, which was partly consis-
tent with previous studies [50, 51]. Breast can-
cer cells with overexpression of SHMT2 pre- 
sented resistance to lapatinib and paclitaxel 
[52, 53]. In this study, we observed a strong 
correlation between the SHMT2 expression 
and the infiltration of resting mast cells, M0 
macrophages, CD4+ memory T cells, follicular 
helper T cells and Tregs. 

PAICS (Phosphoribosylaminoimidazole Carbo- 
xylase and Phosphoribosylaminoimidazolesu- 
ccinocarboxamide Synthase) is an important 
metabolic enzyme in the de novo purine syn-
thesis. It was found to be differentially ex- 
pressed and associated with prognosis in mul-
tiple cancers, including breast cancer, lung can-
cer and others [54-57]. PAICS participates in 
the regulation of cell growth, epithelial-mesen-
chymal transition (EMT) and migration in can-
cers [58]. A significant association between 
PAICS and immune cells such as M1 macro-
phages and activated CD4+ memory T cells was 
found in this study.

The microenvironmental characteristics of tu- 
mors in high-risk and low-risk groups were sig-
nificantly different. There were more infiltrating 
M0 and M2 macrophages and fewer CD8+ T 
cells, resting memory CD4+ T cells and gamma 
delta T cells and so on inside the high-risk 
tumors. Tumor-associated macrophages (TA- 
Ms), especially the M2 phenotype, were found 
to play key roles in promoting the invasion  
and metastasis of cancer cells, facilitating the 
angiogenesis and restricting the function of 

CD8+ T cells in the microenvironment of breast 
cancer [59, 60]. An increased number of M0 
macrophages were correlated with a decreased 
overall survival, while the M1 phenotype could 
promote the cytotoxic response by attracting T 
lymphocytes [61]. High intratumoral density of 
CD8+ cytotoxic T lymphocytes is a marker of 
favorable prognosis in the majority of cancers 
including breast cancer, with the exception of 
Hodgkin lymphoma and clear cell renal cell car-
cinoma and so on [62]. The prognostic effect of 
CD4+ T cells is less than that of CD8+ T cells 
because of the considerable heterogeneity of 
subpopulations and different functions of each 
lineage. Researchers found that a higher pro-
portion of resting memory CD4+ T cells and γδ T 
cells was associated with a better prognosis in 
breast cancer [63]. For memory B cells and 
naïve B cells, studies have reported their favor-
able prognostic value and association with neo-
adjuvant chemotherapy response in breast 
cancer [64-66]. These findings above support 
our results regarding the characteristics of 
tumor-infiltrating immune cells in different risk 
groups. 

When exploring the performance of the signa-
ture in helping with clinical decision making, 
sensitivity to immunotherapy and chemothera-
py of patients with different risk was analyzed 
via multiple approaches. Expression of most 
checkpoints such as PD-1, PD-L1, CTLA-4 and 
TIM-3 was higher in the low-risk group, except 
for CD276. Patients in the low-risk group sh- 
owed lower TIDE scores and higher IPS scores 
regardless of the PD-1 or CTLA-4 status, sug-
gesting that low-risk tumors were less likely to 
develop immune evasion and more immuno-
genic, thus low-risk patients were more likely to 
benefit from immunotherapy. Moreover, analy-
ses of real-world cohorts of patients receiving 
immunotherapy (IMvigor210 and GSE78220) 
also confirmed the predictive performance in 
evaluating the responsiveness to immunother-
apy. Low-risk patients also showed higher sen-
sitivities to various chemotherapeutics and tar-
geted drugs including Cytarabine, Lapatinib 
and Bosutinib and so on. Elesclomol, which had 
a lower IC50 value in the low-risk group, is an 
oxidative stress inducer that can induce apop-
tosis of cancer cells. It has recently been re- 
ported as a promising copper carrier for anti-
cancer therapy recently [67]. But high-risk 
patients could respond well to drugs such as 
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Sorafenib and Mitomycin C, which may be suit-
able candidates. 

With an improved understanding of the immune 
microenvironment of breast cancer, a growing 
number of novel immunotherapy targets such 
as CD73 (NT5E), LAG3 and TIGIT, as well as new 
combination therapy, have also been studied 
[23, 68]. Our study showed that low-risk pa- 
tients with more immune effector cells in their 
tumor microenvironment and relatively active 
immune function could respond better to im- 
munotherapy and chemotherapy, which may 
partly explain their improved prognosis. Be- 
sides, molecular typing based on these 7 meta-
bolic genes can also distinguish the prognosis 
and immune characteristics of patients. 

The study is expected to provide insights into 
the exploration of metabolic molecular targets 
with prognostic and therapeutic values, as well 
as individualized treatment for patients with 
BRCA. Of course, our research still has some 
shortcomings. Firstly, this study was a bioinfor-
matic analysis dependent on databases and 
algorithms, and lacked experimental and func-
tional validation in vivo and in vitro. Secondly, 
the analysis was mainly based on RNA data, 
and the integration of multi-omics methods 
was inadequate. Additionally, this was a retro-
spective study, and we need to conduct more 
prospective clinical observations when condi-
tions permit.

Conclusion

In conclusion, we have constructed a prognos-
tic signature based on seven metabolism-relat-
ed genes that could distinguish the risk and 
immune microenvironment characteristics of 
breast cancer patients. And this metabolic sig-
nature could predict the responsiveness of 
patients to immunotherapy and chemotherapy. 
It can also help to screen out patients those 
tend to benefit from a specific clinical therapy, 
and improve prognosis. These results may also 
contribute to the discovery of novel metabolic 
molecular targets with therapeutic value and 
provide new insights into the understanding of 
breast cancer and its microenvironment.
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Figure S1. Validation on the protein expression of MRGs using HPA database.
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Figure S2. Independence analysis and construction of the nomogram. A. Univariate and multivariate independence 
analysis of the prognostic signature. B. The nomogram integrating the risk score and independent prognostic fac-
tors for predicting patient survival. C. DCA curves for evaluating the performance of the risk signature and combined 
nomogram. 

Figure S3. Internal validation of the TCGA cohort and survival 
analysis of clinicopathological subgroups suggest prognostic 
value of the metabolism-related signature. A. Kaplan-Meier 
curves of overall survival between high- and low-risk groups 
in two internal validation cohorts (N = 682 and N = 341). B. 
Univariate and multivariate independence analyses of the 
risk signature in two internal validation cohorts. C. Identi-
fying the prognostic value of the signature in patients with 
different subtypes and clinicopathological subgroups based 
on TCGA cohort.
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Figure S4. (A-C) The association 
between the expression of 7 MRGs 
and clinical factors (stage uncom-
bined) including T-stage (A), N-
stage (B) and pathological stage 
(C). (D) Identifying the prognostic 
value of the signature in differ-
ent clinicopathological subgroups 
based on GSE20685 cohort.
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Figure S5. Correlation between the risk score and immune checkpoint expression. (A) Heatmap and scatter plots showed the correlation between the risk score and 
the expression of immune checkpoints such as PDCD1 (B), CD274 (C), CTLA4 (D), LAG3 (E), CD276 (F), ICOS (G), HAVCR2 (H), and TIGHT (I).


