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Abstract: Lymphangiogenesis, the generation of new lymphatic vessels from existing ones, results from the dy-
namic interactions of lymphatic endothelial cells and the tumor microenvironment (TME). It is well known that 
lymphangiogenesis occurs during the initial stage of metastasis in various types of malignant tumors. However, it is 
currently not used as a biomarker partially because gold standard method to quantify it is labor and cost intensive. 
We hypothesized that the quantity of intratumoral lymphatic endothelial cells (iLECs) in the TME is an indicator of 
lymphangiogenesis and a predictor of metastatic potential and overall survival in breast cancer. We analyzed a total 
of 4145 breast cancer patients from the Cancer Genome Atlas (TCGA) and GSE96058 by quantifying their iLECs 
using the xCell algorithm, and correlated these scores with patient survival, tumor grade, and cancer stage. We also 
assessed various pro- and anti-cancer gene sets for each tumor to characterize tumor behavior and aggressiveness. 
As we expected, high-iLEC breast cancer demonstrated enriched lymphoangiogenesis and angiogenesis gene sets 
and was associated with increased expressions of related genes. Also enriched were inflammatory response and im-
mune response-related gene sets; IL2/STAT5 pathway, IL6/JAK/STAT3 pathway, TNFα pathway, allograft rejection, 
and complement as well as cancer stemness related gene sets like Notch signaling, Hedgehog signaling, epithelial 
mesenchymal transition, and Wnt beta-catenin signaling. Tumors with high-iLEC showed higher proportions of stro-
mal cells and fewer anti-cancer immune cells. On the other hand, iLEC score did not correlate with patient survival 
or lymph node metastasis. Surprisingly, breast cancers with fewer iLECs demonstrated enriched E2F Targets, G2M 
Checkpoint, MYC Targets v1, and MTORC1 signaling which are cancer cell proliferation-related gene sets and exhib-
ited an abundance of pro-cancer immune cells. The amount of iLEC correlated inversely with Ki67 expression and 
histological grade, which is in agreement that low-iLEC breast cancer was associated with enhanced cancer cell 
proliferation. In conclusion, while iLECs can be used as a surrogate for lymphangiogenesis in breast cancer, low-iLEC 
tumors also exhibit features which correspond to aggressive tumor biology, which may explain why the amount of 
iLECs was not associated with patient survival in our cohorts.
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Introduction

Lymphangiogenesis, the generation of new lym-
phatic vessels from existing lymphatics, is a 

key step in breast cancer metastasis [1-3]. The 
complex cytokine-mediated interactions bet- 
ween malignant cells and the surrounding non-
cancerous cells (such as stromal and immune 
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cells) ultimately determine the rate of tumor 
growth and metastasis, or lack thereof. 
Therefore, it is essential to assess cancer biol-
ogy in the context of the entire tumor microen-
vironment (TME), rather than focusing on single 
interactions [4]. Lymphatic vessels were histori-
cally believed to play only a passive role in can-
cer metastasis, but experimental and clinico-
pathological research published in the previous 
decade has shown that lymphangiogenic 
growth factors, often derived from tumor cells, 
facilitate metastasis by promoting the forma-
tion of new lymphatics and enlarging existing 
lymphatic vessels, thus enabling the entry of 
tumor cells into the lymphatic vasculature [5-7]. 
The clinical relevance of this process has long 
been recognized, as cancer metastasis to 
regional and sentinel lymph nodes is a poor 
prognostic factor in human cancer [8-10].

Lymphatic endothelial cells (LECs) are the pri-
mary component of lymphatic vessels and play 
an active role in tumor metastasis by proliferat-
ing and migrating in response to stimulation  
by cancer cells. There are multiple documented 
examples of the bidirectional interaction 
between LECs and cancer cells. For example, 
our group has previously reported that cancer 
cells express sphingosine kinase 1 that gener-
ate sphingosine-1-phosphate (S1P), which is 
released out to the extracellular space [11, 12] 
and bind to S1P receptor 1 (S1P1) and 3 (S1P3) 
on LECs and blood endothelial cells that induce 
lymphangiogenesis and angiogenesis [13-20].

It has long been known that lymphangiogenesis 
is induced to resolve excessive inflammation, 
and since chronic inflammation is associated 
with cancer progression, lymphangiogenesis 
may underlie this mechanism [4]. Inflammatory 
cytokines such as IL-1β and TNF-α have also 
been reported to promote tumor lymphangio-
genesis and lymph node metastasis in a depen-
dent manner on inflammatory cells such as 
infiltrating M2 macrophages [21, 22]. In addi-
tion to recruiting leukocytes, IL-1β secreted by 
tumor-associated macrophages (TAMs) also 
directly stimulates proliferation and migration 
of LECs [23]. IL-6 increases lymphangiogenesis 
in oral squamous cell carcinoma by inducing 
the production of VEGF-C [24].

Given the known association between lym-
phangiogenesis and cancer metastasis, logic 
would dictate that an increased number of infil-

trating LECs should predict metastatic poten-
tial and an unfavorable clinical outcome. 
Indeed, in several studies, tumor lymphangio-
genesis has been shown to increase the risk of 
future metastasis and affect survival in breast 
cancer patients [2, 25, 26]. However, the litera-
ture remains controversial, and several other 
studies have failed to find an association 
between lymphatic vessel abundance and 
malignant clinicopathological factors [27-29]. 
This may be due in part to the high variability 
and lack of standardization in the methodolo-
gies used to quantify LECs. For example, the 
microscopic evaluation of lymphatic vessels by 
counting them in tissue sections is by its nature 
qualitative and subjective, in contrast with an 
assay which can be objectively quantified [9]. 
Additionally, there are several lymphatic vessel 
markers used in immunostaining, each of 
which may bind to LECs at different stages of 
their growth and development, and sometimes 
even to vascular endothelium and myoepitheli-
al cells [30]. Finally, lymphatic vessel density 
estimations are subject to variability based on 
biopsy technique, as different samples will 
over- or underestimate the density depending 
on whether the sample is taken from the center 
or periphery of the tumor. Here, we utilize a bulk 
tumor transcriptome and a previously validated 
bioinformatic analysis technique to digitally dis-
sect the tumor microenvironment and simulta-
neously assess several TME interactions that 
potentially contribute to the clinical outcome. In 
particular, we hypothesized that the quantity of 
intratumoral lymphatic endothelial cells (iLECs) 
in the TME is an indicator of lymphangiogene-
sis, and thus may predict patient prognosis and 
metastatic potential.

Materials and methods

Breast cancer patient cohorts

Two publicly available datasets were collected 
from online sources and analyzed in this study. 
RNA-seq data and clinical information of 1076 
primary breast cancer patients from the Can- 
cer Genome Atlas (TCGA) were evaluated as  
an exploring cohort [31], then 3036 primary 
breast cancer patients from GSE96058 were 
analyzed as a validation cohort [32, 33]. A total 
of 4145 patients were included in the analysis. 
TCGA data was collected from cBiopotal, and 
GSE96058 was collected from the Gene 
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Expression Omnibus (GEO) database, as de- 
scribed in our previous paper [34-37]. All RNA 
seq data utilized in this study were normalized 
and annotated to gene symbols from transcrip-
tomics by the time of initial publication and fol-
lowed by log2 conversion [31, 33]. All patient 
information included in both cohorts was de-
identified; therefore, Institutional Review Board 
approval was not required for this study.

Intratumoral lymph endothelial cell score

Intra-tumoral lymphocyte content as well as 
other intratumor immune and stromal cell frac-
tions was calculated using the xCell web tool 
(https://xcell.ucsf.edu/), as we have previously 
reported [38-41]. xCell is an algorithm for enu-
merating cell subsets from the transcriptome 
reported by Aran et al. in 2017 [42]. It inte-
grates the deconvolution approaches used in 
CIBERSORT [43], which is the most common 
method to dissect the tumor microenvironment 
using gene expression profiles, with the gene 
signature-based comparison method from 
Gene set enrichment analysis (GSEA) [44]. This 
algorithm estimates cell type fractions by com-
paring 489 gene signatures corresponding to 
64 cell types, including adaptive and innate 
immune cells, hematopoietic progenitor cells, 
epithelial cells, and extracellular matrix cells, 
with the input bulk tumor gene expression data 
set. 

Gene set enrichment analysis

GSEA java application v4.1.0 was used for func-
tion analysis, which is a freely available tool 
provided by Broad Institute [44]. GSEA is the 
most common method for examining differenc-
es in pathways due to differences in gene 
expression between two groups. The method 
ranks the expression of gene members of a 
predefined gene set to determine whether 
these genes are randomly distributed within a 
cohort or biased towards one of the two gro- 
ups. The enrichment score reflects the degree 
to which the gene set is biased towards one 
group. This means that the group expresses 
the biology represented by the ‘enriched’ gene 
set. We divided the cohort into high and low 
median iLEC groups and used the Hallmark  
and PID gene sets from the MSigDB collection 
[45, 46]. To compare results across gene sets, 
we used a normalized enrichment score (NES) 
adjusted for the correlation between the gene 
set and the expression dataset. Larger NES val-

ues indicate whether the pathway represented 
by each gene set is over- or under-enriched in 
each phenotype. Because we evaluated more 
than 30 gene sets, we interpreted False 
Discovery Rate (FDR) q-values of 0.25 or less 
as statistically significant, based on Broad 
Institute recommendations, as previously 
described [47-50].

Cancer immunity and mutation score estima-
tion

Cytolytic activity (CYT) was measured using the 
geometric mean of granzyme A and Perforin 1 
expression levels [51, 52]. Interferon (IFN)-
Response, tumor infiltrating lymphocyte (TIL) 
Regulation Fraction, Lymphocyte Infiltration 
Signature Score, Leukocyte Fraction, TCR rich-
ness, and BCR richness were all determined 
using the methodology outlined by Thorsson et 
al. [53].

Others

Analyses were conducted using R (version 
4.0.1), Bioconductor (version 3.13), or Micro- 
soft Excel (version 16 for Windows). The follow-
ing packages were used in this study: survival 
3.2-11, survAUC 1.0-5, SummarizedExperi- 
ment 1.22.0, GenomicRanges 1.44.0, Genome- 
InfoDb 1.28.2, S4Vectors 0.30.0, Matrix- 
Generics 1.4.3, Biobase 2.52.0, greyzoneSurv 
1.0, RcmdrPlugin.EZR 1.54, RcmdrMisc 2.7-1. 
ggplot2 3.3.5, backports 1.2.1, tidyverse 
1.3.1, and GEOquery 2.60.0. In all analyses in 
which tumors were categorized into two groups, 
high- or low-iLEC, the median was used as the 
cut-off point. All P-values were calculated by 
two-sided statistical tests and the cut-off for 
statistical significance was set at 0.05. Overall 
survival (OS) was defined as the length of time 
from completion of treatment to death. Dis- 
ease-specific survival (DSS) was also defined 
as the length of time from completion of treat-
ment to death but excluding patients who died 
from causes other than breast cancer. Disease-
free survival (DFS) was defined as the length of 
time from completion of treatment to recur-
rence. For survival analysis, the Kaplan-Meier 
method with a log rank test was used. Statistical 
comparisons between groups were made using 
Mann-Whitney U test for two groups or Kruskal-
Wallis test for multiple groups. Box-and-
whiskers plots were used to display the median 
values and the interquartile range.
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Results

Infiltration of lymphatic endothelial cells is 
associated with lymphangiogenesis and angio-
genesis

First, we investigated whether xCell-defined 
intratumoral lymphatic endothelial cells (iLEC) 
are an accurate measure of lymphangiogene-
sis. iLEC-rich breast cancer demonstrated en- 
riched lymphangiogenesis-related gene sets: 
S1P, S1P1, and S1P3 pathways (Figure 1A, all 
FDR<0.25). These tumors also exhibited en- 
riched angiogenesis-related gene sets: VEGF1 
v1 and v2 pathway (Figure 1B, all FDR<0.25),  
in gene set enrichment analysis (GSEA) of 
Hallmark collection and The Pathway Interac- 
tion Database (PID) gene sets. These gene sets 
were all expressed to a significantly greater 
degree in high-iLEC breast cancers, indicating 
that the high-iLEC group exhibited lymphangio-
genesis and angiogenesis biology. Further- 
more, breast cancers with high iLEC scores 
were associated with high numbers of micro-
vascular endothelial cells (Figure 1C, P<0.001). 
These results demonstrate that iLEC quantity 
directly correlates with lymphangiogenesis and 
angiogenesis in the TME.

The quantity of intratumoral lymphatic endo-
thelial cells (iLEC) does not affect prognosis 
and does not necessarily predict lymph node 
metastasis

Based on previous reports that lymphangiogen-
esis and angiogenesis are associated with a 
negative impact on survival, we next investigat-
ed the impact of iLECs on survival in both 
cohorts. Contrary to our hypothesis, there was 
no significant difference between high and low-
iLEC breast cancer patients with regards to 
disease-free survival (DFS), disease-specific 
survival (DSS), and overall survival (OS) within 
TCGA cohort, nor the OS within the GSE96058 
cohort (Figure 2A). Additionally, we investigat-
ed the theory that a higher quantity of iLECs 
within a tumor may predict lymph node metas-
tasis and a higher cancer stage. A higher iLEC 
score correlated with a higher N category in 
TCGA (Figure 2B, left P<0.01); however, this 
was not validated in GSE96058 (Figure 2B, 
right P<0.01). iLEC scores were significantly 
higher in the estrogen receptor (ER)-positive/
epidermal growth factor receptor 2 (HER2)-

negative subtype, while HER2-positive tumors 
had intermediate scores, and the iLEC score 
was consistently lowest in triple negative 
(TNBC) within both cohorts (Figure 2B, both 
P<0.01). These results were somewhat unex-
pected given that TNBCs are generally associ-
ated with more aggressive behavior and a poor-
er prognosis, and we had hypothesized that 
tumors with a higher iLEC score would demon-
strate more aggressive features.

High-iLEC breast cancer demonstrated en-
riched cancer stemness related gene sets and 
a higher proportion of stromal elements com-
pared to low-iLEC tumors

Given the established association between 
lymphangiogenesis and metastatic potential, 
we investigated which biological features, rep-
resented in gene sets, are “enriched”, i.e., 
biased towards high iLEC breast cancers in 
order to further investigate the lack of correla-
tion between a high-iLEC score and overall sur-
vival. As we had hypothesized, we found that 
high-iLEC breast cancer indeed demonstrated 
enriched cancer stemness related gene sets 
such as Notch signaling, Hedgehog signaling, 
epithelial mesenchymal transition, and Wnt 
beta-catenin signaling in Hallmark gene set of 
GSEA (Figure 3A, all FDR<0.25). Furthermore, 
bile acid and fatty acid metabolism and S1P2 
pathway were also enriched (Figure 3B, all 
FDR<0.25). Finally, the intra-tumoral proportion 
of stromal cells (preadipocytes, adipocytes, 
and fibroblasts), was consistently higher in 
high-iLEC breast cancer across both cohorts. 
Given that increased stromal components with-
in a tumor are known to impede host immune 
responses and contribute to tumor growth, 
these findings are consistent with aggressive 
features in high-iLEC tumors.

High iLEC breast cancer enriched several im-
mune response-related gene sets and was as-
sociated with a higher overall cytolytic activity

We wondered why high iLEC scores were not 
associated with worse clinical outcomes, con-
sidering that they accurately predicted both 
increased lymphangiogenesis and metastatic 
potential, and speculated that there may be 
other mechanisms at play. For example, we pre-
viously reported that breast cancers with high 
mutation rates do demonstrate aggressive fea-
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Figure 1. Gene set enrichment analysis (GSEA) of intratumor lymph endothermal cell (iLEC) high breast cancer and the relation with microvascular endothelial 
cells in the TCGA and GSE96058 cohorts. (A) Lymphangiogenesis related gene sets and (B) Angiogenesis rerated gene sets from Hallmark and PID gene sets that 
significantly enriched to high-iLEC breast cancer in both cohorts are shown. All patients were divided into two groups relative to the median iLEC. (C) Boxplots of 
microvascular endothelial cells in the TCGA cohort. Mann-Whitney U test was used to determine statistical significance.
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Figure 2. Survival and clinical relevance between iLEC and breast cancer patients in both TCGA and GSE96058 cohort. A. Kaplan-Meier survival curves of the DFS, 
DSS and OS of iLEC High and Low patients of whole breast cancer of the TCGA cohort, and OS of the GSE96058 cohort. High groups are indicated by red lines, low 
groups by blue lines. Median was defined as a cut-off, and two groups were compared using a log-rank test to calculate P-values. B. Boxplots of amount of iLEC 
compared by breast cancer subtype; ER positive/HER2-negative, HER2 positive, and TNBC, pathological stage, and lymph node status in the TCGA and GSE96058 
breast cancer cohort. Kruskal-Wallis and Mann-Whitney U tests were used to calculate P-values. DSS; disease-specific survival, ER; estrogen receptor, HER2; human 
epidermal growth factor receptor 2, OS; overall survival, PR; progesterone receptor, TNBC; triple negative breast cancer.
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Figure 3. GSEA of intratumor lymph endothermal cell (iLEC) high breast cancer and the relation with stromal cells in the TCGA and GSE96058 cohorts. (A) Cancer 
stemness related gene set or (B) metabolism and S1P2 pathway from Hallmark and PID gene sets that significantly enriched to high iLEC breast cancer in both co-
horts are shown. All patients were divided into two groups relative to the median iLEC. (C) Boxplots of stromal cells in the TCGA and GSE96058 cohort. Mann-Whitney 
U test was used to determine statistical significance.
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tures, but also stimulate a more pronounced 
host response, which offsets the aggressive 
phenotype and ultimately results in similar sur-
vival rates compared to low mutation breast 
cancers [54]. Indeed, in our analysis we found 
that high-iLEC breast cancer enriched various 
immune response-related gene sets: inflamma-
tory response, IL2/STAT5 pathway, IL6/JAK/
STAT3 pathway, TNFα pathway, allograft rejec-
tion, and complement compared with low-iLEC 
breast cancer consistently in both TCGA and 
GSE96058 cohorts (Figure 4A, all FDR<0.25). 
Cytolytic activity (CYT) score, which reflects 
overall anti-cancer immunity, was significantly 
higher in high-iLEC compared with low-iLEC 
breast cancer across both cohorts (Figure 4B, 
P<0.001). However, infiltration of anti-cancer 
immune cells such as CD8+ T-cell, CD4+ T-cell, 
M1 Macrophage (M1), and natural killer T-cell 
(NK) was not significantly elevated in high-iLEC 
compared with low-iLEC breast cancer (Figure 
4B). Dendritic cells (DC) were more abundant in 
high-iLEC breast cancers, while type 1 T helper 
cells (Th1) were conversely more abundant in 
low iLEC breast cancer consistently in both 
cohorts (Figure 4B, P<0.001). Therefore, while 
a high-iLEC score did not indicate an increased 
infiltration of the tumor by specific immune 
cells, the associated increased CYT score dem-
onstrates an overall stronger host immune 
response against high-iLEC tumors.

Low iLEC breast cancer was strongly associ-
ated with cancer cell proliferation

In light of the lack of correlation between iLEC 
score and clinical outcome, we next investigat-
ed the biology of this group by focusing on a 
gene set that is biased towards low iLEC breast 
cancer in GSEA. Surprisingly, we found that low-
iLEC tumors were enriched in cell proliferation-
related gene sets, including E2F Targets, G2M 
Checkpoint, MYC Targets v1, and MTORC1 sig-
naling compared with high-iLEC breast cancer 
(Figure 5A, all FDR<0.25). These were the only 
gene sets enriched to low-iLEC breast cancer, 
unlike high-iLEC tumors which enriched a 
diverse group of gene sets. Furthermore, low-
iLEC breast cancer was associated with higher 
histological grade, and the quantity of iLECs 
was consistently inversely correlated with the 
expression of MKI67 across both cohorts 
(Figure 5B, P<0.001 and r<-0.38). In other 
words, low-iLEC breast cancer was associated 

with aggressive and highly proliferative bi- 
ology.

Breast cancers with low iLEC content were 
associated with high mutation frequency, intra-
tumor heterogeneity, with tumor antigenicity 
and also with high infiltration of pro-cancer 
immune cells

Since highly proliferative tumors are character-
ized by a high mutation rate, which in turn gen-
erates strong host immunogenicity [54-56], we 
hypothesized that the same trend would be 
observed in breast cancers with low iLEC con-
tent. As expected, low-iLEC breast cancer was 
significantly associated with high intratumor 
heterogeneity, silent and non-silent mutation 
rate, Fraction Altered, and Homologues Re- 
combination Deficiency (HRD) based on calcu-
lations by Torsson et al. in the TCGA cohort 
(Figure 6A, all P<0.001). At the same time, low-
iLEC breast cancer was associated with high 
single nucleotide variant (SNV) neoantigen, 
indel neoantigen, and tumor-infiltrating lympho-
cytes (TIL) regional infiltration (Figure 6B, all 
P<0.01). We further found that low-iLEC cancer 
was more frequently infiltrated by pro-cancer 
immune cells, such as regulatory T-cells (Treg), 
type 2 T helper cells (Th2), and B cells (Figure 
6C, all P<0.001).

Discussion

In this study, we used high-powered breast can-
cer patient cohorts that are associated with 
RNA-sequence and clinical data and demon-
strated that the quantity of intertumoral lym-
phatic endothelial cells (iLECs) is an indicator of 
lymphangiogenesis and characterized the dif-
ferences in cancer biology and host immune 
response between high- and low-iLEC tumors. 
First, we demonstrated that the quantity of 
iLECs positively correlated with lymphangiogen-
esis-related gene sets and angiogenesis-relat-
ed gene sets across two independent large 
breast cancer cohorts, confirming that this 
score accurately indicates lymphangiogenesis. 
Microvascular endothelial cells that take part in 
angiogenesis [57] were also predominant in 
tumors with high iLEC. Surprisingly, there was 
no difference in survival between high- and low-
iLEC breast cancer, nor was there a statistically 
significant association between iLEC score and 
lymph node metastasis across both cohorts. 
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Figure 4. Relationship between high iLEC breast cancer and cancer immunity. A. Immne-related gene sets from Hallmark gene set that significantly enriched to high 
iLEC breast cancer in both cohorts are shown. All patients were divided into two groups relative to the median iLEC. B. Boxplots of anti-cancer immune cells and 
Cytolytic activity (CYT) score in the TCGA and GSE96058 cohort was shown. Mann-Whitney U test was used to determine statistical significance.
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Figure 5. Gene sets enriched in low iLEC breast cancer and their 
association with tumor grade. A. Cancer proreferation gene sets 
from Hallmark gene set that significantly enriched to high iLEC 
breast cancer in both cohorts are shown. All patients were divided 
into two groups relative to the median iLEC. B. Box plot of histo-
logical grade vs. total amount of iLECs and correlation with MKI67. 
Kruskal-Wallis test was used to determine statistical significance. 
Correlation coefficients were derived from the Spearman rank test.
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Figure 6. Association between amount of iLEC in breast cancer and intratumor heterogeneity and mutation rate, and also the immunogenicity and immune cell 
invasion. Box plots show (A) intratumor heterogeneity, silent and nonsilent mutation rate, fraction altered, and homologous recombination deficiency, and (B) single 
nucleotide variant (SNV) and Indel neoantigens and tumor-infiltrating lymphocytes (TIL) regional fraction based on scoring by Thorrson et al. using the TCGA cohort. 
(C) Boxplot shows difference between high and low iLEC breast cancer in the amount of pro-cancer related immune cell infiltration in both TCGA and GSE96058 
cohort. Mann-Whitney U test was used to determine statistical significance.
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Since lymphangiogenesis is a known prerequi-
site for cancer progression, we then sought to 
investigate other factors which affect tumor 
growth and metastasis; namely, cancer biology 
and the host immune response. Breast cancers 
with high iLEC scores enriched cancer stem-
ness-related gene sets and metabolic path-
ways such as bile acid metabolism, fatty acid 
metabolism, and S1P2 pathway that we have 
previously shown to play a key role in fat metab-
olism [58-61]. Stromal cells, such as preadipo-
cytes, adipocytes, and fibroblasts, were also 
more prominent in the high-iLEC group, a fea-
ture generally associated with tumor growth. 
We also found that immune-related gene sets 
were enriched and overall cytolytic activity was 
elevated in the high-iLEC group of both cohorts. 
These results suggest that while high iLEC 
breast cancer is actually associated with genes 
that predispose to metastasis and tumor 
growth, these features are offset by a more 
robust host immune response. Unexpectedly, 
several cell proliferation-related gene sets were 
significantly enriched in low-iLEC breast can-
cers, which demonstrated high Ki67 expres-
sion, advanced histological grade, and aggres-
sive cancer subtypes. Low-iLEC breast cancer 
was also found to be strongly associated with 
intratumor heterogeneity, silent and non-silent 
mutation rates, fraction altered, and HRD, 
which all indicate aggressive cancer biology. 
This is offset by an IFN-γ response, an increased 
proportion of TIL, and pro-cancer immune cells 
such as Th2 cells, Treg cells, and B cells.

Cancer stemness-related gene sets such as 
Notch signaling, Hedgehog signaling, epithelial-
mesenchymal transition (EMT), and Wnt beta-
catenin signaling, were enriched in high-iLEC 
breast cancer. LECs not only promote lymphan-
giogenesis and act as a conduit of cancer cells 
but also confer chemotaxis on tumors, involv-
ing several chemokines and their receptors. 
Expression of CCL21 in LECs can promote can-
cer cell invasion into lymphatic vessels through 
a CCR7-dependent mechanism [62, 63]. Fur- 
thermore, LECs have been found to stimulate 
cancer stem cells along the CXCL-12-CXCL4 
axis and promote remodeling that promotes 
cancer cell survival in perivascular and meta-
static regions, contributing to the formation of 
the so-called “pre-metastatic niche” [64]. LECs 
are reported to be involved in EMT by inducing 
migration of CCR7-expressing cancer cells into 

the pre-metastatic niche and by promoting 
invasion of tumor cells into lymphatic vessels in 
several ways [63, 65, 66].

Breast cancers with high iLECs were found to 
have a high proportion of stromal cells such as 
adipocytes and fibroblasts, which is associated 
with unfavorable chronic inflammation [67]. In 
fact, the immune-related gene set inducing 
chronic inflammation, such as the IL-6 and 
TNFα pathways, was enriched in breast cancer 
with high iLEC, which is consistent with previ-
ous reports. While it is related todetrimental 
inflammation, LECs upregulate CCL21 expres-
sion during inflammation and promote dendritic 
cells (DCs) entry into lymphatic vessels by inter-
action with CCR7 expressed on the surface of 
DC [68]. In the current study, breast cancer 
with high iLEC had higher DC infiltration consis-
tently in both cohorts. Infiltrated DCs in lym-
phatic vessels promote T cell priming and 
induce antigen-specific immune responses. On 
the other hand, increased lymphangiogenesis 
has been suggested to promote the suppres-
sive function of LECs, directly inhibiting activat-
ed CD8+ T cells and inducing immune tolerance 
to tumor lymphatics [69]. It appears that LECs 
balance cancer immunity toward either immu-
nogenicity or tolerance by removing tumor anti-
gens from lymphatic vessels and lymph nodes, 
or by suppressing anti-tumor immunity by pre-
administering tumor antigens [4, 70].

We were surprised to find that the quantity of 
iLECs did not correlate with frequency of metas-
tasis or with survival. However, previous reports 
have also pointed out that increased lymphan-
giogenesis and expression of lymphangiogenic 
growth factors are not necessarily associated 
with higher rates of lymph node metastasis and 
poorer prognosis. Williams et al. reported that 
proliferative images of lymphatic vessels are 
not observed even in areas of active angiogen-
esis in early breast cancer and that the diffus-
ing lymphatic network was not related to lymph 
node metastasis [71]. Sipos et al. also reported 
that high lymphatic vessel density did not 
always result in increased lymph node metas-
tasis in a nude mouse model of pancreatic  
ductal adenocarcinoma [72]. These studies 
indicate that the role of lymphatic vessels in 
metastasis may differ depending on their loca-
tion within the tumor; peritumoral lymphatic 
vessels may contribute more than those in the 
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center of tumor [73]. To this end, the quantity of 
peritumoral lymphatics, often quantified as 
microvessel density, is essential for cancer 
invasion. However, patient tissue samples tend 
to be obtained from central parts of the tumor. 
For instance, only the patient tumor samples 
with more than 60% of cancer cell nuclei were 
allowed to be included in TCGA [33], and pa- 
tient tumor specimens were taken from the 
most substantive part of the tumor determined 
by the pathologist at the time of collection in 
GSE96058 [31]. Therefore, it is reasonable to 
assume that the amount of lymphatic endothe-
lial cells quantified in this study reflects the 
cells in the center of the tumor, thus we labeled 
them intratumoral LECs. Hypothetically, when 
cancer cells proliferate excessively, the cell 
density and stromal pressure within the mass 
increase, accordingly, inhibiting the infiltration 
of additional stromal cells, including LECs. Our 
results showed that low-iLEC breast cancers 
enriched multiple cancer proliferation-related 
gene sets and were associated with a higher 
histological grade and Ki67, which all indicate 
that tumors in this group are indeed highly pro-
liferative. Overall, both high- and low-iLEC 
groups demonstrate certain features of aggres-
sive cancer biology, counterbalanced by the 
host immune response, ultimately resulting in 
no difference in patient survival. A benefit of 
using a transcriptome based in silico analysis is 
the opportunity to delve into the complex inter-
actions in the TME. As can be seen in our analy-
sis, several factors besides lymphangiogenesis 
determine the degree to which a tumor enlarg-
es, invades, or metastasizes, which may help to 
explain the controversies that exist within the 
literature.

There are several inevitable limitations in this 
study that need to be noted. First, this is a ret-
rospective study using publicly available large 
patient cohorts that have both transcriptomes 
and clinical data. TCGA and GSE96058 lack 
detailed treatment information for each patient 
and have selection bias, in that they do not nec-
essarily reflect the latest treatments and their 
effectiveness due to the time frame in which 
they were collected. We estimated the amount 
of iLECs by analyzing the tumors’ transcriptom-
ic profile with a computational algorithm, thus 
relying on the accuracy of the gene signature 
enrichment method which may have discrepan-
cies compared to direct measurement. It is 

critical to note that what we measured in this 
study are intratumoral LECs, in contrast to pre-
vious similar studies of lymphangiogenesis 
which assessed peri-tumoral LECs as lymphat-
ic micro-vessel density, which we were unable 
to conduct due to lack of access to pathology 
slides of our cohorts. Finally, our study does not 
include any in vitro nor in vivo experiments to 
prove the mechanisms due to our capability. 
Our results help to generate hypotheses and 
associations, but the underlying mechanisms 
will need to be proven by future experiments.

In conclusion, breast cancer high in iLECs dem-
onstrates increased lymphangiogenesis but it 
was not translated to an increased lymph node 
metastasis nor decreased overall survival, and 
aggressive cancer biology was observed in 
both high and low iLEC breast cancer. These 
results may help to explain why a direct correla-
tion has not thus far been clearly made between 
lymphangiogenesis, tumor behavior, and clini-
cal outcome.
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