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Abstract: Ovarian cancer is a relatively common tumor in women with the highest mortality among female reproduc-
tive system tumors. The lack of apparent early symptoms and effective screening strategies often leads to ovarian 
cancer being diagnosed at an advanced stage. Immunotherapy relying on tumor-associated antigens might improve 
the treatment of ovarian cancer. Cancer-testis antigens (CTAs) are ideal tumor-associated antigens, and MAGE-A, 
NY-ESO-1, CT45, and Sp17 are classic CTAs highly expressed in ovarian cancer. Here, we review the research on 
CTAs in ovarian cancer, including prognostic value and advances in immunotherapy, all of which are essential for 
developing a theoretical basis for targeted therapy strategies.
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Introduction

Ovarian cancer is the seventh most common 
cancer among women and the eighth-most 
common cause of cancer death worldwide [1]. 
According to the latest model-based estimates 
issued by Cancer Statistics in the US, the esti-
mated number of new ovarian cancer patients 
in 2020 was 21,750, and the death toll was 
estimated to be 13,940 [2]. Currently, treat-
ment options for ovarian cancer are limited to 
surgery, radiotherapy, and chemotherapy. Due 
to the difficulty of achieving an early diagnosis, 
postoperative tumor recurrence, and late che-
motherapy resistance, the 5-year survival rate 
of advanced ovarian cancer is less than 30% 
[3]. There is an urgent need for new treatment 
methods to prolong survival for these reasons.

Tumor immunotherapy restores normal anti-
tumor immune responses by restarting and 
maintaining the tumor-immune cycle, thereby 
controlling and eliminating tumors [4]. Cancer 
vaccines rely on tumor antigens and use 
human-specific immune cells to recognize 

malignant cells with tumor antigens [5]. Im- 
munotherapy targeting tumor antigens has 
emerged as an ideal option for immunotherapy 
in ovarian cancer. The effect of immunotherapy 
targeting tumor antigens depends on the high 
expression of these antigens and the specific 
responses of T lymphocytes to tumor antigens; 
suitable tumor antigens need to have these two 
characteristics [6]. Among the tumor antigens, 
the cancer-testis antigen (CTA) has significant 
immunogenicity and unique expression pat-
terns in humans [4]. CTA is typically expressed 
in normal human testes, and a small amount of 
expression is also present in early developing 
embryos, placenta, and ovaries [7]. Several 
studies showed that CTA is overexpressed in 
various tumor types and is associated with 
tumor progression [7]. Because the testis is an 
immune-exempt area with low expression of 
human leukocyte antigen molecules, the spe-
cific expression patterns of CTAs suggest that 
they are ideal targets for tumor immunotherapy 
[8]. The development of CTA-based cancer-spe-
cific immunotherapy has been going on for 
many years, and some classic targets have 
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been studied in-depth, including melanoma 
antigen family A (MAGE-A) [9], New York esoph-
ageal squamous cell carcinoma 1 (NY-ESO-1) 
[10], CT45 [11], and human sperm protein 17 
(Sp17) [12]. In recent years, some CTAs associ-
ated with ovarian cancer have been reported, 
including TEX19 [13], POTE [14, 15], and 
HSP70-2 [16]. Many medications based on th- 
ese targets are studied in clinical trials (Table 
1). Effector T cells that specifically respond to 
CTA have been detected in patients with signifi-
cantly improved survival [17, 18]. These results 
suggest the effectiveness of CTA-based tumor 
immunotherapy. This review aims to summarize 
the characteristics of the classic CTAs and dis-
cuss their expression in ovarian cancer, their 
prognostic value, and research progress in 
immunotherapy strategies.

Expression of classic CTA in ovarian cancer 
and research progress

The classical CTAs induce a robust immune 
response in several cancers. Their robust 
potential in the diagnosis, treatment, and out-
come of ovarian cancer has garnered substan-
tial attention. As a result, they have become the 
most widely studied classical CTAs.

MAGE-A

The MAGE-A subfamily of the MAGE gene family 
was the first classical protein identified as a 
CTA. It is encoded by genes located on the X 
chromosome (MAGE-A1 to MAGE-A12) [19, 20]. 
Similar to other CTA family members, MAGE-A is 
rarely expressed in normal tissues but is highly 
expressed in bladder cancer [21, 22], lung can-
cer [23], skin cancer [24], and other tumor tis-
sues. These proteins show significantly high 
expression and strong immunogenicity in epi-
thelial ovarian cancer (EOC) [20, 25, 26]. 
Schooten et al. reported that antigen peptides 
encoded by MAGE-A family genes are present-
ed to T cells by MHC-I molecules of tumor cells 
through dendritic cells (DC) to activate effector 
T cells then exert specific anti-tumor activity 
[27]. These findings suggest that immuno- 
therapy with MAGE-A is a promising therapy.

The expression of MAGE-A in ovarian cancer: 
Expression levels of MAGE in ovarian cancer 
have been studied. Daudi et al. used the 
reverse transcription-polymerase chain reac-
tion (RT-PCR) and immunohistochemistry to 
measure the expression of MAGE-A in 400 EOC 
tissues and found that at least five MAGE-A 

Table 1. Summary of clinical trials involving CTA that are completed or active

NCT NUMBER INTERVENTION PHASE LAST UPDATE 
POSTED SPONSORS

NCT03159585 NY-ESO-1-specific TCR Affinity Enhancing Specific T Cell 
Therapy

I 2020 Zhujiang Hospital
Xiangxue Pharmaceutical (and more)

NCT01536054 ALVAC(2)-NY-ESO-1(M)/TRICOM vaccine I 2020 Roswell Park Cancer Institute

NCT02650986 Autologous NY-ESO-1 TCR/dnTGFbetaRII transgenic T cells I/II 2020 Roswell Park Cancer Institute

NCT03691376 Autologous NY-ESO-1-specific CD8-positive T Lymphocytes I 2020 Roswell Park Cancer Institute, Buffalo, 
New York, United States

NCT02166905 DEC-205/NY-ESO-1 Fusion Protein I/II 2020 Roswell Park Cancer Institute

NCT03017131 Genetically Engineered NY-ESO-1-specific T Lymphocytes I 2020 Roswell Park Cancer Institute

NCT02042430 Epacadostat + cancer-testis antigen 1B Early I 2020 National Cancer Institute (NCI)

NCT01567891 gene-modified T cells I/II 2019 Adaptimmune

NCT00803569 ALVAC(2)-NY-ESO-1(M)/TRICOM vaccine I 2019 Ludwig Institute for Cancer Research

NCT00112957 Recombinant Vaccinia-NY-ESO-1 and Recombinant 
Fowlpox-NY-ESO-1

II 2018 Ludwig Institute for Cancer Research

NCT00616941 NY-ESO-1 OLP4 peptide vaccine I 2018 Ludwig Institute for Cancer Research

NCT03132922 Autologous genetically modified MAGE-A4ᶜ¹º³²T cells I 2017 Adaptimmune

NCT02015416 recombinant NY-ESO-1 antigen and the adjuvant GLA-SE I 2017 Immune Design

NCT00623831 Mixed bacteria vaccine I 2017 Ludwig Institute for Cancer Research

NCT00373217 MAGE-A1, Her-2/neu, FBP peptides ovarian cancer vaccine II 2016 Craig L Slingluff, Jr
National Cancer Institute (NCI)

NCT01522820 DEC-205/NY-ESO-1 Fusion Protein CDX-1401 I 2016 Roswell Park Cancer Institute

NCT01673217 NY-ESO-1 peptide vaccine I 2014 Roswell Park Cancer Institute

NCT00066729 NY-ESO-1 peptide vaccine I 2011 Memorial Sloan Kettering Cancer Center
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family members (MAGE-A1, MAGE-A3, MAGE- 
A4, MAGE-A10, and MAGE-C1) are expressed in 
approximately 78% of EOC patients [28]. In par-
ticular, MAGE-A4 shows relatively high expres-
sion frequency and plays a central role in the 
co-expression of other MAGE-A antigens [29]. 
Another study showed that, compared with 
patients with benign diseases, serum levels of 
MAGE-A4 in ovarian cancer patients were sig-
nificantly higher, and MAGE-A4 protein was 
expressed in nearly 22% of primary patients 
[30]. Yamada et al. reported that the frequency 
of MAGE-A1 mRNA expression in 58 ovarian 
cancer tissues was 20.7% [28]. Szajnik et al. 
reported that MAGE-A3/6 protein was present 
in all plasma-derived exosomes of ovarian  
cancer patients but not in benign tumors or 
healthy controls [31]. Hofmann et al. used mul-
tiplex RT-PCR analysis to measure BAGE, 
MAGE-A1, MAGE-A3, and GAGE1/2 mRNA in 
peritoneal fluid in patients with ovarian cancer. 
The combination of the four markers showed a 
94% increase in diagnostic sensitivity for ovari-
an cancer compared to cell morphology alone 
[32]. Analysis of the Oncomine dataset re- 
vealed that MAGE-A is also co-expressed with 
other genes in EOC, including CT45 [33].

In summary, the expression of MAGE-A is tumor-
specific. Compared with benign disease or 
healthy controls, MAGE-A is highly expressed in 
tissues and serum of patients. MAGE family 
members can be used as combined markers 
for early diagnosis. The high levels of MAGE-A 
expression in ovarian cancer allow researchers 
to investigate its value as an outcome predictor 
in ovarian cancer.

Correlation between MAGE-A and outcomes in 
ovarian cancer: Many studies reported signifi-
cant correlations between CTAs and tumor pro-
gression and outcome, including for members 
of the MAGE-A family. Zhang et al. reported that 
the expression of MAGE-A1 and MAGE-A3 is 
related to the degree of tumor differentiation 
and clinical stage of ovarian cancer [34]. Daudi 
et al. found that, in EOC, the expression of 
MAGE-A1 and MAGE-A10 was significantly cor-
related with shorter progression-free survival 
[29]. Yakirevich et al. demonstrated that 
MAGE-A4 expression was present in 57% of 
high-grade serous ovarian cancer, and no stain-
ing was detected in serous cystadenoma or 
normal ovary. MAGE-A4 expression was nega-

tively correlated with survival. Multivariate 
analysis showed that the expression of 
MAGE-A4 is an independent risk factor for  
outcomes; the authors believe that MAGE-A4 
may be a reliable prognostic indicator for 
patients with serous ovarian cancer [35]. The 
expression of MAGE-A9 is closely related to  
the high histopathological grade, International 
Federation of Gynaecology and Obstetrics 
(FIGO) stage, CA-125 level, and metastasis  
of ovarian cancer. Patients with MAGE-A9 ex- 
pression showed poor overall survival [36]. A 
study examined the prognostic significance of 
MAGE-A expression in patients with EOC and 
found that MAGE-A expression is related to the 
pathological type, FIGO stage, and preoperative 
serum CA125 levels. Compared with patients 
with EOC that are MAGE-A-negative, the overall 
survival of EOC with expression of the MAGE-A 
family was significantly shorter, consistent with 
previous findings [20]. Coincidentally, Sang et 
al. showed that the expression levels of each 
MAGE-A gene in the peripheral blood of ovarian 
cancer patients are associated with lower  
overall survival [26]. Consistently, Daudi et al. 
used enzyme-linked immunosorbent assay for 
MAGE-A antigen-specific antibody and found 
that the presence of humoral immune respon- 
se against any MAGE antigen signals poor out-
come [29].

These studies suggest that MAGE-A is highly 
expressed in EOC and affects the occurrence, 
progression, and outcome of epithelial ovarian 
cancer; for these reasons, MAGE-A has the 
potential to be a specific target for immunother-
apy against ovarian cancer.

Research into MAGE-A in immunotherapy of 
ovarian cancer: Therapeutic tumor vaccines 
may be used to exploit CTAs to inhibit or delay 
tumor growth. After years of research, many 
therapeutic tumor vaccines have been devel-
oped and used, including protein or peptide 
vaccines, cell-based vaccines, DNA or RNA vac-
cines, and vector-based vaccines [27]. The 
MAGE-A protein family has attracted extensive 
attention in exploring CTA-based immunothera-
py because of its expression characteristics. 
These antigens belong to a highly conserved 
proteome and share a common MAGE domain 
that is widely expressed in several tumors [37, 
38]. A pre-clinical study showed that, among  
15 genetically diverse and unrelated mice 
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immunized with the MAGE-A vaccine, 14 were 
induced to respond and develop a cross-reac-
tive immune response. The MAGE-A DNA thera-
peutic vaccine significantly slowed the growth 
of tumors and doubled the median survival rate 
in mice. These findings support the clinical 
application of several MAGE-A family members 
to avoid tumor immune escape [39]. Because 
DCs are the primary antigen-presenting cells, 
and antigens presented by them activate T 
cells, many studies focused on peptide-incu-
bated DC vaccines [40]. This therapeutic strat-
egy has been used in clinical trials of the 
MAGE-A vaccine in melanoma [41-46] and 
some clinical trials of lung cancer [46-49], 
colon cancer [50], and myeloma [51]. However, 
there are few reports on clinical trials of target-
ed MAGE-A vaccines directly against ovarian 
cancer. As one of the most immunogenic 
MAGE-A proteins, the CTA vaccine targeted by 
MAGE-A4 is being evaluated in a clinical trial, 
and it targets a broad spectrum of cancers 
[52]. Batchu et al. used DCs transduced with 
rAAV-6 capsid mutation vector Y445F to induce 
MAGE-A3-specific anti-tumor cytotoxic T lym-
phocyte responses in vitro. This form of rAAV-
based DC immunotherapy targeting MAGE-A3, 
whether used alone or in combination with 
other immune enhancement programs, may 
prove effective in treating EOC [53].

The DNA therapeutic vaccine and DC cell vac-
cine showed promising results. In recent years, 
clinical trials of MAGE-A targeted tumor immu-
notherapy has been widely carried out. There 
are ongoing clinical safety evaluations of T cell 
therapy in HLA-A2+ subjects with high MAGE- 
A4 expression and efficacy evaluations experi-
ment of MAGE-A4 T cell therapy combined with 
low-dose radiation, including in patients with 
ovarian cancer [54]. In the future, MAGE-A will 
provide promising new opportunities to treat 
ovarian cancer.

NY-ESO-1

NY-ESO-1, also known as cancer-testis antigen 
1B, is one of the members of the CTA gene  
family and is encoded by a gene from the Xq28 
chromosome located in the coding region of 
other CTA (MAGE family members) [55, 56]. 
Chen et al. first described the significance of 
NY-ESO-1 as a tumor-associated antigen. In 
1997, the authors used the cDNA of a patient 
with esophageal squamous cell carcinoma as 

an antigen in the patient’s serum, then mea-
sured the humoral response and identified the 
corresponding antibody. They also measured 
the humoral reaction of the antigen in various 
tumors and found positive reactions in mela-
noma, ovarian cancer, breast cancer, and blad-
der cancer [10, 57]. Similar to MAGE-A4 [58], 
NY-ESO-1 can be identified in testicular germ 
cells at 18 weeks of gestation. In developing 
spermatogonia, NY-ESO-1 was identified as  
one of the nine genes upregulated during dif-
ferentiation, suggesting its role in the clonal 
proliferation of spermatogonia [59].

The expression of NY-ESO-1 in ovarian cancer: 
The characteristics of NY-ESO-1 are like those 
of other CTAs. It is not expressed in normal tis-
sues but is selectively expressed in testis and 
many malignant tumors [55], including mela-
noma [60, 61], lung cancer [62, 63], esopha-
geal cancer [10], and ovarian cancer [64]. 
Odunsi et al. reported that about 50% of 107 
EOC tissue samples expressed NY-ESO-1 or 
LAGE-1. NY-ESO-1 and LAGE-1 were co-ex- 
pressed in 11% epithelial ovarian tumor tissue 
samples and SKOV3 cells [64]. Subsequent 
studies reported CTA analyses in many ovarian 
cancer patients and found that NY-ESO-1 was 
expressed in 41% of tumors [65]. Hurley et al. 
found that the combination of TRIM21 and 
NY-ESO-1 provided 67% sensitivity and 94% 
specificity; that is, TRIM21 and NY-ESO-1 can 
complement one another for screening women 
with genetic risk for ovarian cancer or for 
achieving an early diagnosis of ovarian cancer 
[66]. These results suggest that NY-ESO-1 is 
expressed in ovarian cancer patients and lays  
a foundation for studying the correlation 
between NY-ESO-1 expression and the occur-
rence, progression, and outcomes in ovarian 
cancer.

The correlation between NY-ESO-1 and out-
comes in ovarian cancer: Szender et al. were 
the first to demonstrate the association 
between NY-ESO-1 expression and the malig-
nant phenotype of invasive ovarian cancer. 
They reported that patients with positive 
NY-ESO-1 expression had more serous ovarian 
cancer tissue types and histopathological 
grade three tumor patients and higher stage 
and were less likely to achieve good responses 
to standard treatment. In patients with positive 
NY-ESO-1 expression, progression-free survival 
tended to be shorter, while OS was significantly 
shortened [65]. Although these data show that 
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the expression of NY-ESO-1 is related to malig-
nant degree, the specifically related factors still 
have substantial research value: for example, it 
is unknown whether there is a correlation 
between the high expression of NY-ESO-1 and 
the age and gender of patients with ovarian 
cancer; it is also unknown whether there is  
co-expression of NY-ESO-1 with confirmed indi-
cators of poor outcome; finally, it is unclear 
whether there is expression of NY-ESO-1 in 
patients with ovarian cancer before and after 
traditional treatment (surgery, radiotherapy, 
and chemotherapy).

Research progress of NY-ESO-1 in immuno-
therapy of ovarian cancer: Clinical trials of 
treatment strategies targeting NY-ESO-1 have 
been carried out in patients with ovarian can-
cer, and NY-ESO-1-specific immunotherapy has 
evident clinical benefits [67]. As expected, the 
NY-ESO-1-specific therapeutic vaccine-induced 
specific cellular and humoral immune respons-
es in most NY-ESO-1-positive patients. Odunsi 
et al. reported that NY-ESO-1 with HLA-I and II 
dual-specificity can induce immune responses 
of complete antibody, HLA-DP4 restricted CD4+ 
T cells, and HLA-A2/A24 restricted CD8+ T cells 
in patients with ovarian cancer [68]. After  
seven years of clinical trials, these researchers 
reported encouraging results. The combined 
treatment strategy of decitabine and NY-ESO-1 
vaccine stabilized the disease in patients with 
recurrent EOC or achieved partial clinical 
responses [69]. Decitabine may enhance the 
immune response to the NY-ESO-1 vaccine by 
promoting demethylation of the CTA promoter 
and enhancing immunity [70, 71]. The success 
of this regimen may supplement the standard 
second-line treatment strategy for EOC. Based 
on the mechanism of demethylation enhancing 
vaccine effect, Griffiths et al. reported that SGI-
110 treatment-induced hypomethylation and 
CTA gene expression in a dose-dependent  
manner in vivo and in vitro was generally bet- 
ter than azacytidine or decitabine. There was 
enhanced expression of MHC-I and ICAM-1 and 
enhanced recognition of EOC cells by NY-ESO-
1-specific CD8+ T cells [72]. These findings sug-
gest that SGI-110 is a candidate for combina-
tion with the NY-ESO-1-specific vaccine in EOC 
treatment.

NY-ESO-1 is an excellent tumor-associated  
antigen for immunotherapy (cancer vaccine) in 
clinical trials of immunotherapy for ovarian  
cancer. In addition to immunotherapy targeting 

NY-ESO-1, there is synergistic anti-cancer effi-
cacy of NY-ESO-1 with known anti-cancer me- 
dications, and this has been confirmed in sev-
eral medical institutions. There are promising 
results of NY-ESO-1 in phase I/II clinical trials, 
especially in ovarian cancer.

CT45

The cancer-testis antigen-45 family (CT45) is 
not expressed in normal tissues (except for the 
testis) but is abnormally expressed in many 
cancers [11]. Large-scale parallel signature 
sequencing and RT-PCR methods were used  
for screening and evaluation, and six genes 
with high similarity (>98% cDNA consistency) 
were obtained, including the CT45 family 
(CT45A1, CT45A2, CT45A3, CT45A4, CT45A5, 
and CT45A6) that is clustered in series in the 
125 kb region of xq26.3 [73]. There are many 
reports of CT45A1. For example, when breast 
cancer was used as a research model, it was 
found that the overexpression of CT45A1 posi-
tively correlated with tumor invasion and 
metastasis [11]. Yang et al. reported that 
MAGE-D4B, CAGE, and CT45A1 promoted epi-
thelial-mesenchymal transition (EMT) and 
metastasis via upregulation of EMT and meta-
static genes [74]. These findings suggest that 
CT45 has a high research value as a potential 
cancer target.

The expression of CT45 in ovarian cancer:  
Chen et al. found that the expression of CT45 
protein in tumors correlated with mRNA level 
detected by quantitative RT-PCR. The evalua-
tion of CT45 protein expression on a variety of 
cancer tissue microarrays (376 cases of lung 
cancer, 219 cases of ovarian cancer, and 155 
cases of breast cancer) showed that CT45 was 
expressed most frequently in ovarian cancer 
(37%), followed by lung cancer (13%), the low-
est in breast cancer (<5%) [75]. Zhang et al. 
identified the co-expression of CT45 and other 
CTAs through analysis of the Oncomine data 
set; these genes include MAGE and GAGE [33].

The correlation between CT45 and outcomes  
in ovarian cancer: Koop et al. studied the bio-
logical functions of CT45 cells and found that 
the increased activity of CT45-positive cells 
was significantly associated with the progres-
sion of the disease [76]. Although the expres-
sion mechanism of CT45 in cancer has not yet 
been elucidated, the relationship between the 
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expression of CT45 and the development of 
ovarian cancer and survival has been studied 
by DNA methylation. After Zhang et al. deter-
mined the expression of CT45 in EOC, they 
defined the epigenetic regulation of CT45 
through DNA methylation. Subsequent studies 
confirmed that, in EOC, CT45 promoter hypo-
methylation was associated with reduced OS, 
suggesting that CT45 expression and promoter 
hypomethylation may indicate poor outcomes 
in patients with ovarian cancer [33]. Coscia et 
al. used mass spectrometry-based proteomics 
and found that CT45 can be used as a marker 
for long-term survival in advanced metastatic 
advanced serous ovarian cancer after chemo-
therapy [77]. There remains controversy re- 
garding the correlation between CT45 and out-
comes in ovarian cancer, possibly related to 
disease state and other treatments.

Research on CT45 in immunotherapy of ovari-
an cancer: To improve long-term survival and 
outcomes in immunogenic tumors such as  
EOC, various anti-tumor vaccines are being 
developed. Chen et al. showed that the fre-
quency and characteristics of CT45 expression 
are similar to other CTA cancer vaccine targets 
in clinical trials (i.e., NY-ESO-1 and MAGE-A) 
[75]. Other studies showed that decitabine 
treatment induces the expression of CT45 
mRNA and protein in EOC cells, and promoter 
transgenic analysis showed that DNA methyla-
tion directly inhibits the activity of the CT45  
promoter. These results suggest that decita- 
bine or other epigenetic regulators might pro-
vide effective immune targeting for CT45 [33]. 
Coscia et al. found that CT45-derived HLA-I 
peptides using immunopeptideomics activated 
patient-derived cytotoxic T cells and promoted 
tumor cell killing [77].

Thus far, our summary suggests that cancer 
vaccines alone and in combination with anti-
tumor medications can improve anti-tumor effi-
cacy. Clinical research on NY-ESO-1 is currently 
relatively extensive. We can use this as a refer-
ence to expand the study of CT45 antigen as a 
tumor immunotherapy target and explore pros-
pects for its clinical application.

Sp17

Sp17 is a highly conserved protein composed 
of 151 amino acids. It was initially isolated  
from rabbit epididymal sperm and testicular 

membrane sediments, and it has high inter- 
species homology [78-80]. It was initially 
thought that Sp17 was only expressed in the 
testis, and its primary function was to bind to 
the extracellular matrix of oocytes, allowing 
sperm to interact with the zona pellucida [81]. 
Some reports suggested that Sp17 partici- 
pates in heparin sulfate-mediated cell adhe-
sion or migration in transformed lymphocytes 
and heme cells [82]. Sp17 is highly expressed 
in ovarian cancer [83], head and neck squa-
mous cell carcinoma [84], breast cancer [17], 
non-small cell lung cancer [85], multiple  
myeloma [86, 87], and other hematological 
malignancies [88]. These findings suggest that 
Sp17 may be a highly immunogenic autoanti-
gen in humans and can be used as a target for 
anti-tumor immunotherapy.

The expression of Sp17 in ovarian cancer: 
Sp17 was first found to be highly specifically 
expressed in multiple myeloma. As research 
extended, Sp17 expression characteristics in 
ovarian cancer became more apparent [87]. 
Straughn et al. detected Sp17 transcripts in 15 
of 18 cases of primary ovarian cancer (83%), 
while Sp17 transcripts were not detected in 
normal cervix or cervix. Sp17 protein was 
detected in eight of 19 normal sperm and 19 
ovarian cancer tissue samples, primarily locat-
ed in the nucleus with a small amount of cyto-
plasmic staining [89]. Li et al. showed that  
Sp17 was abnormally expressed in 43% (30/ 
70) of patients with primary EOC and eight 
patients with cancer cell-containing ascites. 
Sp17 expression was also detected in meta-
static lesions. In addition, the authors found 
that overexpression of HSp17 increased the 
ability of ovarian cancer cells to migrate [90]. 
These studies suggest that the expression of 
Sp17 in EOC tissues is increased and suggest 
that Sp17 is a potential biomarker of EOC.

The correlation between Sp17 and outcomes  
in ovarian cancer: Brunette et al. showed that 
Sp17 is not significantly related to the staging 
of ovarian cancer, it has a higher expression in 
benign and borderline serous tumors, and its 
expression further decreases as the cancer 
level increases [83]. The authors also analyzed 
the failure free survival and overall survival of 
336 EOC patients and found no significant cor-
relation between Sp17 expression and failure 
free survival or overall survival [83]. However, 
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small studies found that high expression of 
Sp17 reduced the chemosensitivity of EOC 
cells to carboplatin and cisplatin [90]. Sp17 is 
defined as a candidate gene related to chemo-
therapy resistance for clear cell adenocarcino-
ma. Downregulation of Sp17 significantly in- 
creased the sensitivity of ovarian cancer cells 
to paclitaxel [91, 92]. Although the overall out-
come of borderline serous and low-grade  
malignant tumors is better than that of high-
grade malignant tumors, they are also chemo-
therapy-resistant tumors, and it is difficult to 
treat them if they are not treated with comple- 
te surgical resection. Therefore, if there is an 
effective targeted therapy for Sp17, patients 
with positive expression of this protein may 
experience improved outcomes.

Sp17 in immunotherapy of ovarian cancer: 
Considering the characteristics and expression 
limitations of Sp17 protein itself, strategies for 
anti-ovarian cancer immunotherapy against 
Sp17 are also emerging. Gao et al. found that, 
compared with Sp17low (PD-L1-MHCII+) EOC 
cells, the Sp17high (PD-L1+MHCII-) EOC cell 
population showed significantly enhanced 
resistance to paclitaxel-induced cell death in 
vitro. This finding suggests that Sp17 can 
become a target of immunotherapy [92]. 
Chiriva-Internati et al. successfully produced 
HLA-I restricted CTLs from the peripheral blood 
of three patients with ovarian cancer that tar-
get and recognize Sp17. This specific CTL can 
cleave Sp17 positive autologous tumor cells by 
modulating the perforin pathway and secreting 
INF-γ and a small amount of IL-4 [12]. Sp17-
conjugated CpG as a therapeutic and preven-
tive vaccine can activate T cells in vivo and  
redirect inhibitory T-regs to the activated Th-17 
phenotype. This vaccine strategy may achieve 
tumor control and increased survival in ovarian 
cancer patients [93]. Researchers constructed 
an antibody-drug conjugate (Sp17-doxorubicin) 
and found that it inhibited the activity of cancer 
cells and induced the regression of established 
SKOV-3 xenograft tumors in mice [94].

In the study of Sp17 immunotherapy, the appli-
cation of tumor antigen epitope peptides re- 
ceived the most attention. Vermeij et al. used 
tissue microarrays to determine MHC class I 
and tumor antigens (including p53, Sp17, sur-
vivin, WT1, and NY-ESO-1) in 270 primary 
tumors tissue samples. In 74.3% of these pri-

mary tumors, the co-expression of MHC-I and 
at least one tumor antigen was observed. 
These results provide a research basis for 
multi-epitope anti-ovarian cancer immunother-
apy [95].

In recent years, there have also been reports 
on methods for obtaining potential epitope 
peptides through big data analysis and screen-
ing with software such as the Pir Peptide Match 
program [96]. Xiang et al. confirmed the immu-
nogenicity of six epitope peptides from Sp17 
under the mode of epitope peptide-conjugated 
CpG and found that the epitope peptide from 
the 111-142aa sequence of hSp17 induced 
high levels of antibodies and T cells expressing 
IFN-γ. One tumor-bearing transgenic mouse 
treated with the corresponding drug experi-
enced a significantly prolonged lifespan [97]. 
Mattila et al. optimized the dosage form and 
incorporated Sp17-derived antigen peptides 
and CpG oligonucleotides into spray-dried mic-
roparticles, administered in oral form. Analysis 
of spleen cells harvested from vaccinated 
tumor-bearing mice showed that the immune 
system responds to SP17 antigen re-stimula-
tion, IFN-γ+/CD8+ lymphocytes show strong 
activation. Four weeks after the tumor chal-
lenge, the administration group showed signifi-
cant ascites/tumor volume reduction [98].

These studies demonstrate that immunothera-
py based on Sp17 antigen focus on increasing 
immunogenicity, enhancing broad-spectrum, 
and increasing effectiveness. We focused on 
practical problems encountered in clinical 
application to optimize preparation and admin-
istration modes. Although no anti-ovarian can-
cer drug targeting Sp17 has entered the clini- 
cal trial stage, it can be expected that Sp17  
will soon emerge as a target with excellent 
expression and immunological properties.

The relationships among these CTAs

Based on these four classic CTAs expressed in 
ovarian cancer, we conclude that expression of 
the four classic CTAs differ in expression pat-
terns between patients with cancer and normal 
controls. Second, CTAs can be divided into 
X-CTA and non-X-CTA depending on whether 
CTA is located on the X chromosome. The four 
CTAs referenced above are all located on the X 
chromosome. It is unknown whether different 
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CTA localizations play different roles in ovarian 
cancer or predict different outcomes; however, 
the question is worthy of further study. Next, 
the four CTAs exist as multiple family mem- 
bers, and analysis shows that the frequency of 
expression differs among family members. Fi- 
nally, the four CTAs induce cellular and humor- 
al immune responses. Taken together, the evi-
dence suggests that these CTAs can be used 
as tumor markers in ovarian cancer and may 
serve as targets for cancer vaccines (Table 2).

Relationship between newly discovered CTAs 
and ovarian cancer

With the development of cancer vaccine re- 
search, several new tumor antigens have been 
identified, including several kinds of CTA. Xu et 
al. found that knocking down TEX19 inhibited 
the proliferation, migration, and invasion of 
ovarian cancer cells. A peptide derived from  
the dominant epitope of TEX19 may serve as a 
target for an anti-tumor vaccine [13]. Gupta et 
al. showed that HSP70-2 promotes the prolif-
eration, migration, and invasion of ovarian can-
cer cells. For the first time, it was found that 
ovarian cancer cells lacking HSP70-2 reduced 
cell motility due to low expression of EMT mol-
ecules [16].

The POTE family genes are divided into three 
phylogenetic groups, Group I (POTEA), Group  
II (POTEB1, B2, B3, C, and D), and Group  
III (POTE, F, I, J, KP, and M) [15]. Barger et al. 
found that POTE family genes (especially group 
III POTE members) are highly expressed in  
ovarian cancer tissues and are related to poor 
outcomes [14]. As new CTAs are identified as 
potential targets and biomarkers for cancer 
treatment, the means and methods for cancer 
treatment will be enriched. Regardless of 
whether it is used as a single-gene tumor anti-
gen for cancer vaccines or as a combination 
therapy with other cancer treatments, CTA 
plays an essential role in treating ovarian 
cancer.

Discussion

Because ovarian cancer is usually diagnosed  
at advanced stages and has relatively high 
postoperative recurrence and metastasis 
rates, it is difficult to achieve satisfactory 
results using conventional therapy alone. In 
ovarian cancer, control of tumor cell growth  
and removal of residual tumor cells after sur-
gery or chemotherapy remain critical subjects 
of future study. We urgently need effective 
treatment strategies (particularly tumor immu-
notherapy) to resolve this problem. Clinical tri-
als have shown that tumor immunotherapy  
is effective for ovarian cancer, suggesting a 
direction for developing ovarian cancer treat-
ment strategies in the future.

Although tumor immunotherapy is an excellent 
modality for treating ovarian cancer, there 
remain some problems for individual patients. 
MAGE-A, NY-ESO-1, CT45, and Sp17 are not 
expressed in all ovarian cancers. Furthermore, 
it remains unknown whether the expression of 
these antigens in ovarian cancer patients can 
trigger effective immune responses to elimi-
nate tumor cells; it is also unknown whether 
there are more effective epitope peptides of 
MAGE-A NY-ESO-1, CT45, and Sp17 that can 
stimulate sufficient immune responses. To re- 
solve these problems, we should continue to 
screen and develop other members of the CTA 
family with high expression in ovarian cancer  
to cover more ovarian cancer patients. We 
should develop highly efficient and low-toxicity 
epigenetic modifiers to enhance the immune 
effect of CTA vaccines. Improved use of big 
data and bioinformatics technology will result 
in the design of optimal candidate epitopes  
of MAGE-A, NY-ESO-1, CT45, Sp17, and other 
CTAs to significantly enhance the tumor-killing 
ability of CTL cells.

The role of cancer/testicular antigens in the 
development and etiology of ovarian cancer is 

Table 2. The relationships between these CTAs
Species Expression pattern Positioning Composition Immune correlation
MAGE-A It is not expressed in normal 

tissues, but only in normal testis 
and a variety of tumor tissues

X chromosome Often in the form 
of multiple family 
members

Cause cellular and humoral 
immune responseNY-ESO-1

CT45
Sp17
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not yet clear. An in-depth study and explanation 
of the biological functions of these CTAs and 
the interaction between their mechanisms will 
lay a solid foundation for ovarian cancer immu-
notherapy with CTA as the target. At present, 
many research institutions are engaged in this 
research. Although the results are not com-
pletely satisfactory, we believe that immuno-
therapy will become an essential strategy for 
treating ovarian cancer in the future.
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