
Am J Cancer Res 2022;12(3):1056-1068
www.ajcr.us /ISSN:2156-6976/ajcr0139810

Original Article
An MRI radiomics nomogram improves the accuracy 
in identifying eligible candidates for fertility-preserving 
treatment in endometrioid adenocarcinoma

Bi-Cong Yan1,2*, Feng-Hua Ma3*, Ying Li2*, Yan-Feng Fan1, Zhi-Long Huang1, Xiao-Liang Ma2,3, Xue-Ting Wen2, 
Jin-Wei Qiang2

1Department of Diagnostic and Interventional Radiology, Shanghai Jiaotong University Affiliated Sixth People’s 
Hospital, 600 Yi Shan Road, Shanghai 200233, China; 2Department of Radiology, Jinshan Hospital, Fudan 
University, 1508 Longhang Road, Shanghai 201508, China; 3Department of Radiology, Obstetrics & Gynecology 
Hospital, Fudan University, 128 ShenYang Road, Shanghai 200090, China. *Equal contributors.

Received October 13, 2021; Accepted February 18, 2022; Epub March 15, 2022; Published March 30, 2022

Abstract: It is difficult to identify eligible candidates for fertility-preserving treatment (FPT) among endometrioid 
adenocarcinoma (EAC) and atypical hyperplasia (AH) patients. Therefore, new approaches for improving the ac-
curacy of candidate selection are warranted. From December 2014 to January 2020, 236 EAC/AH patients (age 
<50 and premenopausal) were retrospectively reviewed and randomly divided into the primary group (n=158) and 
validation group 1 (n=78). From February 2020 to December 2021, 51 EAC/AH patients were prospectively enrolled 
and formed the validation group 2. From the primary group, 385 features were extracted using pyradiomics from 
multiparameter magnetic resonance imaging (MRI) (including T2-weighted imaging, diffusion-weighted imaging, 
apparent diffusion coefficient, and contrast enhancement sequences) and 13 radiomics features were selected 
using a least absolute shrinkage and selection operator. A clinical model based on clinical information (myometrial 
invasion on MRI and tumor grade in curettage) and a radiomics nomogram by integrating clinical information with 
the radiomics features was developed to identify eligible candidates of FPT. For identifying eligible candidates of 
FPT, the areas under the receiver operating characteristic curve (AUCs) were 0.63 (95% confidence interval [CI]: 
0.53-0.73) in the primary group, and 0.62 (95% CI: 0.45-0.78) and 0.69 (95% CI: 0.53-0.86) in validation groups 
1 and 2, respectively, for the clinical model; were 0.86 (95% CI: 0.80-0.93) in the primary group, and 0.82 (95% 
CI: 0.71-0.93) and 0.94 (95% CI: 0.87-1.0) in validation groups 1 and 2, respectively, for the radiomics nomogram. 
With the help of radiomics nomogram, the treatment decision determined from the clinical model was revised in 45 
EAC/AH patients. The net reclassification index (NRI) was 0.80 and integrated discrimination improvement (IDI) was 
0.17, indicating that the nomogram could improve the accuracy in identifying eligible EAC/AH candidates for FPT.
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Introduction

Endometrial cancer (EC) is becoming one of the 
most common gynecologic malignancies, dem-
onstrating increasing morbidity [1, 2]. In a pop-
ulation-based registry (Geneva Cancer Re- 
gistry), 18% of women younger than 45 years 
had early-stage EC at the time of final surgical 
pathology [1, 3]. Furthermore, approximately 
57% of young EC patients are nulliparous at 
diagnosis, because of late childbearing and ris-
ing EC incidence rates [3]. The standard treat-
ment for EC is total hysterectomy and bilateral 

salpingo-oophorectomy, which leads to perma-
nent loss of fertility for women of childbearing 
age. Therefore, there is an urgent need for con-
servative, non-surgical treatment approaches. 
For young patients who want to preserve repro-
ductive ability, progestin-based treatments 
combined with delaying surgery can be admin-
istered in those with endometrium-confined 
grade I endometrioid adenocarcinoma (EAC) 
(i.e., the absence of myometrial invasion [non-
MI], cervical stromal invasion [CSI], and extra-
uterine metastasis [EM], including ovarian 
metastasis and lymph node metastasis) or 

http://www.ajcr.us


Radiomics nomogram in endometrioid carcinoma treatment

1057 Am J Cancer Res 2022;12(3):1056-1068

atypical hyperplasia (AH) [4]. However, a pre-
requisite for this conservative non-surgical 
treatment is a precise preoperative evaluation.

Dilatation and curettage (D&C) is recommend-
ed for evaluate the tumor grade of EC, however, 
the findings are frequently discordant with 
those at final surgical pathology [5-8]. Helpman 
et al. reported that 22% of grade I ECs diag-
nosed by biopsy were upgraded to grade II or III 
based on the surgical pathology [8].

Magnetic resonance imaging (MRI) may be the 
preferred modality for evaluating the presence 
of MI. However, previous studies have reported 
varying accuracies [9-11]. One recent study 
showed that the accuracy and the areas under 
the curve (AUC) for MI were only 63% and 0.75, 
respectively, and that MRI produced a false-
negative result in approximately 50% of pa- 
tients. Misjudgments tended to occur for 
patients with superficial MI [12], and MRI 
assessed MI in premenopausal women with 
grade (G) 1 EC had an accuracy of 63%, sensi-
tivity of 42%, specificity of 85%, and AUC of 
0.75, respectively [13]. Another recent study 
showed that the tumor apparent diffusion coef-
ficient (ADC) value was associated with patho-
logic upgrading for biopsy-proven grade I ECs 
[14]. However, whether the ADC can be used to 
assess the aggressiveness of EC remains con-
troversial. The results from D&C and MRI sug-
gest that decisions based on conventional MRI 
sequences (such as T2WI) and clinical informa-
tion are imprecise in identifying eligible candi-
dates for FPT.

The radiomics-based nomogram is a useful tool 
that has been widely applied in different field of 
oncology [15]. By integrating clinical and imag-
ing information, the nomogram plays an impor-
tant role in the drive towards personalized med-
icine and helps clinicians in treatment planning 
[16]. However, no studies have used radiomics 
nomograms to help gynecologists assess EC 
patients for receiving FPT. Therefore, we 
hypothesized that tumor radiomics has poten-
tial as a supplementary imaging biomarker for 
preoperatively assessing pathological tumor 
grade and MI in EC. In this study, we developed 
an MRI radiomics nomogram to identify eligible 
candidates for FPT among EAC/AH patients.

Materials and methods

Patients

The Institutional Review Board approved this 
study, and informed consent was waived for 

retrospective patients and obtained for pro-
spective patients (approval number: 2020-10). 
All patients were collected from Obstetrics & 
Gynecology Hospital of Fudan University. From 
December 2014 to January 2020, the electron-
ic medical records of a total of 297 consecutive 
pathologically proven EAC/AH patients were 
reviewed. Potential candidates for FPT met the 
following criteria: 1) age younger than 50 years 
and premenopausal status; 2) total hysterecto-
my and a diagnosis of EAC/AH; 3) a lack of other 
reproductive system malignant tumors, or other 
progestin-dependent cancers, such as breast 
or ovarian cancer; and 4) MRI scanning with 
T1-weighted imaging (T1WI), T2-weighted imag-
ing (T2WI) with fat saturation (FS), contrast-
enhanced (CE)-T1WI with FS, diffusion-weight-
ed imaging (DWI) and ADC sequences. The 
exclusion criteria were as follows: 1) radiothera-
py, chemotherapy, and hormone-based treat-
ment administered before surgery (n=10); 2) 
absence of preoperative pelvic MRI (n=15); 3) 
insufficient imaging quality for analysis owing to 
motion artifacts, or inability to see the tumor on 
MRI (n=27); and 4) a non-EAC pathologic diag-
nosis (n=9). Finally, a total of 236 patients with 
232 EACs and four AHs (mean age 42±6.1 
years) were enrolled as potential candidates for 
FPT. The 236 patients were randomly divided 
into the primary group and the validation group 
1 according to a ratio of 2 to 1. Furthermore, 
from February 2020 to December 2021, 67 eli-
gible patients for FPT were prospectively 
enrolled, and 51 patients were finally included 
and formed the validation group 2. In addition 
to retrospective inclusion and exclusion crite-
ria, we also included the EAC/AH patients con-
firmed by D&C rather than hysterectomy, who 
had strong desire to preserve fertility and fol-
lowed-up more than 3 months, and additionally 
excluded the patients who withdrew FPT within 
3 months.

General clinical information from each patient 
was collected, including age, cancer antigen 
125 (CA125) level, oestrogen receptor (ER) 
level, progesterone receptor (PR) level and p53 
level, etc. The CA125 level was measured with-
in 1 week before the surgery using chemilumi-
nescence approach (Abbott Laboratories, US). 
And these clinical information were analyzed to 
select FPT independent factors by multivari-
able logistic regression based on the data of 
the primary group.

Eligible candidates for FPT were defined as 
those with: 1) pathologically proven grade I 
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EAC, or AH, and 2) a pathologically proven 
endometrium-confined tumor (absence of MI, 
CSI, EM) [4, 17, 18]. Other EC patients were 
defined as non-FPT.

Imaging

All enrolled patients received pelvic MRI within 
30 days before surgery. The mean interval 
between MRI and surgery was 20 days (range, 
5-30 days). MRI was performed using a 1.5-T 
scanner (Avanto; Siemens, Germany) with an 
eight-channel pelvic phased-array coils. The 
patients laid in a supine position and breathed 
freely during the acquisition. MRI was per-
formed by referring to the European Society of 
Urogenital Radiology guidelines. The sequenc-
es and parameters are shown in Table 1. 
CE-T1WI with FS at the arterial, venous and 
delay phases was performed immediately and 
90-120 s and 150-180 s after the intravenous 
administration of gadopentetate dimeglumine 
at a dose of 0.2 mmol/kg of body weight and a 
rate of 2 to 3 ml/s. The ADC map was automati-
cally generated based on DWI sequences (b=0 
and b=1000 s/mm2).

MRI evaluation of EC and myometrial invasion

All MRI data (including the five sequences) were 
reviewed independently by radiologists 1 and 2 
(with five and 13 years of experience in gyneco-
logic imaging, respectively) who were blind to 
the results of the D&C and surgical pathology. 
All surgical pathological diagnoses were made 
by attending pathologists with over 15 years of 
experience in gynecologic pathology. Any dis-
agreement was solved by consensus.

EC was determined as a focal endometrial 
lesion with slightly lower signal intensity (SI) 
than the normal endometrium on T2WI, a high-
er SI on DWI and lower SI on the corresponding 
ADC maps and milder enhancement on 
CE-T1WI, comparing the normal myometrium. 

Tumor size was defined as the maximum tumor 
diameter measured retrospectively on T2WI. MI 
was evaluated as non-MI, or the presence of MI 
(including superficial MI [SMI: 0< MI <50%] and 
deep MI [DMI: MI ≥50%]). A sign of disconnec-
tion of the junctional zone on T2WI, or subendo-
metrial enhancement line on CE-T1WI was con-
sidered the presence of MI. CSI and EM were 
diagnosed according to a previous study [19].

Radiomics features extraction and selection

The patients’ images were first imported into 
the medical imaging software MitkWorkbench 
(http://mitk.org/wiki/The_Medical_Imaging_
Interaction_Toolkit_ (MITK)). Axial DWI, ADC 
map, and CE-T1WI (delayed phase) were aligned 
to axial T2WI. Regions of interest (ROIs) were 
manually drawn along the tumor margin on 
each slice of the T2WI by radiologist 1 (B.C.Y) 
while referencing the DWI, ADC map and 
CE-T1WI. The ROIs were mapped to all remain-
ing sequences. The ROIs of each patient were 
drawn a second time by radiologist 1 one month 
later and by radiologist 2 (Y.L). After tumor seg-
mentation, the merged 3D strategy was used 
to extract radiomics features from the ROIs 
delineated by radiologist 1 by using pyradio- 
mics (https://pypi.org/project/pyradiomic/). To 
ensure comparability of the MRI grey values, 
imaging preprocessing was performed. A fixed 
bin width of 1 was used to compute radiomics 
features. All radiomics feature implementa-
tions followed the IBSI recommendation 
(https://arxiv.org/abs/1612.07003).

The inter- and intraclass correlation coefficients 
(ICCs) of the extracted features were calculated 
to assess the stability of the radiomics fea-
tures. Features with both inter- and intraclass 
coefficients larger than 0.90 were considered 
robust and reproducible. Pearson’s correlation 
was used to identify redundant features. If two 
features had a Pearson correlation coefficient 
> 0.9, the feature with the larger mean abso-

Table 1. MRI sequences and parameters in endometrial cancer patients
Sequences TR/TE (ms) NEX AT (s) Matrix FOV (mm) Slice thickness/gap (mm)
Axial T1WI 761/10 1 46 512×512 380 4/1
Axial T2WI-FS 4000/98 1 146 512×512 370 4/1
DWI (b=0, 1000 s/mm2) 4000/100 5 98 256×256 300 5/1
Axial CE-T1WI-FS 196/2.9 2 172 512×512 400 4/1
AT, acquisition time; CE-T1WI, contrast-enhanced T1WI; DWI, diffusion-weighted imaging; FS, fat saturation; NEX, number of 
excitation; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; TE, time of echo; TR, time of repetition.
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lute coefficient was removed. Then, the least 
absolute shrinkage and selection operator 
(LASSO) was used to select features associat-
ed with eligible candidates for FPT with 10-fold 
cross-validation to avoid overfitting [20]. A 
radiomics score (Radscore) was produced by 
linear fitting of the selected features.

Clinical and radiomics nomogram models de-
velopment

The histology subtype and grade of each tumor 
in the D&C reports and in the final pathologic 
reports of total hysterectomy were reviewed. 
The tumor stage was determined according to 
the International Federation of Gynecology and 
Obstetrics (FIGO) grading system based on the 
final pathologic reports.

A clinical model simulating clinical practice for 
identifying eligible FPT candidates was devel-

the validation groups 1 and 2. The performanc-
es of the radiomics nomogram and the clinical 
model were compared using the net reclassifi-
cation index (NRI) and total integrated discrimi-
nation index (IDI). The work flow of this study is 
shown in Figure 1.

Statistical analyses

The radscore, age, and CA125 were compared 
using an independent t-test after normality 
test; the findings on MRI, tumor grade in curet-
tage pathology, and PR, ER and p53 status 
were compared using Pearson’s chi-square 
test, or Fisher’s exact test between FPT and 
non-FPT in the primary group and validation 
groups 1 and 2. All analyses were performed 
using R software (Version 3.6.1; http://www.r-
project.org/). Statistical significance was 
defined as a two-sided P-value of less than 
0.05. The “caret”, “glmnet”, “rms”, “pROC”, 

Figure 1. The workflow of the study. AH, atypical hyperplasia; CDC, clinical 
decision curve; EAC, endometrioid adenocarcinoma.

oped by combining the MI status 
on MRI (0= non-MI and 1= MI 
[SMI and DMI]) and tumor grade 
in the curettage pathology (0= 
G1/AH and 1= G2-3 EAC) using 
linear logistic regression. The 
radiomics nomogram was devel-
oped by integrating multipara-
metric MRI (mpMRI) radiomics 
features with clinical information 
by using a multivariable logistic 
regression method based on the 
data of the primary group. The 
clinical model and the radiomics 
nomogram were also validated in 
the validation groups 1 and 2.

The areas under the receiver 
operating characteristic curve 
(AUCs) were used to evaluate the 
diagnostic performances of the 
radiomics nomogram and the 
clinical model for the primary 
and validation groups. The cali-
bration curves were used to 
assess the goodness of fit of the 
radiomics nomogram. Clinical 
decision curve (CDC) analysis 
was performed to determine the 
radiomics nomogram’s clinical 
usefulness and to quantify the 
net benefits at the threshold 
probabilities based on the whole 
dataset, i.e., the primary group, 
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“dca.R” and “PredictABEL” packages were used 
in the analysis. DeLong’s test was used to com-
pare the performance between the radiomics 
nomogram and the clinical model.

Results

The clinicopathological characteristics of the 
included EAC/AH patients are summarized in 
Table 2. There were 209 G1 patients, 74 G2 
and G3 patients, four AH patients who were 
diagnosed by surgical pathology. There were 
225 patients staged as IA, and the remaining 
62 patients were staged as higher stages. 
There were no significant differences in the lev-
els of CA125 (P=0.97), ER (P=0.48), PR 
(P=0.17) or p53 (P=0.41) between the FPT and 
non-FPT patients by multivariable logistic 
regression (all P > 0.05). Surgical pathology 
confirmed that 52 patients were eligible FPT 
candidates and 235 patients were non-FPT 
patients (aged 40.1±7.4 years and 42.1±5.9 
years, respectively, P=0.67). On MRI, the mean 
tumor sizes were 24.2±11.9 mm and 23.1±15.6 
mm for the FPT and non-FPT patients, respec-
tively (P=0.73).

Tumor grade (in D&C) and MI status (on MRI) 
were downgraded for 93 cases after surgery. Of 
these, 20 (6.9%) were downgraded from G2 
and G3 to G1/AH, 23 (8.0%) were downgraded 
from MI to non-MI, 18 (6.3%) were downgraded 

from existing CSI to non-CSI, and 32 (11.1%) 
were downgraded from existing EM to non-EM, 
respectively. On the contrary, 18 (6.2%) were 
upgraded from non-MI to MI, 24 (8.3%) and 11 
(3.8%) were upgraded from non-CSI and non-
EM to CSI and EM according to the final pathol-
ogy, respectively. The 24 (8.3%) patients were 
identified as FPT candidates from non-FPT 
because of an over diagnosis of MI (n=21), CSI 
(n=2) or LM (n=6) by the radiologists. One case 
scenario is exhibited in Figure 2.

Feature selection and model building

A total of 358 MRI radiomics features were 
extracted to describe the tumor information, 
including shape features (n=14), first-order fea-
tures (n=18×4), and texture features (n=68×4). 
The 91 features with both the inter- and intra-
class ICCs > 0.9 were retained (Supplementary 
Table 1). Thirteen radiomics features (named 
the radiomics signature), including one 
Shape_LAL, one shape_M2DDS, and 11 other 
features for identifying FPT candidates, were 
selected using LASSO and the radscore formu-
lation was shown in Supplementary File. The 
LASSO selection process for radiomics fea-
tures, their corresponding coefficients, and the 
co-occurrence matrix plotting the network of 
each radiomics feature and clinical information 
are shown in Figure 3 and Supplementary 
Figure 1.

Table 2. Clinicopathological characteristics of included EC patients in the primary and validation 
groups
Clinpathologic  
characteristics

Primary group (n=158) Validation group 1 (n=78) Validation group 2 (n=51)
Non-FPT (128) FPT (30) P value Non-FPT (67) FPT (11) P value Non-FPT (40) FPT (11) P value

Age (years) 42.7±5.8 41.8±6.7 0.05 42.9±5.1 39.8±8.8 0.08 43.4±6.8 40.5±6.7 0.43

CA125 (U/ml) 31.1±41.8 27.7±23.3 0.40 25.3±22.8 25.8±19.2 0.41 29.1±35.2 17.0±12.7 0.45

Tumor size (mm) 18.4±7.1 14.8±5.6 0.51 17.2±5.7 14.8±4.3 0.45 18.1±7.7 14.2±4.6 0.43

ER (-/+) 49/79 9/21 0.53 28/39 8/3 0.10 36/4 6/5 0.02

PR (-/+) 47/81 9/21 0.53 27/40 8/3 0.06 24/16 6/5 0.74

p53 (-/+) 69/59 17/13 0.84 37/30 10/1 0.04 32/8 6/5 0.12

CSI (-/+) 106/22 30/0 0.01 59/8 11/0 0.59 10/30 11/0 0.09

EM (-/+) 114/14 30/0 0.07 64/3 11/0 1.00 2/38 11/0 1.00

MI (non-MI/MI) 1/127 30/0 <0.001 1/66 11/0 <0.001 4/36 11/0 <0.001

RMI (non-MI/MI) 50/78 18/12 0.02 37/30 7/4 0.62 12/28 11/0 0.28

RCSI (-/+) 109/19 29/1 0.13 61/6 10/1 1.00 7/33 11/0 0.32

REM (-/+) 105/23 26/4 0.79 58/9 9/2 0.65 2/38 11/0 1.00

TGS (AH/G1/G2/G3) 0/86/34/8 3/27/0/0 <0.001 0/50/12/5 1/10/0/0 0.03 0/25/9/6 0/11/0/0 0.54

TGC (AH/G1/G2/G3) 6/96/10/16 3/27/0/0 0.09 0/49/8/10 1/10/0/0 0.05 0/23/12/5 1/10/0/0 0.02

FIGO (IA/IB/II-IV) 90/6/32 30/0/0 0.07 53/3/11 11/0/0/0 0.73 30/1/9 11/0/0 0.18

Radscore 0.1±0.2 0.4±0.2 0.51 0.1±0.1 0.2±0.1 0.04 0.1±0.2 0.6±0.3 0.43
AH, atypical hyperplasia; CA125, cancer antigen 125; CSI, cervical stromal invasion; DMI, deep myometrial invasion; EAC, endometrioid adenocarcinoma; EM, extrauterine 
metastasis; ER, estrogen receptor; FIGO, International Federation of Obstetrics and Gynecology; FPT, fertility-preserving treatment; LNM, lymph node metastasis; MI, 
myometrial invasion; OM, ovarian metastases; PR, progesterone receptor; RCSI, radiologist’s assessment of cervical stromal invasion; REM, radiologist’s assessment of 
extrauterine metastasis; RMI, radiologist’s assessment of myometrial invasion; TGC, tumor grade in curettage; TGS, tumor grade in surgical pathology.
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The clinical model (combining MI status on MRI 
and tumor grade from the curettage pathology) 

and the radiomics nomogram (integrating the 
13 radiomics features with the two clinical fea-

Figure 2. An example of a 36-year-old patient with endometrioid adenocarcinoma and adenomyosis. Superficial 
myometrial invasion in the left uterine horn region (white arrow) was diagnosed by radiologists but proven to be 
adenomyosis by surgical pathology. A. Axial T2WI-FS; B. Axial DWI; C. Axial CE-T1WI-FS; D. Sagittal T2WI-FS; E. Axial 
ADC; F. Region of interest on axial T2WI-FS. ADC, apparent diffusion coefficient; CE-T1WI: contrast-enhanced T1-
weighted imaging; DWI, diffusion weighted imaging; FS: fat saturation; T2WI: T2-weighted imaging.

Figure 3. LASSO selection process for radiomics features, the corresponding coefficients and the co-occurrence net-
work of the radiomics features and clinical information. A. The selected features and their corresponding LASSO co-
efficients, shape_M2DDS has the largest weight; B. The co-occurrence matrix plots the correlations of the patients 
eligible for FPT (red), clinical information (blue) and radiomics features (green). The blue line indicates a negative 
correlation, and the red line indicates a positive correlation (P<0.05). FPT: fertility-preserving treatment; LASSO, 
least absolute shrinkage and selection operator.
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tures) were developed based on the data from 
the primary group. The developed radiomics 
nomogram and the calibration curves are 
shown in Figures 4 and 5.

Diagnostic performance assessment

ROC curve analyses, including the AUC, speci-
ficity, sensitivity, and accuracy of the clinical 
model and the radiomics nomogram in the pri-
mary group and validation groups 1 and 2 in 
identifying FPT candidate patients are shown in 
Table 3. The AUCs of radiomics nomogram 
were 0.86 (95% CI: 0.80-0.93) in the primary 
group, 0.82 (95% CI: 0.71-0.93) in the valida-
tion group 1, and 0.94 (95% CI: 0.87-1.00) in 
the validation group 2, respectively. DeLong’s 
test showed that the AUC of the radiomics 
nomogram was higher than that of the clinical 
model for the three groups (all P<0.001).

With the help of radiomics nomogram, 34 
(11.8%) FPT candidates misidentified by the 
clinical model were changed to non-FPT candi-
dates, and 11 (3.8%) non-FPT candidates mis-
identified by the clinical model were changed to 
FPT candidates. CDC analysis showed that if 
the threshold probability was within 0-1.0, the 

dation group 1, and were 0.09 (95% CI: -0.03-
0.20) and 0.07 (95% CI: -0.09-0.23) (P=0.39) 
in the validation group 2, respectively.

Discussion

In this study, a radiomics nomogram combining 
mpMRI radiomics features and clinical informa-
tion was developed to identify eligible EAC/AH 
patients for FPT. The radiomics nomogram was 
also validated with both independent retro-
spective and prospective data, suggesting its 
reproducibility and reliability. The radiomics 
nomogram could aid clinical decision making in 
selecting eligible FPT patients, especially in 
helping gynecologists rule out false-negative 
patients for FPT. NRI and IDI analyses showed 
the better clinical usefulness of the radiomics 
nomogram than that of the clinical model for 
individually identifying eligible EAC/AH patients 
for receiving FPT.

There have been some reports on FPT using 
progestins for early-stage EC in young women 
[4, 18, 21]. The existing important problem in 
FPT planning is the lack of confidence in the 
diagnosis of the grade and MI of EC. D&C and 
endometrial biopsy are two major preoperative 
examinations that can provide EC grading infor-

Figure 4. The radiomics nomogram developed. The radiomics nomogram 
developed from the primary group. Based on this radiomics nomogram, 
for example, a 30-year-old woman with a radscore of 0.2 (37 points), 
grade 1 EAC (25 points), and MI (0 points) has a total of 62 points, which 
corresponds to a probability of FPT eligibility of approximately 13%, result-
ing in a radiomics nomogram diagnosis of non-FPT. CSI, cervical stromal 
invasion; D&C, dilatation and curettage; DMI, deep myometrial invasion; 
EM: extrauterine metastasis; High-grade: G2 and G3; Low-grade: AH and 
G1; MI, myometrial invasion.

radiomics nomogram provided a 
better net benefit than the treat-
all patients scheme or the treat-
none scheme, indicating its good 
clinical usefulness (Figure 6). 
The reclassification measures of 
discrimination confirmed that 
the radiomics nomogram per-
formed better than the clinical 
model based on all the data 
(including the primary group and 
validation groups 1 and 2), with 
an NRI of 0.80 (95% confidence 
interval [CI]: 0.53-1.07) and an 
IDI of 0.17 (95% CI: 0.11-0.23) 
(both P<0.05) (Figure 7). This 
result indicated that for every 
100, an additional 17 patients 
would have an optimal FPT plan-
ning assessment using the MRI 
radiomics nomogram. The NRI 
and IDI were 0.95 (95% CI: 0.61-
1.30) and 0.19 (95% CI: 0.10-
0.28) (P<0.001) in primary 
group, and were 0.65 (95% CI: 
0.07-1.22) and 0.08 (95% CI: 
0.00-0.17) (P=0.03) in the vali-
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mation. However, studies have shown that 
there are substantial discrepancies between 
preoperative and postoperative tumor grading. 
A study revealed that AH diagnosed by endome-
trial biopsy coexisted with EC in 42.6% of 
patients [22]. Others have shown that 14.7-
23.2% of biopsies suggested grade I EC, which 
were upgraded following surgical pathology [5, 
7, 23, 24].

It is commonly agreed that the group of patients 
eligible for FPT is restricted to that with pre-
sumed early-stage EC [4, 17, 18, 21]. However, 
the diagnostic accuracy of imaging for MI has 
been unsatisfactory. CT scans failed to identify 
MI in 39% of patients [25]. The accuracy of MRI 
in detecting MI varies from 68% to 82% with 

high false-negative because the signal of the 
junctional zone on T2WI and subendometrial 
enhancement on dynamic CE-T1WI are signifi-
cantly influenced by the periodic cycle [12, 26, 
27]. The higher incidence of complicating dis-
eases such as polypoid tumors, adenomyosis, 
and leiomyoma might be the causes of the 
lower diagnostic performance of MRI in young-
er EC patients [28-30]. The lower accuracy of 
imaging for MI results in difficulty for gynecolo-
gists in selecting eligible EC patients for FPT. 
Thus, the improvement of imaging assessment 
and rationalization of treatment planning are 
crucial for young patients with EC.

In the optimization process of the LASSO meth-
od for radiomics feature selection, 3 selected 

Figure 5. The calibration curves. The calibration 
curves of the primary group (A) and the validation 
groups 1 (B) and 2 (C), which indicate the good 
agreements between the prediction values and 
the observed outcomes of the radiomics nomo-
gram.
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features extracted from DWI were important in 
identifying eligible EAC/AH patients for FPT, 
which is in accordance with the results for DWI 
in a systematic review and meta-analysis of EC 
[31]. CE_Skewness was found to be an impor-
tant feature for identifying FPT candidates. 
Similarly, a previous study indicated that CE_
Kurtosis was an indicator of MI [32]. Shape_

LAL had high weight among the radiomics fea-
tures, suggesting an important role of conven-
tional shape-based features in this prediction 
model. Previous study reported that tumor size 
was correlated with the grade and MI of EC 
[33]. Tumor size is commonly used as a prog-
nostic factor in EC patients since it has been 
correlated with aggressive factors in EC [34].

Table 3. Diagnostic performance of the clinical model and the radiomics nomogram in identifying FPT 
candidate patients
Model Group SPE SEN ACC AUC (95% CI) P value*

Clinical model Primary 72.6% 53.3% 68.9% 0.63 (0.53-0.73)
Validation 1 68.6% 54.5% 66.7% 0.62 (0.45-0.78)
Validation 2 85.0% 54.5% 78.4% 0.69 (0.53-0.86)

Radiomics nomogram Primary 75.0% 86.7% 77.2% 0.86 (0.80-0.93) <0.001
Validation 1 65.7% 90.9% 69.2% 0.82 (0.71-0.93) 0.048
Validation 2 75.0% 100% 80.3% 0.94 (0.87-1.00) 0.002

*, comparison between clinical model with radiomics nomogram in the primary group and the validation groups. ACC, accuracy; 
AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity.

Figure 6. Clinical decision curves for the radiomics nomogram and the clinical model based on primary and valida-
tion groups’ data. The net benefit is plotted versus the threshold probability that represents the probability of FPT 
candidates (which is used to trigger a decision to choose that treatment). A-D. They are based on the data of all 
groups, the primary group, the validation group 1 and the validation group 2, respectively.
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This study showed that the radiomics nomo-
gram achieved a significantly higher diagnostic 
performance than the clinical model for all 
three groups. The radiomics nomogram could 
concurrently assess the tumor grade and MI, 
indicating that it is capable of preoperatively 
identifying eligible EC patients for FPT. It could 
be a powerful tool for gynecologists to assess 
the risk probability of FPT and to rule out false-
negative EC patients for FPT due to upgrading 
of the tumor in D&C and overestimation of MI 
(especially SMI) on MRI. Furthermore, CDC 
analysis showed that the radiomics nomogram 
achieved a good net benefit in selecting eligible 
FPT candidates. The NRI and IDI showed that 
the application of the radiomics nomogram 
resulted in approximately 17 of 100 patients 
benefiting from a precise assessment for FPT 
eligibility. Therefore, the nomogram could facili-
tate personalized treatment decisions for EC 
patients.

Limitations

This study had several limitations. First, many 
enrolled patients received pelvic MRI after 
curettage, forcing them to be based on the 

residual tumors rather than the intact primary 
tumors. The curettage procedure might have 
an influence on MRI findings and DWI parame-
ters. However, the abundant radiomics features 
might reduce the influence which affected by 
the D&C procedure. Second, because of the 
retrospective nature of the data from the pri-
mary group, some useful clinical information 
for selecting FPT, such as body mass index and 
insulin resistance, were not included, which 
might have influenced the effectiveness of  
this nomogram. Third, the various processes 
used here, from the data processing to  
the data analysis, model building and generat-
ing the diagnosis, could sometimes be time-
consuming; however, the higher accuracy and 
safer treatment decision making for EC patients 
who hope to receive FPT was a worthwhile 
trade-off.

Conclusion

This study developed a radiomics nomogram by 
integrating mpMRI radiomics features with clin-
ical information to identify EAC/AH patients eli-
gible for FPT, with a better performance than 
the clinical model. The nomogram could be a 

Figure 7. Reclassification of patients for non-FPT (A) and FPT (B) candidates. Groups are illustrated according to the 
radiomics nomogram and clinical model-determined FPT eligibility basing on the whole dataset with the specific 
patient numbers presented. The patients are pathological confirmed eligible for non-FPT (A) and FPT (B). In the circle 
plots, the patients who were classified both correctly by clinical and nomogram are represented as connections in 
light grey. The connections in light green indicate patients who were diagnosed incorrectly by clinical model but 
reclassified correctly by the nomogram, while connections in pink indicate patients who were diagnosed correctly by 
clinical model but reclassified incorrectly by the nomogram.
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useful tool for providing personalized treatment 
management for EAC/AH patients.
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Supplementary File

The formulation of radscore: Radscore = 0.18987 + -0.02802 × shape_LAL + -0.08874 × shape_
M2DDS + 0.04418 × T2WI_glcm_Imc2 + -0.05692 × T2WI_glcm_Idmn + -0.02245 × T2WI_glszm_
GLNUN + -0.05061 × DWI_glszm_ZP + 0.01202 × DWI_gldm_DE + 0.06208 × DWI_gldm_LDE + 
-0.00824 × CE_firstorder_IR + -0.04121 × CE_firstorder_Skewness + -0.01104 × CE_glszm_SZNU + 
-0.03293 × CE_gldm_SDHGLE + 0.10102 × ADC_glszm_SAHGLE.

Supplementary Table 1. The inter- and intra-class correlation coefficients (ICCs) of 385 radiomics 
features
Radiomics features Intra-class ICC Inter-class ICC
shape_Elongation 0.61 0.88
shape_Flatness 0.46 0.93
shape_LAL 0.84 0.96
shape_MAL 0.82 0.96
shape_M2DDC 0.90 0.97
shape_M2DDR 0.81 0.95
shape_M2DDS 0.95 0.96
shape_M3DD 0.83 0.95
shape_MeshVolume 0.92 0.99
shape_MinorAxisLength 0.76 0.93
shape_Sphericity 0.57 0.74
shape_SurfaceArea 0.89 0.98
shape_SurfaceVolumeRatio 0.75 0.87
shape_VoxelVolume 0.92 0.99
T2WI_firstorder_10P 0.79 0.79
T2WI_firstorder_90P 0.90 0.87
T2WI_firstorder_Energy 0.99 1.00
T2WI_firstorder_Entropy 0.83 0.94
T2WI_firstorder_IR 0.81 0.94
T2WI_firstorder_Kurtosis 0.71 0.51
T2WI_firstorder_Maximum 0.81 0.66
T2WI_firstorder_MAD 0.82 0.93
T2WI_firstorder_Mean 0.90 0.86
T2WI_firstorder_Median 0.89 0.90
T2WI_firstorder_Minimum 0.57 0.37
T2WI_firstorder_Range 0.75 0.71
T2WI_firstorder_RobustMAD 0.81 0.94
T2WI_firstorder_RootMeanSquared 0.90 0.87
T2WI_firstorder_Skewness 0.67 0.58
T2WI_firstorder_TotalEnergy 0.95 1.00
T2WI_firstorder_Uniformity 0.76 0.96
T2WI_firstorder_Variance 0.75 0.91
T2WI_glcm_Autocorrelation 0.80 0.81
T2WI_glcm_JointAverage 0.76 0.82
T2WI_glcm_CP 0.44 0.88
T2WI_glcm_ClusterShade 0.70 0.72
T2WI_glcm_ClusterTendency 0.67 0.87
T2WI_glcm_Contrast 0.84 0.90
T2WI_glcm_Correlation 0.75 0.84
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T2WI_glcm_DifferenceAverage 0.89 0.92
T2WI_glcm_DE 0.88 0.92
T2WI_glcm_DV 0.80 0.83
T2WI_glcm_JointEnergy 0.64 0.92
T2WI_glcm_JointEntropy 0.84 0.89
T2WI_glcm_Imc1 0.86 0.79
T2WI_glcm_Imc2 0.88 0.91
T2WI_glcm_Idm 0.91 0.95
T2WI_glcm_Idmn 0.80 0.84
T2WI_glcm_Id 0.91 0.95
T2WI_glcm_Idn 0.85 0.86
T2WI_glcm_InverseVariance 0.91 0.95
T2WI_glcm_MaximumProbability 0.59 0.95
T2WI_glcm_SumEntropy 0.82 0.90
T2WI_glcm_SumSquares 0.73 0.89
T2WI_glrlm_GLNU 0.96 1.00
T2WI_glrlm_GLNUN 0.77 0.95
T2WI_glrlm_GLV 0.75 0.91
T2WI_glrlm_HGLRE 0.82 0.81
T2WI_glrlm_LongRunEmphasis 0.94 0.99
T2WI_glrlm_LRHGLE 0.81 0.82
T2WI_glrlm_LRLGLE 0.55 0.67
T2WI_glrlm_LGLRE 0.55 0.64
T2WI_glrlm_RunEntropy 0.79 0.92
T2WI_glrlm_RLNU 0.97 0.99
T2WI_glrlm_RLNUN 0.92 0.95
T2WI_glrlm_RunPercentage 0.92 0.96
T2WI_glrlm_RunVariance 0.95 0.99
T2WI_glrlm_SRE 0.92 0.96
T2WI_glrlm_SRHGLE 0.83 0.81
T2WI_glrlm_SRLGLE 0.55 0.63
T2WI_glszm_GLNU 0.94 0.99
T2WI_glszm_GLNUN 0.76 0.91
T2WI_glszm_GLV 0.74 0.83
T2WI_glszm_HGLZE 0.80 0.77
T2WI_glszm_LAE 0.98 0.99
T2WI_glszm_LAHGLE 0.96 0.96
T2WI_glszm_LALGLE 0.87 0.87
T2WI_glszm_LGLZE 0.53 0.70
T2WI_glszm_SZNU 0.94 0.98
T2WI_glszm_SZNUN 0.86 0.87
T2WI_glszm_SAE 0.84 0.87
T2WI_glszm_SAHGLE 0.84 0.75
T2WI_glszm_SALGLE 0.52 0.69
T2WI_glszm_ZoneEntropy 0.81 0.89
T2WI_glszm_ZP 0.89 0.92
T2WI_glszm_ZoneVariance 0.98 0.99
T2WI_gldm_DE 0.82 0.88
T2WI_gldm_DNU 0.96 0.99
T2WI_gldm_DNUN 0.91 0.93
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T2WI_gldm_DependenceVariance 0.91 0.98
T2WI_gldm_GLNU 0.96 1.00
T2WI_gldm_GLV 0.75 0.91
T2WI_gldm_HGLE 0.82 0.81
T2WI_gldm_LDE 0.93 0.98
T2WI_gldm_LargeDependenceHGLE 0.86 0.86
T2WI_gldm_LDLGE 0.63 0.85
T2WI_gldm_LGLEG 0.55 0.63
T2WI_gldm_SDE 0.89 0.91
T2WI_gldm_SDHGLE 0.93 0.81
T2WI_gldm_SDLGLEG 0.64 0.63
DWI_firstorder_10P 0.92 0.94
DWI_firstorder_90P 0.99 0.98
DWI_firstorder_Energy 1.00 1.00
DWI_firstorder_Entropy 0.89 0.96
DWI_firstorder_IR 0.96 0.98
DWI_firstorder_Kurtosis 0.66 0.80
DWI_firstorder_Maximum 0.97 0.99
DWI_firstorder_MAD 0.97 0.99
DWI_firstorder_Mean 0.97 0.98
DWI_firstorder_Median 0.96 0.98
DWI_firstorder_Minimum 0.75 0.80
DWI_firstorder_Range 0.95 0.98
DWI_firstorder_RobustMAD 0.96 0.98
DWI_firstorder_RootMeanSquared 0.98 0.98
DWI_firstorder_Skewness 0.67 0.94
DWI_firstorder_TotalEnergy 0.99 1.00
DWI_firstorder_Uniformity 0.74 0.95
DWI_firstorder_Variance 0.99 1.00
DWI_glcm_Autocorrelation 0.98 0.98
DWI_glcm_JointAverage 0.94 0.96
DWI_glcm_CP 0.98 0.99
DWI_glcm_ClusterShade 0.95 1.00
DWI_glcm_ClusterTendency 0.97 0.99
DWI_glcm_Contrast 0.92 0.97
DWI_glcm_Correlation 0.72 0.56
DWI_glcm_DifferenceAverage 0.85 0.89
DWI_glcm_DE 0.88 0.95
DWI_glcm_DV 0.95 0.99
DWI_glcm_JointEnergy 0.76 0.97
DWI_glcm_JointEntropy 0.90 0.97
DWI_glcm_Imc1 0.57 0.48
DWI_glcm_Imc2 0.65 0.83
DWI_glcm_Idm 0.82 0.84
DWI_glcm_Idmn 0.67 0.32
DWI_glcm_Id 0.81 0.82
DWI_glcm_Idn 0.69 0.47
DWI_glcm_InverseVariance 0.76 0.71
DWI_glcm_MaximumProbability 0.77 0.97
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DWI_glcm_SumEntropy 0.89 0.94
DWI_glcm_SumSquares 0.98 0.99
DWI_glrlm_GLNU 0.94 0.99
DWI_glrlm_GLNUN 0.81 0.92
DWI_glrlm_GLV 0.99 0.99
DWI_glrlm_HGLRE 0.98 0.98
DWI_glrlm_LongRunEmphasis 0.90 0.98
DWI_glrlm_LRHGLE 0.99 1.00
DWI_glrlm_LRLGLE 0.76 0.97
DWI_glrlm_LGLRE 0.78 0.87
DWI_glrlm_RunEntropy 0.88 0.87
DWI_glrlm_RLNU 0.98 0.99
DWI_glrlm_RLNUN 0.80 0.79
DWI_glrlm_RunPercentage 0.84 0.89
DWI_glrlm_RunVariance 0.94 0.99
DWI_glrlm_SRE 0.72 0.89
DWI_glrlm_SRHGLE 0.98 0.98
DWI_glrlm_SRLGLE 0.70 0.83
DWI_glszm_GLNU 0.69 0.92
DWI_glszm_GLNUN 0.69 0.92
DWI_glszm_GLV 0.92 0.96
DWI_glszm_HGLZE 0.94 0.98
DWI_glszm_LAE 0.94 0.99
DWI_glszm_LAHGLE 0.99 1.00
DWI_glszm_LALGLE 0.70 0.96
DWI_glszm_LGLZE 0.74 0.88
DWI_glszm_SZNU 0.62 0.87
DWI_glszm_SZNUN 0.51 0.80
DWI_glszm_SAE 0.22 0.69
DWI_glszm_SAHGLE 0.61 0.75
DWI_glszm_SALGLE 0.14 0.72
DWI_glszm_ZoneEntropy 0.84 0.89
DWI_glszm_ZP 0.75 0.88
DWI_glszm_ZoneVariance 0.95 0.99
DWI_gldm_DE 0.90 0.80
DWI_gldm_DNU 0.99 0.99
DWI_gldm_DNUN 0.79 0.61
DWI_gldm_DependenceVariance 0.87 0.89
DWI_gldm_GLNU 0.95 0.99
DWI_gldm_GLV 0.99 0.99
DWI_gldm_HGLE 0.98 0.98
DWI_gldm_LDE 0.86 0.92
DWI_gldm_LargeDependenceHGLE 0.97 0.99
DWI_gldm_LDLGE 0.79 0.85
DWI_gldm_LGLEG 0.76 0.84
DWI_gldm_SDE 0.65 0.86
DWI_gldm_SDHGLE 0.94 0.96
DWI_gldm_SDLGLEG 0.49 0.88
CE_firstorder_10P 0.84 0.87
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CE_firstorder_90P 0.86 0.86
CE_firstorder_Energy 0.95 0.99
CE_firstorder_Entropy 0.82 0.92
CE_firstorder_IR 0.79 0.96
CE_firstorder_Kurtosis 0.47 0.76
CE_firstorder_Maximum 0.88 0.88
CE_firstorder_MAD 0.80 0.94
CE_firstorder_Mean 0.87 0.84
CE_firstorder_Median 0.87 0.83
CE_firstorder_Minimum 0.89 0.92
CE_firstorder_Range 0.87 0.97
CE_firstorder_RobustMAD 0.79 0.95
CE_firstorder_RootMeanSquared 0.87 0.84
CE_firstorder_Skewness 0.88 0.81
CE_firstorder_TotalEnergy 0.90 0.99
CE_firstorder_Uniformity 0.75 0.88
CE_firstorder_Variance 0.85 0.97
CE_glcm_Autocorrelation 0.83 0.97
CE_glcm_JointAverage 0.83 0.96
CE_glcm_CP 0.83 0.96
CE_glcm_ClusterShade 0.67 0.93
CE_glcm_ClusterTendency 0.77 0.95
CE_glcm_Contrast 0.85 0.85
CE_glcm_Correlation 0.73 0.73
CE_glcm_DifferenceAverage 0.82 0.75
CE_glcm_DE 0.83 0.94
CE_glcm_DV 0.87 0.98
CE_glcm_JointEnergy 0.69 0.91
CE_glcm_JointEntropy 0.85 0.97
CE_glcm_Imc1 0.55 0.42
CE_glcm_Imc2 0.64 0.74
CE_glcm_Idm 0.78 0.75
CE_glcm_Idmn 0.89 0.29
CE_glcm_Id 0.79 0.75
CE_glcm_Idn 0.86 0.45
CE_glcm_InverseVariance 0.68 0.62
CE_glcm_MaximumProbability 0.76 0.92
CE_glcm_SumEntropy 0.80 0.97
CE_glcm_SumSquares 0.81 0.94
CE_glrlm_GLNU 0.97 0.99
CE_glrlm_GLNUN 0.74 0.88
CE_glrlm_GLV 0.86 0.97
CE_glrlm_HGLRE 0.86 0.97
CE_glrlm_LongRunEmphasis 0.89 0.94
CE_glrlm_LRHGLE 0.87 0.93
CE_glrlm_LRLGLE 0.57 0.94
CE_glrlm_LGLRE 0.46 0.93
CE_glrlm_RunEntropy 0.81 0.97
CE_glrlm_RLNU 0.95 1.00
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CE_glrlm_RLNUN 0.88 0.85
CE_glrlm_RunPercentage 0.89 0.87
CE_glrlm_RunVariance 0.88 0.95
CE_glrlm_SRE 0.90 0.87
CE_glrlm_SRHGLE 0.87 0.97
CE_glrlm_SRLGLE 0.42 0.93
CE_glszm_GLNU 0.92 0.99
CE_glszm_GLNUN 0.75 0.90
CE_glszm_GLV 0.87 0.97
CE_glszm_HGLZE 0.89 0.97
CE_glszm_LAE 0.97 0.97
CE_glszm_LAHGLE 0.99 0.96
CE_glszm_LALGLE 0.94 0.98
CE_glszm_LGLZE 0.32 0.79
CE_glszm_SZNU 0.90 0.99
CE_glszm_SZNUN 0.63 0.79
CE_glszm_SAE 0.66 0.81
CE_glszm_SAHGLE 0.90 0.97
CE_glszm_SALGLE 0.21 0.65
CE_glszm_ZoneEntropy 0.84 0.97
CE_glszm_ZP 0.72 0.79
CE_glszm_ZoneVariance 0.97 0.97
CE_gldm_DE 0.89 0.96
CE_gldm_DNU 0.94 1.00
CE_gldm_DNUN 0.78 0.82
CE_gldm_DependenceVariance 0.89 0.92
CE_gldm_GLNU 0.98 0.99
CE_gldm_GLV 0.85 0.97
CE_gldm_HGLE 0.86 0.97
CE_gldm_LDE 0.91 0.91
CE_gldm_LargeDependenceHGLE 0.78 0.89
CE_gldm_LDLGE 0.71 0.93
CE_gldm_LGLEG 0.47 0.93
CE_gldm_SDE 0.71 0.79
CE_gldm_SDHGLE 0.89 0.97
CE_gldm_SDLGLEG 0.61 0.88
ADC_firstorder_10P 0.80 0.97
ADC_firstorder_90P 0.86 0.95
ADC_firstorder_Energy 0.93 0.99
ADC_firstorder_Entropy 0.55 0.94
ADC_firstorder_IR 0.72 0.94
ADC_firstorder_Kurtosis 0.46 0.95
ADC_firstorder_Maximum 0.75 0.87
ADC_firstorder_MAD 0.69 0.96
ADC_firstorder_Mean 0.84 0.96
ADC_firstorder_Median 0.79 0.97
ADC_firstorder_Minimum 0.84 0.87
ADC_firstorder_Range 0.76 0.87
ADC_firstorder_RobustMAD 0.70 0.96



Radiomics nomogram in endometrioid carcinoma treatment

7 

ADC_firstorder_RootMeanSquared 0.90 0.95
ADC_firstorder_Skewness 0.71 0.96
ADC_firstorder_TotalEnergy 0.84 0.98
ADC_firstorder_Uniformity 0.02 1.00
ADC_firstorder_Variance 0.71 0.96
ADC_glcm_Autocorrelation 0.61 0.78
ADC_glcm_JointAverage 0.59 0.81
ADC_glcm_CP 0.53 0.93
ADC_glcm_ClusterShade 0.33 0.96
ADC_glcm_ClusterTendency 0.66 0.94
ADC_glcm_Contrast 0.79 0.97
ADC_glcm_Correlation 0.55 0.82
ADC_glcm_DifferenceAverage 0.80 0.98
ADC_glcm_DE 0.78 0.91
ADC_glcm_DV 0.56 0.96
ADC_glcm_JointEnergy 0.0 0.99
ADC_glcm_JointEntropy 0.67 0.84
ADC_glcm_Imc1 0.88 0.89
ADC_glcm_Imc2 0.87 0.99
ADC_glcm_Idm 0.61 0.99
ADC_glcm_Idmn 0.57 0.83
ADC_glcm_Id 0.66 0.99
ADC_glcm_Idn 0.74 0.85
ADC_glcm_InverseVariance 0.85 0.98
ADC_glcm_MaximumProbability 0.02 1.00
ADC_glcm_SumEntropy 0.67 0.79
ADC_glcm_SumSquares 0.72 0.96
ADC_glrlm_GLNU 0.99 1.00
ADC_glrlm_GLNUN 0.16 0.98
ADC_glrlm_GLV 0.66 0.97
ADC_glrlm_HGLRE 0.72 0.82
ADC_glrlm_LongRunEmphasis 0.35 1.00
ADC_glrlm_LRHGLE 0.69 0.80
ADC_glrlm_LRLGLE 0.01 1.00
ADC_glrlm_LGLRE 0.02 0.99
ADC_glrlm_RunEntropy 0.71 0.89
ADC_glrlm_RLNU 0.95 0.99
ADC_glrlm_RLNUN 0.61 0.99
ADC_glrlm_RunPercentage 0.43 1.00
ADC_glrlm_RunVariance 0.31 1.00
ADC_glrlm_SRE 0.57 0.99
ADC_glrlm_SRHGLE 0.72 0.83
ADC_glrlm_SRLGLE 0.01 0.98
ADC_glszm_GLNU 0.86 0.99
ADC_glszm_GLNUN 0.71 0.92
ADC_glszm_GLV 0.69 0.96
ADC_glszm_HGLZE 0.73 0.82
ADC_glszm_LAE 0.89 0.99
ADC_glszm_LAHGLE 0.80 1.00
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ADC_glszm_LALGLE 0.0 0.96
ADC_glszm_LGLZE 0.39 0.62
ADC_glszm_SZNU 0.81 0.97
ADC_glszm_SZNUN 0.91 0.90
ADC_glszm_SAE 0.91 0.92
ADC_glszm_SAHGLE 0.78 0.86
ADC_glszm_SALGLE 0.52 0.54
ADC_glszm_ZoneEntropy 0.87 0.85
ADC_glszm_ZP 0.92 0.97
ADC_glszm_ZoneVariance 0.89 0.99
ADC_gldm_DE 0.86 0.84
ADC_gldm_DNU 0.87 0.98
ADC_gldm_DNUN 0.90 0.91
ADC_gldm_DependenceVariance 0.03 1.00
ADC_gldm_GLNU 0.97 1.00
ADC_gldm_GLV 0.71 0.96
ADC_gldm_HGLE 0.70 0.82
ADC_gldm_LDE 0.10 1.00
ADC_gldm_LargeDependenceHGLE 0.66 0.69
ADC_gldm_LDLGE 0.0 1.00
ADC_gldm_LGLEG 0.02 1.00
ADC_gldm_SDE 0.92 0.94
ADC_gldm_SDHGLE 0.81 0.91
ADC_gldm_SDLGLEG 0.62 0.50

Supplementary Figure 1. LASSO selection process for radiomics features. A. Selection of the tuning parameter 
lambda (λ) using 10-fold cross-validation. Binomial deviances from the LASSO regression cross-validation model are 
plotted as a function of log (λ); B. LASSO coefficient profiles of the 13 radiomics features.


