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Abstract: Liquid biopsy test has a better uptake for colorectal cancer (CRC) screening. However, suboptimal detec-
tion of early-staged colorectal neoplasia (CRN) limits its application. Here, we established an early-staged CRN 
blood test using error-corrected sequencing by comparing clonal hematopoiesis (CH) of 63 CRN patients and that of 
32 controls. We identified 1,446 variants and classified the uniqueness in CRN patients. There was no significance 
difference in the amount of variant between CRNs and controls, but the uniqueness of variants with defective DNA 
mismatch repair-related mutational signature was addressed from peripheral blood in early-staged CRN patients. 
By machine learning approach, the early-staged CRNs was discriminated from controls with an AUC of 0.959 and 
an accuracy of 0.937 (95% CI, 0.863 to 0.968). The CRN predictive model was further validated by additional 20 
CRNs and 10 controls and showed the accuracy, sensitivity, specificity, positive prediction value (PPV) and negative 
prediction value (NPV) of 0.933 (95% CI: 0.779 to 0.992), 0.95, 0.90, 0.95 and 0.90, respectively. In summary, we 
develop a CH-based liquid biopsy test with machine learning approach, which not only increase screening uptake 
but also improve the detection rate of early-staged CRN.
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Introduction

Colorectal cancer (CRC) draws attentions be- 
cause it is the third most common cancer and 
the second leading cause of cancer-related 
deaths worldwide [1]. In Taiwan, the incidence 
of CRC was 41.84 cases per 100,000 resi- 
dents in 2018 and was the most common can-
cer than lung cancer and breast cancer. CRC 
has high mortality in advanced stages but it is 
preventable by removal of precancerous le- 
sions (advanced adenoma, AA) or detection of 
CRC in early stage [2]. Colonoscopy remains 
the gold standard among the various screen- 
ing modalities and reduces the mortality rates 

by 67% [3, 4]. However, it remains debated 
whether colonoscopy qualified as first-line 
screening modality because of its inconve-
nience, invasiveness, and cost, which limit the 
adherence of general population to the screen-
ing program. Currently, fecal immunochemical 
test (FIT) and fecal DNA test are the main 
approaches for non-invasive CRC screening. 
Although FIT contributes towards a reduction  
in CRC mortality, low specificity and sensitivity 
hinder its clinical utility for identifying early-
staged CRN [5-7]. Therefore, there is an over-
whelming preference for liquid biopsy versus 
stool-based screening, highlighting the need 
and potential merit for developing highly robust 
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liquid biopsy tests for identifying early-staged 
CRN. However, sub-optimal liquid biopsy detec-
tion remains an unmet need for CRN screening 
in current clinical practice.

Clonal hematopoiesis (CH) is referred to the 
clonal expansions of mutated hematopoietic 
cells and is common in aging human [8-11]. In 
the past decade, emerging data have demon-
strated that CH in the peripheral blood may 
imprecate the microenvironment in disease 
[12-17]. Cancer patients have higher rate of CH 
and this may be associated with exposure to 
environmental mutagens, radiation or chemo-
therapy [18, 19]. The DNMT3A, TET2, ASXL1 
and JAK2 are canonical CH-related genes and 
common mutated in acute myeloid leukemia 
(AML) and myelodysplastic syndrome (MDS) 
[20, 21]. Recent genetic studies have shown 
that CH is common in individuals without he- 
matological malignancies and is associated 
with the cardiovascular disease and stroke by 
promoting inflammation of blood vessel walls 
[22-24]. Furthermore, CH is also reported to be 
relevant with solid cancer and approximately 
30% of patients in solid cancer harbor CH 
mutations [25]. Currently, CH is thought to 
serve as predictors of progression to hemato-
logic malignancy and to have the potential role 
of precision oncology in treatment [26, 27]. For 
example, mutations in DNA damage response 
genes (TP53, PPM1D, CHEK20) were clonal 
selected with exposure to cancer therapies 
(radiotherapy, platinum and topoisomerase II 
inhibitors) and the presence of those selected 
cancer predisposition mutations may increase 
the risk of therapy-related myeloid neoplasms 
(tMNs) development in patient of solid cancer 
[28]. Additionally, CH in patients with cancers 
has fundamental differences comparing to 
healthy individuals [29]. However, the mecha-
nisms of CH selection and malignant transfor-
mation are still not fully understood.

With increasing use and improvement of next-
generation sequencing (NGS) technique, recent 
studies have shown the applications of “error-
corrected sequencing” (ECS) in CH researches. 
“Error suppression and mutation call” of ECS 
are designed as the “unique molecular index” 
(UMI), which improves the detection sensiti- 
vity of achieving variant allele frequency (VAF) 
≥0.0001 [30]. Genetic analysis of human blood 

samples using ECS has proven that low allelic 
variants (defined as VAF lower than 0.02) have 
found in almost everyone over the age of 50 
[31, 32]. In note, most of those low allelic vari-
ants are below the detection limit of standard 
whole exome sequencing (WES). On the other 
hand, the higher sensitivity achieved by the 
advanced NGS technologies results in more 
variants identified. The huge number of vari-
ants increases the difficulty of using traditional 
analysis methods to process the ever-increas-
ing CH mutations. Currently, machine learning 
is wildly applied in complex genetic analysis 
due to its ability to identify the multivariate sta-
tistical properties that distinguish two different 
groups of data [33]. For example, MetaNet, a 
computational framework, is developed by ana-
lyzing clinical and pan-cancer DNA sequencing 
data for assessment of metastatic risk by us- 
ing a machine learning approach [34]. Features 
learned from the metastatic tumors enable 
MetaNet to identify patients with primary can-
cers at high risk of metastasis before the onset 
of symptoms.

In this study, we hypothesize that the precan-
cerous environments provide pressures to lead 
the evolutional trajectory of CH and these CRN-
related CH variants may be used as detection 
markers for early CRN screening in liquid biop-
sy. Thus, we enrolled coloscopy-informed early-
staged CRN patients and healthy controls to 
identify CH through ECS technique. Unique 
spectrum of CH predictors was discovered and 
a CH-based liquid biopsy test was established 
through machine-learning approach.

Materials and methods

Patients

This study protocol was approved by the 
Institutional Review Board of the National 
Taiwan University Hospital (No. 201712033- 
RIN). The informed consent was signed by the 
patients. Respective colorectal neoplasm pa- 
tients and healthy controls were retrieved from 
Health Management Center at National Taiwan 
University Hospital. Eligible patients were at 
least 40 years of age and classified based on 
the histological examination and coloscopy as- 
say. Early-stage CRN was defined as AA and 
stage I cancer.
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Blood collection and DNA extraction

Whole blood was collected in K2EDTA tube and 
processed from 2-6 hours after blood drawn. 
Peripheral blood DNA was extracted from 
PBMC using QIAamp Blood DNA Mini kit (Qia- 
gen, Hilden Germany) according to the manu-
facturer’s instructions. Additional fragmenta-
tion was performed from 100 ng peripheral 
blood DNA using KAPA Freg kit (KAPA Bio- 
systems, Wilmington, MA) under the condition 
of 37°C incubation for 30 minutes.

Library preparation and next-generation se-
quencing

Sequencing libraries were prepared according 
to the manufacturer’s instructions of AVENIO 
Expanded kit (Roche sequencing solution, 
Pleasanton, CA) with 30 ng of fragmented 
peripheral blood DNA. The library profile was 
analyzed with the Agilent 2200 Bioanalyzer 
(Agilent Technologies, Palo Alto, CA) and qu- 
antified using QuBit dsDNA HS Assay kit 
(ThermoFisher, Waltham, MA). For a single 
sequencing run, the 8 or 16-multiplexed library 
was created by pooling the libraries and se- 
quenced on a lane of Illumina HiSeq 4000 flow 
cell or NovaSeq 6000 S1 flow cell with 2×150-
bp paired-end reads. Raw sequencing was ana-
lyzed using AVENIO ctDNA analysis software 
(version 1.1.0) with the setting of “Default- 
Expanded-Panel-Workflow”.

Statistical analysis

Statistical analysis was performed in R (version 
3.6.1). Two-sample T test was used for compar-
isons of the VAF distributions. Wilcoxon rank-
sum test was performed to test the probability 
of difference in VAFs observed between the 
CRN patients and controls. P-value <0.05 was 
considered statistically significant.

Mutational signature analysis

The contribution of known mutation processes 
to the single nucleotide variations was mea-
sured by “MiutationalPatterns” package using 
the COSMIC signature set v2 [35]. Non-nega- 
tive matrix factorization (NMF) package was 
used to determine the minimal components 
with may explain maximum variance among 
CRN group or control group in training cohort. 

Cosine correlation similarity was in using the 
“MutationalPatterns” package to measure the 
closeness of mutational signatures. Visualiza- 
tions of variants in different groups were car-
ried out in using the R package “ggplot2”.

Data pre-process and model-training method

A learning framework with pre-processing filter-
ing was used for the establishment of CRN pre-
dictive model. The classification framework of 
model-training used the R package “caret”. The 
discovery cohort was randomly split into train-
ing set and testing set in the ratio 70:30 and 
the CRN classifier was developed by partial 
least square regression with repeated 10-fold 
cross-validation in 1,000 times. Accuracy of 
the CRN classifier was assessed in the testing 
set and another independent validation cohort, 
composed of 20 CRNs and 10 controls. In addi-
tion, random sampling of the discovery cohort 
using 1,000 bootstraps was used to assess the 
performance of prediction model and estimate 
the confidence interval of accuracy in using the 
BCa bootstrap method by R package “boot”.

Results

Patients’ characteristics

We retrieved respective cohorts of colorectal 
neoplasm patients and healthy controls from 
Health Management Center at National Taiwan 
University Hospital. Eligible patients were at 
least 40 years of age and classified based on 
the histological examination and coloscopy as- 
say. Early-staged CRN was defined as AA and 
stage I cancer. Under the selection criteria, 63 
early-staged CRN patients (CRNs), including 18 
stage I CRC patients and 45 AA patients, and 
32 healthy normal controls (controls) were 
enrolled in this study as the discovery cohort. 
The positive rate of FIT test in the CRNs was 
55.6%. All the controls were negative in FIT test 
and confirmed by coloscopy assay. Conditional 
probabilities for the effect of age and sex on 
screening were tested by Student’s t and 
Fisher’s exact tests, resulting in P-values of 
0.155 and 0.096, respectively. Next, additional 
20 CRN patients, including 16 AA patients and 
4 stage I CRC patients, and 10 healthy normal 
controls were enrolled and served as the vali-
dation cohort (Table 1).
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Table 1. Demographic and clinical information
Discovery cohort Validation cohort

CRNs, n=63 Controls, n=32 CRNs, n=20 Controls, n=10
Male, n (%) 30 (47.6) 21 (65.6) 7 (35.0) 5 (50.0)
Age, years (SD) 64.6 (9.6) 61.9 (6.4) 65.6 (9.9) 61.6 (5.6)
Location, n (%) 
    Proximal 32 (50.8) - 10 (50.0) -
    Distal 10 (15.9) - 6 (30.0) -
    Rectum 21 (33.3) - 4 (20.0) -
Tumor size, mm (SD) 3.4 (1.7) - 3.1 (1.3) -
Histology, n (%)
    Advanced adenoma -
        Tubular 11 (17.5) - 5 (25.0)
        Tubulovillous 31 (49.2) - 11 (55.0) -
        Villous 3 (4.7) - 0 -
    Stage I cancer 18 (28.6) - 4 (20.0) -
FIT, n (%)
    Positive 35 (55.6) 0 10 (50.0) 0
    Negative 28 (44.4) 32 (100) 10 (50.0) 10 (100)
FIT: fecal immunochemical test.

Reshaping the mutational profiles of CH in 
peripheral blood by error-corrected sequencing

As a step towards developing a non-invasive 
method for early-stage CRN screening, we char-
acterized mutations including CH-related vari-
ants in peripheral blood mononuclear cells 
(PBMCs) using the ECS approach (Figure 1A). 
Initially, 63 early-staged CRN patients and 32 
healthy individuals were enrolled as the discov-
ery cohort for the ECS analysis. We implement-
ed a quality control to ensure that the unique 
depth of each individual is greater than 3,000× 
before further analysis of the variants (Figure 
1B). As the result, 1,446 variants were identi-
fied in the discovery cohort (Figure 1C). There 
were 1,171 variants identified in CRNs and 753 
of 1,171 (64.3%) variants were unique and not 
shared with controls. On the other hand, 693 
variants were identified in controls and 275 of 
693 (39.7%) variants were unique and not sh- 
ared with CRNs. The average number of detect-
ed variants in CRNs and controls were 128.2 
(92-167) and 127.2 (101-166), respectively. 
Somatic mutations with VAF at least 0.02 are 
the traditional definition of clonal hematopoie-
sis indeterminate potential (CHIP) in clinic. With 
the specification, there were 7 (11.11%) somat-
ic variants with VAF greater than 0.02 found in 
63 CRNs and 3 (9.38%) were found in 32 con-

trols (Table 2). Not surprisingly, the low allelic 
variants with VAF below 0.02 were detected in 
all samples (Figure 2A). The average propor-
tions of low allelic variants were 39.05% 
(12.63%-53.33%) in CRNs and 37.07% (8.6%-
54.3%) in controls (Figure 2B). Notably, the 
mean proportions of those low allelic variants 
with VAF lower than 0.001 were 15.88% 
(3.16%-27.5%) and 16.1% (3.31%-26.53%) in 
CRNs and controls, respectively (Figure 2C). 
However, there was no statistical significance 
in the difference of the variant quantities bet- 
ween CRNs and controls.

Mutational signature analysis reveals the influ-
ence of genetic architecture in defective DNA 
mismatch repair

To understand the influence of identified so- 
matic variants, we performed the mutational 
signature analysis in both groups. Initially, we 
identified 845 somatic variants observed in  
the CRNs and 450 somatic variants observed 
in the controls followed by performing the 96 
mutational profiles analysis for each sample. 
By using the algorithms of non-negative matrix 
factorization (NMF), three mutational profiles 
were identified from CRNs (Figure 3) and four 
mutational profiles were identified from con-
trols (Figure 4). To investigate the potential  
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Figure 1. The mutational spectrum reshaped by ECS in CRNs and controls. A. The experimental workflow. B. Metrics 
of Error-corrected Sequencing. C. The mutational spectrum. The level of VAF is addressed from dark blue to red 
as low to high. The clinicopathological features are noted for each individual. FIT: fecal immunochemical test; AA: 
advanced adenoma.

contribution of mutagens in those profiles, co- 
sine similarity analysis was used to identify the 
similarity between those profiles and muta- 
tional signatures with the activity of 30 spe- 
cific mutational processes investigated by 
COSMIC mutational signature v2 in human can-
cer (Figures 3A, 4A). Next, we compared the 
difference between those groups and found 
the Signature 20 was contributed uniquely from 

CRNs. The proposed etiology of Signature 20  
is associated with defective DNA mismatch 
repair, which is commonly reveled in sporadic 
CRCs [36, 37]. Furthermore, we found that 
Signature 1 did not contribute to both groups  
in this study, which may indicate that age-relat-
ed variants are not common in this target panel 
and may not contribute to the construction of 
predictive models for CRN detection.
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Table 2. Somatic mutations with VAF greater than 0.02
Sample group Age Gender Gene Variant VAF (Deplex)
CRN patient 65.8 M BRAF Gly446val 0.027
CRN patient 56.3 F DDR2 Pro496Ser 0.044
CRN patient 59.3 M MSH2 Arg382His 0.021
CRN patient 72.4 M ROS1 Arg1942Trp 0.024
CRN patient 49.4 F FGFR2 Arg422Cys 0.024
CRN patient 62 F AR Leu57Gln 0.025
CRN patient 76.4 M CSF1R Trp159Ter 0.050
Control group 62 M PMS2 His479Gln 0.027
Control group 69 M ROS1 Val332Ala 0.040
Control group 64 M FLT1 Ser1279Asn 0.031

GNA11 Arg114Gln 0.026

Figure 2. Genetic profiling of variants in CRN patients and risk-matched controls. (A) Distribution of VAF in each 
individual was addressed in CRN patients and risk-matched control groups. The VAFs of PBMCs were determined by 
error corrected sequencing with greater than 3,000× unique-depth. (B) The prevalence of VAF <0.02 in CRNs and 
controls. (C) The prevalence of VAF <0.001 in CRNs and controls. P-values were calculated using two-sample T test 
with Welch’s correction in (B and C).

Construction of CH-based predictive model for 
early-stage CRN identification

In this case-control study, those variants were 
scattered and it was difficult to deal with those 
statistical extremes through traditional analy-
sis methods. Therefore, we implemented ma- 
chine learning approach to discriminate early-
stage CRN patients from risk-matched controls 
(Figure 5A). Initially, the pre-processing filtering 
was performed using the 1,446 variants from 
the discovery cohort with following filters: (1) 
removed the germline mutations; (2) removed 

the common shared variants present in CRN 
patients and risk-matched controls with a Wil- 
coxon rank sum test P-value >0.1; (3) removed 
the unique variants (only presented in CRNs or 
controls) with less than two cases in the train-
ing cohort; (4) rescued the filtered unique vari-
ants which have been reported with the patho-
genicity significantly. Under the filter criteria, 88 
resulting variants were used as the variables 
for model training (Figure 5B). Next, we split  
the discovery cohort to training set and testing 
set by 70:30 resampling and trained our predic-
tive model using partial least squares regres-
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Figure 3. Three enriched mutational profiles in CRNs. A. Trinucleotide motif frequency plot and enriched mutational 
signature for three mutational profiles in CRNs. On the x axis, the 16 possible trinucleotide contexts are repeated 
once for each of the six substitution types. B. Relative contribution. Proportional distribution of each enriched muta-
tional profile was addressed. C. Absolute contribution. The number of mutations was addressed for each enriched 
mutational profile.

sion with repeated 10-fold cross-validation in 
1,000 times. The AUC of predictive model was 
0.959 (Figure 5C). Confidence interval for accu-
racy of training-model was generated by 1,000 
bootstraps from discovery cohort, resulting in 
0.937 (95% CI, 0.863 to 0.968) (Figure 5D).

Validation of CH-based CRN predictive model

An independent cohort, which included 20 ear-
ly-staged CRN patients and 10 healthy controls 
was used to validate the CH-based CRN predic-
tion model. As the result shown in Table 3, our 
prediction model could correctly discriminate 
those 20 CRNs from 10 controls in an accuracy, 
sensitivity, specificity, positive prediction value 
(PPV) and negative prediction value (NPV) of 
0.933 (95% CI: 0.779 to 0.992), 0.95, 0.90, 
0.95 and 0.90, respectively. It is worth noting 

that, in the same validation cohort, the sensi- 
tivity in FIT test of the AA group and the stage I 
cancer group were 48.9% and 72.2%, respec-
tively (Table 3). That is, by using the CH-based 
CRN predictive model, it may improve the abili-
ty of early CRN detection compared to the tradi-
tional FIT test and provide the potential in clini-
cal practice.

Characteristics of variants in CH-based CRN 
predictive model

The 88 resulting variants were retained from 
the 1,446 variants under the screening crite- 
ria and used as variables for model training. 
Among these 88 variants, 71 were unique in 
the CRNs, 8 were unique in controls and 9 we- 
re overlaid in both groups (Figure 6A). On the 
other hand, these 88 variants were located into 
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Figure 4. Four enriched mutational profiles in controls. A. Trinucleotide motif frequency plot and enriched mutational 
signature for four mutational profiles in controls. B. Relative contribution. Proportional distribution of each enriched 
mutational profile was addressed. C. Absolute contribution. The number of mutations was addressed for each en-
riched mutational profile.

42 genes, and 27 of 42 were unique in CRNs 
(Figure 6B). To characterize the CRN unique 
variants, we implemented the mutational sig-
nature analysis to analyze these 71 variants.  
As the result in Figure 6C, 9 mutational signa-
tures were identified, including Signature 3 wi- 
th BRCA1/BRCA2 mutation; Signature 10 with 
POLE mutations; Signature 15, 20 with defec-
tive DNA mismatch repair; Signature 21 with 
microsatellite unstable tumors; Signature 22 
with exposure of aristolochic acid and Signa- 
ture 12, 28, 30 with unknown etiologies.

Discussion

CH is common in the elderly. Due to the life- 
style factors and the exposure of environmen-
tal carcinogens, the accumulation of mutations 
in malignant tumors increases. In this study, we 

applied the ECS technique with higher sensitiv-
ity to detect low allelic variants and reshaped 
the CH landscape in early-stage CRN patients. 
It was not a surprise that high rate of low allelic 
variants was measured in almost all samples 
when using the ECS technique for variant profil-
ing. Most of those low allelic variants do not 
directly act as driver mutations for malignant 
transformation but the clonal evolution of CH 
may reflect the condition of stress or the sta- 
tus of precancerous environment [38]. Pre- 
vious report also indicated that most of those 
low allelic variants might remain stable at low 
levels for many years in healthy individuals  
[39]. However, as far as we know, there is li- 
mited understanding about the mechanisms 
underpinning the evolutionary trajectory of CH. 
Indeed, most studies identified those low alle- 
lic variants in white blood cells and suggested 
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Table 3. Predictive performance in validation 
cohort

Predictor
Reference

CRNs Controls
CRNs 19 1
Controls 1 9
Accuracy (95% CI): 0.9333 (0.7793, 0.9918). P-value 
[Acc>NIR]: 0.00065. Kappa: 0.85. Sensitivity: 95.0%. 
Specificity: 90.0%.

Figure 5. Prediction of CRNs using machine learning algorithms. A. Study framework. B. The diagram of pre-pro-
cessing filtering. C. The analysis method of machine-learning was based on a 10-fold cross-validation framework. D. 
Confidence interval for accuracy of training-model was generated by 1,000 bootstraps from the discovery cohort.

those variants as “background” or “contami-
nate” in cell-free DNA (cfDNA) analysis [40, 41].

What sets us apart in this study is that we 
reshaped the genetic variation profile of each 
individual and determined the uniqueness of 
the variation distribution from this case-control 
study. It is worth noting that these unique vari-
ants are scattered in the cohort, which incre- 
ases the difficulty of using traditional analysis 
methods to deal with those statistical extremes. 

Nevertheless, we proved the potential of ma- 
chine learning methods in improving statis- 
tical analysis and established a non-invasive 
CRN predictive model with a performance of 
0.959 in AUC. When applying this method to 
panel design, it is critical to reduce the risk of 
model overfitting. Otherwise, model overfitting 
may lead to overly optimistic results. Therefore, 
at least one independent cohort is essential  
for model validation. On the other hand, suffi-
cient unique sequencing depth (coverage of 
more than 3,000× as shown in this study) is 
required to ensure the accuracy and sensitivity 
of detection.

In the pathogenicity of view, some pathogenic 
mutations in low-allele fraction were selected 
by this machine-learning approach. For exam-
ple, BRAF G466V was reported in 0.06% of all 
CRC patients in AACR Project GENIE [42] and 2 
of 63 (3.17%) CRNs in our training cohort were 
altered in this mutation with VAF 0.0269 and 
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Figure 6. Overview of resulting variants and genes in CRN predictive model. A. Overlap of the resulting variants in 
CRNs and controls. B. Overlap the genes in CRNs and controls. C. The COSMIC mutation signature v.2 analysis was 
shown with the level of contribution in 71 CRN-specific resulting variants.

0.0003. On the contrary, most variants of those 
low allelic variants are not canonical pathogen-
ic variants but still selected by the machine-
learning method for the CRN predictive model.

To test the causality, the mutational signature 
analysis was performed in this study. As the 
result from 845 somatic variants observed in 
the CRNs, Signature 20, as the etiology as 
defective DNA mismatch repair, was identifi- 
ed. Furthermore, 9 mutational signatures were 
contributed from the 71 CRN-specific resulting 
variants of CRN predictive model. Among those 
9 mutational signatures, 5 mutational sig- 
natures were associated with BRCA1/BRCA2 
mutations, ultra-hypermutation, defective DNA 
mismatch repairs and microsatellite-instability. 
Interestingly, the characteristics of these 5 
mutational signatures are related to the effect 
of DNA damages. This observation indicated 
that the ML approach could effectively enrich 
CRN-associated variants, improve the accura- 
cy of early cancer screening and characterize 
the possible causality of CRN. For example, 

CRC tumors with MSI have defective in DNA 
repair enzymes and are infiltrated by a large 
number of lymphocytes [43]. In metastatic 
colon cancer, the test of MSI/dMMR and the 
process of POLE mutation signature are used 
either in guiding the therapeutic decision and 
predicting the survival outcome [44, 45], or in 
studying the colorectal tumorigenesis [46-48]. 
In addition, metastatic CRCs with MSI were 
found to have a better response to immune 
checkpoint inhibitors [49]. Although there is  
not enough information from our current data 
to figure out the consequence of the mutation 
process, but we would like to demonstrate the 
potential of mutational signature analysis in 
studying the tumorigenesis.

Additionally, the Signature 22 as “exposures  
to aristolochic acid” provides the contribution 
at the level of 0.084 in this study but not found 
in the COSMIC CRC database. It makes sense 
because the exposures of aristolochic acid are 
a critical issue in Taiwan and almost one third 
Taiwanese were caught in the exposures of 
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aristolochic acid [50]. Further studies with the 
comparison in different populations may pro-
vide the evidence to study the relationship 
between aristolochic acid exposure and higher 
incidence of CRC in Taiwan. We do not exclude 
the possibility that the prediction accuracy of 
our CRN predictive model might be affected by 
ethnicity and environmental agents. Whether 
this machine learning-based CRN detection is 
suitable for Caucasian population remains to 
further investigation. Lastly, as current knowl-
edge as we know, the CH is correlated with sev-
eral cancers. However, it is not currently avail-
able to access the ECS-based CH profiles from 
public database and to investigate the simi- 
larity of CH mutations between different types 
of cancers. For this reason, it is limited to ac- 
cessing whether the model is capable of distin-
guishing early-staged CRNs from other types of 
cancers.

In conclusion, we establish a liquid biopsy-
based non-invasive early-stage CRN detection 
by improved NGS technique and machine learn-
ing algorithm for decoding the information from 
CH in CRN patients. The use of this CH-based 
blood test is still limited in clinical practice. 
Although further prospective studies with larg-
er sample size would be needed to clarify the 
clinical effectiveness, the present study has 
demonstrated the potential of CH for early can-
cer diagnosis and helps to decode the aberra-
tion of CH for imprecating the microenviron-
ment in disease.
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