
Am J Cancer Res 2022;12(3):1222-1240
www.ajcr.us /ISSN:2156-6976/ajcr0141119

Original Article
Integration of immune and  
hypoxia gene signatures improves the  
prediction of radiosensitivity in breast cancer

Derui Yan1,2,3*, Shang Cai4*, Lu Bai1,2,3, Zixuan Du1,3, Huijun Li1,3, Peng Sun5, Jianping Cao6, Nengjun Yi7, 
Song-Bai Liu2, Zaixiang Tang1,3

1Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou 215123, 
Jiangsu, China; 2Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou 
215009, Jiangsu, China; 3Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, 
Medical College of Soochow University, Suzhou 215123, Jiangsu, China; 4Department of Radiotherapy & 
Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China; 5Department 
of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; 6School 
of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu 
Higher Education Institutions, Soochow University, Suzhou 215031, Jiangsu, China; 7Department of Biostatistics, 
University of Alabama at Birmingham, Birmingham, AL 35294, USA. *Co-first authors.

Received December 14, 2021; Accepted February 22, 2022; Epub March 15, 2022; Published March 30, 2022

Abstract: Immunity and hypoxia are two important factors that affect the response of cancer patients to radio-
therapy. At the same time, considering the limited predictive value of a single predictive model and the uncertainty 
of grouping patients near the cutoff value, we developed and validated a combined model based on immune- and 
hypoxia-related gene expression profiles to predict the radiosensitivity of breast cancer patients. This study was 
based on breast cancer data from The Cancer Genome Atlas (TCGA). Spike-and-slab Lasso regression analysis 
was performed to select three immune-related genes and develop a radiosensitivity model. Lasso Cox regression 
modeling selected 11 hypoxia-related genes for development of radiosensitivity model. Three independent datasets 
(Molecular Taxonomy of Breast Cancer International Consortium [METABRIC], E-TABM-158, GSE103746) were used 
to validate the predictive value of radiosensitivity signatures. In the TCGA dataset, the 10-year survival probabilities 
of the immune radioresistant (IRR) and hypoxia radioresistant (HRR) groups were 0.189 (0.037, 0.973) and 0.477 
(0.293, 0.776), respectively. The 10-year survival probabilities of the immune radiosensitive (IRS) and hypoxia ra-
diosensitive (HRS) groups were 0.778 (0.676, 0.895) and 0.824 (0.723, 0.939), respectively. Based on these two 
gene signatures, we further constructed a combined model and divided all patients into three groups (IRS/HRS, 
mixed, IRR/HRR). We identified the IRS/HRS patients most likely to benefit from radiotherapy; the 10-year survival 
probability was 0.886 (0.806, 0.976). The 10-year survival probability of the IRR/HRR group was 0. In conclusion, a 
combined model integrating immune- and hypoxia-related gene signatures could effectively predict the radiosensi-
tivity of breast cancer and more accurately identify radiosensitive and radioresistant patients than a single model.

Keywords: Immune-related genes, hypoxia-related gene, combined model, spike-and-slab Lasso, radiosensitivity, 
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Introduction

Radiotherapy is a primary treatment modality 
for many cancers. Currently, more than 60% of 
cancer patients receive radiotherapy [1]. Pre- 
vious studies have confirmed that radiotherapy 
can effectively prolong the survival of patients 
with breast cancer and improve the local con-
trol rate [2-5]. However, breast cancer is a het-

erogeneous disease, and not all patients bene-
fit from radiotherapy [6]. Some patients may not 
benefit from radiotherapy but may suffer from 
radiation toxicity, such as breast or chest wall 
pain, rib fracture and lymphedema [7, 8]. The 
absolute benefit of radiotherapy is related to 
the characteristics of the patient. Taking a more 
personalized approach to radiotherapy can 
ensure that patients receive the most benefit 
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from treatment. Predicting tumor response to 
radiotherapy is one of the main problems of 
cancer treatment [9].

Previous studies have shown that gene expres-
sion patterns can predict the inherent radio-
sensitivity of tumor cells. Based on high-th- 
roughput molecular profiling, a variety of prog-
nostic or predictive gene signatures have been 
developed, which can stratify the risk of pa- 
tients and determine the patients who are most 
likely to benefit from treatment. Thirty-one 
genes developed from a meta-analysis of mi- 
croarray data were identified as radiosensitivity 
biomarkers. The 31 signatures are mainly 
involved in the cell cycle and DNA repair, cell 
junctions, and cell adhesion [10, 11]. Ten genes 
were identified and used to calculate an intrin-
sic radiosensitivity index (RSI, high index = 
radioresistance) [12]. This RSI signature was 
clinically validated in 4 independent datasets 
(rectal, esophageal, head and neck, and breast 
cancer) [13, 14]. In addition, several predictive 
signatures have also been developed and per-
formed well in predicting the treatment res- 
ponse of head and neck squamous cell carci-
noma [15, 16], prostate cancer [17], and 
colorectal cancer [18].

Traditionally, research on radiosensitivity has 
mainly focused on tumor cells, while ignoring 
the impact of the tumor microenvironment, 
which is typically composed of stromal and 
immune cells. The tumor microenvironment 
has come to be known as the “game changer” 
in cancer radiotherapy [19]. Low-dose irradia-
tion may activate the antitumor response of the 
tumor microenvironment. It induces dead tu- 
mor cells to release tumor-associated antigens, 
which in turn leads to the activation of tumor-
specific T cell responses that act as an ‘endog-
enous’ tumor vaccine [20]. High-dose irradia-
tion can suppress the immune system and 
induce resistance. The complex interaction 
between tumor cells and the tumor microenvi-
ronment greatly influences the sensitivity of 
tumor cells to ionizing radiation [21]. Recently, 
many prognostic models based on immune-
related genes (IRGs) have been used to stratify 
risk and predict clinical outcomes in several 
cancer types, including sarcoma [22], breast 
cancer [23], epithelial ovarian cancer [24],  
lung adenocarcinoma [25], and laryngeal can-
cer [26]. However, most studies mainly focus 

on the overall survival of cancer patients, and 
few studies have explored the benefits of spe-
cific treatments [27]. Hypoxia is a common fea-
ture of the microenvironment of solid tumors 
and is related to radioresistance, reduced 
response to treatment, and poor clinical out-
comes [28-30]. Previous studies have con-
firmed that hypoxia is related to the poor prog-
nosis of radiotherapy patients [15]. Im- 
proving hypoxia can increase the local tumor 
control rate and disease-specific survival rate 
of patients [16]. Recently, it is becoming incre- 
asingly recognized that hypoxia also has a sys-
temic impact on immune processes. Hypoxia 
can induce an immunosuppressive environ-
ment by increasing the ratio between immuno-
suppressive cells and effector cells. Hypoxia 
reduces CD8+T lymphocytes, natural killer 
cells, and or increases myeloid-derived sup-
pressor cells (MDSC) and T-regulatory (Treg) 
cells [31, 32]. The hypoxia microenvironment 
also induces excessive secretion of proangio-
genic signals, such as VEGF, leading to rapid 
but abnormal tumor vessel formation [33]. 
Recent studies suggested that immune check-
point blockade (ICB), such as anti-CTLA4 or 
anti-PD-1 agents, could strongly inhibit breast 
and colon cancer cells tumor cell growth, 
increase vascular perfusion, and reduce intra-
tumor hypoxia [34]. Several studies have devel-
oped and validated prognostic molecular clas-
sifiers based on hypoxia and immune status, 
which could significantly distinguish between 
favorable and unfavorable prognostic sub-
groups [29, 30, 35]. There is a complex interac-
tion between the immune microenvironment 
and hypoxia of tumor cells and both of them 
were closely related to radiotherapy of cancer.

In this study, we developed two radiosensitivi- 
ty signatures for breast cancer based on 
immune-related and hypoxia-related genes.  
Immune and hypoxia gene signatures were sig-
nificantly associated with the prognosis of can-
cer patients and could predict the response to 
radiotherapy. The radiosensitivity of breast can-
cer is related to several biological processes, 
and the predictive value of a single signature  
is limited. Considering the widely varying het-
erogeneity of breast cancer, it is of great im- 
portance to establish a robust classifier to 
stratify patients with different responses to 
radiotherapy. Therefore, the integration of the 
two signatures can play a complementary role 
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and improve the accuracy of prediction. We fur-
ther constructed a combined model based on 
these two signatures to identify the patients 
most sensitive or resistant to radiotherapy and 
explored possible mechanisms of radioresis-
tance and appropriate treatment measures.

Methods

Sample selection and data processing

Gene expression data and clinical information 
of breast cancer patients in this research were 
downloaded from TCGA (https://xenabrowser.
net) and the Molecular Taxonomy of Breast 
Cancer International Consortium (METABR- 
IC) database (http://www.cbioportal.org/). The 
E-TABM-158 dataset was available from Array- 
Express (https://www.ebi.ac.uk/arrayexpress/
ArrayExpress). The GSE103746 dataset was 
available from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/). The sample inclusion 
criteria were as follows: (1) primary tumor, (2) 
female, (3) complete follow-up information and 
follow-up time more than 30 days, and (4)  
complete radiotherapy information. A total of 
540 radiotherapy patients (57.1%) in the TCGA 
dataset, 1137 radiotherapy patients (59.8%)  
in the METABRIC dataset, 59 radiotherapy 
patients (51.3%) in the E-TABM-158 dataset, 
and 118 radiotherapy patients (68.6%) in the 
GSE103746 dataset were included in this 
study. The TCGA dataset was used as a train- 
ing dataset. The METABRIC, GSE103746, and 
E-TABM-158 datasets were used as indepen-
dent validation datasets. As GSE103746 lack- 
ed information on hypoxia genes, it was only 
used to validate the immune gene signature. 
The clinical information of the patients is sum-
marized in Tables S1, S2, S3, S4. Overall sur-
vival (OS) was the primary endpoint.

For the mRNA data in TCGA, the normalized 
read count (RSEM) data were downloaded. 
Normalized counts were filtered to remove 
genes with a maximum expression value <10  
or genes with a zero expression ratio >50%.  
For the mRNA data in ETABM-158, the ensem-
ble IDs were mapped to gene symbols accord-
ing to the annotation of A-AFFY-76-Affymetrix 
High Throughput Array U133AA of Av2 [U133- 
AAofAv2]. The GSE103746 expression profile 
was based on the GPL10558 platform. The 
maximum RNA expression was calculated for 
duplicate probes; then, each dataset was indi-

vidually transformed into a Z-score to remove 
platform differences.

For the TCGA and METABRIC datasets, we per-
formed an exact 1:1 match on radiotherapy  
and nonradiotherapy patients in each dataset 
according to age (<60 vs. ≥60), grade (I+II vs. 
III+IV), chemotherapy (yes vs. no), estrogen 
receptor (ER) (positive vs. negative), progester-
one receptor (PR) (positive vs. negative), hu- 
man epidermal growth factor receptor 2 (HER2) 
(positive vs. negative), and histological type 
(lobular vs. ductal vs. mixed vs. other). However, 
considering the limited sample size of the TCGA 
dataset, matching factors only included age, 
stage, and chemotherapy. Specifically, each 
patient who received radiotherapy was accu-
rately matched to a patient in the nonradio- 
therapy group according to the clinical infor- 
mation described above. If no corresponding 
nonradiotherapy patients matched, the patient 
was excluded from the radiotherapy group. If 
multiple nonradiotherapy patients were mat- 
ched, the first nonradiotherapy match was 
selected. Matched patients were removed from 
the cohort, and no further matches were made. 
The above matching process was repeated 
until either of the two groups completed match-
ing, and then the matching was considered 
complete.

Definition of radiosensitivity and radiosensitiv-
ity gene signature

Radiosensitivity was defined by clinical out-
comes, such as survival, response to treat-
ment, and tumor size. In this study, radiosensi-
tive patients were defined as a group of patients 
who had better survival after receiving radio-
therapy than those who did not receive radio-
therapy. Specifically, patients were divided into 
Group A and Group B according to a gene signa-
ture. When both groups of patients received 
radiotherapy, patients in Group A (RS group) 
were those who obtained significantly more 
survival benefits than the patients in Group B 
(RR group) (Figure S1A, S1C). However, the  
survival difference might not be attributable 
solely to radiosensitivity. Group A patients 
could also have different overall survival com-
pared to Group B in nonradiotherapy patients. 
Therefore, it must be determined that the sur-
vival rate of Group A (RS group) was not bett- 
er (equal or worse) than that of Group B (RR 
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group) when neither group received radiothera-
py (Figure S1D). After this, patients in Group A 
could be defined as radiosensitive patients (the 
RS group) [36]. Furthermore, it must be deter-
mined whether there is an interaction between 
this gene signature and treatment [37]. In this 
case, there was only a treatment effect for low-
risk patients and no treatment effect for high-
risk patients (Figure S1E, S1F). Thus, we believe 
that this gene signature can predict the benefit 
of treatment.

Immune-related gene (IRG) and hypoxia-relat-
ed (HRG) extraction

The list of IRGs used in our study was extracted 
from the immunology database and analysis 
portal (ImmPort) (https://www.immport.org/). 
The HRGs were obtained from the hallmark 
gene sets in the Molecular Signature Database 
(MSigDB) (https://www.gsea-msigdb.org/gsea/
msigdb/). The available IRGs and HRGs in the 
TCGA and METABRIC datasets were included in 
this study. Furthermore, the available HRG list 
was further refined by excluding genes that 
were also presented in the IRG list. In total, 996 
IRGs and 153 HRGs were identified for subse-
quent analysis (Figure S2).

The process of constructing immune and hy-
poxia radiosensitivity signatures

The workflow of this study is shown in Figure  
1. First, in the TCGA dataset, univariate Cox 
regression analysis was used to identify indi-
vidual IRGs (HRGs) that were significantly re- 
lated to the OS of radiotherapy patients (P< 
0.05) but not to the OS of nonradiotherapy 
patients (P>0.05). All radiotherapy patients in 
the TCGA dataset were then used for model 
construction.

For the IRGs, spike-and-slab Lasso (spike-and-
slab least absolute shrinkage and selection 
operator) penalized regression analysis was 
used to obtain the radiosensitivity signature 
[38, 39]. The proposed spike-and-slab Lasso 
Cox models can adaptively shrink coefficients 
so that accurate estimation and prediction can 
be obtained. Performance of the spike-and-
slab Lasso Cox model depends on scale pa- 
rameters (s0, s1). We fixed the slab scale s1  
to 0.5, changed the spike scale s0 to 0.0001+ k 
×0.005; k=0, 1, · · ·, 29, and obtained 30 models. 
For each model, we performed 10-fold cross-

validation with 10 replicates to select an opti-
mal model based on the deviance. The  
corresponding s0 was determined according  
to the minimum deviance. Then, spike-and-Slab 
Lasso Cox with the prior scale (s0, 0.05) was 
chosen for model fitting and prediction using 
the “BhGLM” and “glmnet” packages in R. 
Figure 2B shows the profiles of the prevalidat-
ed deviance of the training dataset under var-
ied prior scales s0 and fixed s1=0.5. When the 
prior s0=0.0031, the minimum value of devi-
ance was 479.868. Therefore, the scale 
(0.0031, 0.5) was chosen for model fitting and 
prediction.

For the HRGs, Lasso penalized regression anal-
ysis was used to obtain the hypoxia signature 
using the “glmnet” package. Tenfold cross-vali-
dation was used to estimate penalty amounts, 
and the minimum lambda value was used as a 
cutoff.

The following formula, based on a combination 
of the spike-and-slab Lasso or Lasso coeffi-
cient and gene expression count, was used to 
calculate the risk score:

Risk score Si ii

k

= b/

Where k, βi, and Si represent the number of sig-
nature genes, the coefficient index, and the 
gene expression level, respectively. We used 
the maximally selected rank statistics to deter-
mine the optimal cutoffs for these two signa-
tures. Patients were then categorized into high- 
and low-risk groups (Figure S3). Kaplan-Meier 
analysis using log-rank testing was used to 
compare the OS rate between the two groups. 
These two signatures were validated with three 
validation datasets. The “surminer” and “sur-
vival” packages were used to perform these 
analyses.

Identification of differentially expressed genes 
(DEGs) and gene functional annotation

The “limma” package was used to identify  
the DEGs between the radiosensitive (RS) and 
radioresistant (RR) groups, and an adjusted P 
value <0.05 and |log2-fold‐change (FC)| >1.5 
were used as cutoffs. To understand the po- 
tential functions of these DEGs, the “cluster- 
profiler” package was used to analyze the  
gene ontology (GO) function and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
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Figure 1. The work-
flow of this research.

pathway enrichment for the selected genes.  
An adjusted P value <0.05 was considered 
significant.

Tumor-infiltrating immune cell analysis

ssGSEA (single-sample gene set enrichment 
analysis) was performed to calculate the rela-
tive proportions of immune cells in the RS  
and RR groups by the R “GSVA” package. Fur- 
thermore, the ESTIMATE algorithm was used to 
determine the immune score of each sample by 
the R package “ESTIMATE”.

Statistical analysis

All analyses were carried out by R version 3.6.3 
and the corresponding packages. P<0.05 was 
considered statistically significant. Chi-square 
analysis and the Mann-Whitney U (Kruskal-
Wallis H) test were used to compare the di- 
fferences between categorical variables and 
continuous variables, respectively. Univariate 
and multivariate proportional hazard regres-
sion models were used to assess the predic- 
tive value of gene signatures for radiothera- 
py benefit. Missing values were multiply im- 
puted using the R package “mice”. However,  

risk group and a high-risk group according to 
the optimal value. The survival time of the two 
groups is shown in Figure 3A. Based on the  
Kaplan-Meier analysis, the low-risk group was 
defined as the immune radiosensitive (IRS) 
group and had a higher survival rate after  
radiotherapy. The high-risk group was defined 
as the immune radioresistant (IRR) group with  
a poorer prognosis after radiotherapy (Figure 
3B). Among nonradiotherapy patients, there 
was no significant difference in the OS rate 
between the two groups (Figure 3C). In addi-
tion, multivariate Cox analysis showed that this 
immune signature was an important predictor 
of radiotherapy response independent of clini-
cal variables (Figure 3D).

Lasso Cox regression analysis revealed 11 
hypoxia genes (BGN, CP, GBE1, GPC1, KDM3A, 
NAGK, S100A4, SERPINE1, SLC25A1, SRPX, 
TGFBI) (Figure 2D-F). The survival time of each 
patient is shown in Figure 4A. Accordingly, 
patients with lower risk scores were classifi- 
ed into the hypoxia radiosensitive (HRS) gro- 
up with a higher OS rate after radiotherapy. 
Patients with higher risk scores were classified 
into the hypoxia radioresistant (HRR) group 

we coded missing data as a 
separate level “unknown” in cat-
egorical variables during ma- 
tching progress.

Results

Development of immune-relat-
ed and hypoxia-related radio-
sensitivity gene signatures

In the TCGA dataset, 81 immune 
genes and 14 hypoxia genes 
were significantly related to the 
OS of radiotherapy patients but 
not to the OS of nonradiothera-
py patients, according to univar-
iate Cox regression analysis 
(Table S5).

In total, 3 immune-related 
genes (PAK6, PLXND1, SEMA7A) 
were detected, and the spike-
and-slab Lasso coefficients for 
these genes are shown in Figure 
2C (Table S6). Then, pa- 
tients were classified into a low-
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with a poorer prognosis after radiotherapy 
(Figure 4B). Among nonradiotherapy patients, 
there was no significant difference in the OS 
rate between the HRS and HRR groups (Figure 
4C). Similarly, the hypoxia signature was an 
important predictor of radiotherapy response  
in both univariate and multivariate analyses 
(Figure 4D).

The predictive value of the two signatures was 
evaluated by comparing the effect of radiother-
apy vs. nonradiotherapy in the groups classified 
as IRS (HRS) and IRR (HRR). Considering the 
clinical difference between the radiotherapy 
and the nonradiotherapy groups, we matched 
the two groups of patients according to clinical 
factors that had a significant influence on the 
survival of breast cancer patients, such as age, 
stage, and chemotherapy. For the entire TCGA 
dataset, in the matched IRS (HRS) group, the 
OS rate of the radiotherapy patients was signifi-
cantly higher than that of the nonradiotherapy 
patients (Figure 5A, 5C). Conversely, in the 
matched IRR (HRR) group, there was no signifi-
cant difference in survival between patients 
who received or did not receive radiotherapy 
(Figure 5B, 5D). The results were consistent 
before and after matching (Figure S4).

Validation of the immune and hypoxia radio-
sensitivity signatures

Patients in the METABRIC dataset were classi-
fied into IRS (HRS) and IRR (HRR) groups using 
the cutoff values established above. These two 
signatures were able to stratify patients and 
identify patients who could benefit from radio-
therapy in both univariate and multivariate 
analyses (Figures 6, 7). Furthermore, in the ma- 
tched IRS (HRS) group, patients who received 
radiotherapy tended to have better OS than 
those who did not (Figure 8A, 8C). In contrast, 
radiotherapy and nonradiotherapy patients  
had similar OS rates in the matched IRR (HRR) 
group (Figure 8B, 8D). Figure S4 shows the 
results of the METABRIC datasets before 
matching, which were consistent with conclu-
sions after matching. Both of these signatures 
demonstrated a significant interaction with 
radiotherapy.

We also evaluated the predictive value of these 
signatures for the other two validation datas-
ets. DSS (disease-specific survival) and recur-
rence-free survival (RFS) were the research 
endpoints of the E-TABM-158 dataset (Figure 
S5) and the GSE103746 dataset (Figure S6), 
respectively. This immune signature could stra- 

Figure 2. Results of spike-and-slab Lasso Cox and Lasso Cox analyses. A-C. Candidate immune gene selection by 
spike-and-slab Cox analysis; D-F. Candidate hypoxia gene selection by Lasso Cox analysis.
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tify patients into two groups. In the IRR groups, 
patients who received radiotherapy suffered a 
significantly poorer outcome in terms of both 
DSS and RFS compared with patients who did 
not receive radiotherapy, whereas the associa-
tion between radiotherapy and nonradiothera-
py did not reach statistical significance in the 
IRS groups. Among radiotherapy patients, the 
rates of DSS and RFS in the IRS group were sig-
nificantly higher than those in the IRR group. 
However, the hypoxia signature did not stratify 
the E-TABM-158 dataset, where both groups 
had similar DSS (Figure S7).

Integrating immune and hypoxia gene signa-
tures to improve the prediction of radiosensi-
tivity

Based on immune and hypoxia gene signa-
tures, we constructed a combined model and 
divided all radiotherapy patients into four gro- 
ups (IRS/HRS; IRR/HRS; IRS/HRR, IRR/HRR). 
Kaplan-Meier analysis showed that there was  
a significant difference in the OS rate among 
the 4 groups. The IRS/HRS group had the high-
est survival rate, and the IRR/HRR group had 

worst survival (Figure 9A). Similar results were 
also observed in the METABRIC dataset (Figure 
9B). Next, we further divided the patients into 
IRS/HRS, mixed (IRR/HRS, IRS/HRR), and IRR/
HRR groups (Figure 9C, 9D). In addition, among 
nonradiotherapy patients, there was no signifi-
cant difference in survival among the four 
groups (Figure S8). In the E-TABM-158 dataset, 
this combined signature could stratify patients 
into three groups with different DSSs, where 
IRS/HRS patients had better DSS than IRR/
HRR patients, although no significant differ-
ence was observed. However, among patients 
who did not receive radiotherapy, the IRS/HRS 
group had the worst DSS (Figure S9).

Table 1 shows the 10-year survival probabili- 
ty of patients in different groups after radio-
therapy. In the TCGA dataset, the 10-year sur-
vival probabilities of the IRR and HRR gro- 
ups were 0.189 (0.037, 0.973) and 0.477 
(0.293, 0.776), respectively. The 10-year sur-
vival probabilities of the IRS and HRS groups 
were 0.778 (0.676, 0.895) and 0.824 (0.723, 
0.939), respectively. In the combined model, 
we identified the IRS/HRS patients most likely 

Figure 3. Construction of the immune radiosensitivity signature in the TCGA dataset. A. The risk score and the 
survival time of radiotherapy patients; B, C. Kaplan-Meier survival curves of the IRS group and IRR group in radio-
therapy patients and nonradiotherapy patients, respectively; D. Multivariate analysis containing risk core and clini-
cal factors in radiotherapy patients and nonradiotherapy patients, respectively.
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to benefit from radiotherapy; the 10-year sur-
vival probability was 0.886 (0.806, 0.976). The 
10-year survival probability of the IRR/HRR 
group was 0. In the METABRIC, the 10-year sur-
vival probabilities of patients in the IRR and 
HRR groups were 0.492 (0.428-0.567) and 
0.551 (0.506-0.600), respectively. In the com-
bined model, the 10-year survival probability of 
the IRR/HRR group was 0.334 (0.245-0.455). 
These results indicated that RS patients had 
significantly better survival after radiotherapy 
than RR patients. The integration of these two 
gene signatures could improve the stratifica-
tion of patients and identify the patients most 
likely to benefit from radiotherapy and patients 
with the worst prognosis.

We further validated the predictive ability of  
the combined model. In the IRS/HRS group, a 
significant difference was observed for radio-
therapy patients vs. nonradiotherapy patients 
for both OS and DSS (Figures S9C, S10A, 
S10D). Conversely, in the IRR/HRR group,  
radiotherapy patients had significantly wo- 
rse OS than nonradiotherapy patients (Figure 
S10C), whereas the difference was not obs- 

erved for patients in the other two validation 
datasets (Figures S9E, S10F).

Comparison with existing published radiosen-
sitivity gene signatures

In the TCGA, METABRIC, and E-TABM-158 data-
sets, we compared two gene signatures for pre-
dicting radiosensitivity, a 31-gene cluster and 
the radiation sensitivity index (RSI). The results 
showed that neither the 31-gene nor RSI could 
predict the OSS or DSS of patients in the three 
datasets (Figures S11, S12).

Based on the method provided in the publish- 
ed literature, all patients were divided into  
two clusters using consensus clustering based 
on the gene expression profiles of 31 genes 
[11, 40]. There was no significant difference in 
OS and DSS between the two clusters (Figure 
S11). For the RSI, the 25th percentile of RSI in 
patients receiving radiotherapy was used as 
the cutoff for classifying patients into RS and 
RR groups, as presented in the literature [13, 
14]. The RSI did not show significant results in 
predicting radiotherapy benefits in the three 
datasets (Figure S12).

Figure 4. Construction of the hypoxia radiosensitivity signature in the TCGA dataset. A. The risk score and the surviv-
al time of radiotherapy patients; B, C. Kaplan-Meier survival curves of the HRS group and HRR group in radiotherapy 
patients and nonradiotherapy patients, respectively; D. Multivariate analysis containing risk core and clinical factors 
in radiotherapy patients and nonradiotherapy patients, respectively.
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Identification of DEGs between the IRS/HRS 
group and IRR/HRR group

To identify genomic features of the IRR/HRR 
group, we identified the DEGs between the IRS/
HRS group and the IRR/HRR group. A total of 
408 DEGs were upregulated in the IRR/HRR 
group. GO analysis demonstrated that these 
genes were significantly enriched in biological 
process (BP) functions, including T cell activa-
tion, regulation of lymphocyte activation, and 
positive regulation of lymphocyte proliferation. 
Molecular function (MF) analysis showed that 
these genes were involved in cytokine activity, 
organic acid binding, carboxylic acid binding, 
and glycosaminoglycan binding. KEGG analysis 
indicated that these genes were mainly involved 
in the NF-kappa B signaling pathway, PD-L1 
expression and the PD-1 checkpoint path- 
way in cancer, and cytokine-cytokine receptor 

ulated in the IRR/HRR group. Among patients 
receiving radiotherapy, the expression of HIF 
and CA9 was higher in IRR/HRR patients; 
although the difference was not significant, 
similar trends were evident. These results indi-
cated that patients in the IRR/HRR group 
showed a higher immunogenicity and hypoxia 
level and may exhibit a stronger response to 
checkpoint blockade immunotherapy and 
hypoxic modification than patients in the other 
groups.

Discussion

In this study, we developed and validated two 
signatures that predict the radiosensitivity of 
breast cancer patients based on immune-relat-
ed and hypoxia-related gene expression pro-
files. We showed that patients classified as 
immune or hypoxia radiosensitive had a higher 

Figure 5. Kaplan-Meier curves of OS for patients who had received radio-
therapy vs. patients who did not in the TCGA dataset: A. Matched IRS group; 
B. Matched IRR group; C. Matched HRS group; D. Matched HRR group.

interactions (Figure 10). The 
results of the functional anno-
tations indicated that the 
immune microenvironment of 
the IRR/HRR group might dif-
fer from that of the IRS/HRS 
group, and immune infiltration 
is positively correlated with 
radiotherapy resistance.

Immune cell subtypes and hy-
poxia gene expression levels 
of the IRS/HRS, mixed, and 
IRR/HRR groups

To understand the relation-
ship between radiosensitivity 
and the tumor microenviron-
ment, ssGSEA was conducted 
to analyze the immune cell 
types present in all the sam-
ples. As shown in Figures 11 
and S13, the radiosensitivity  
of breast cancer was closely 
related to the infiltration of 
immune cells. The IRR/HRR 
group showed higher infiltra-
tion of CD8 T cells, CD4 T 
cells, and natural killer cells 
than the other groups. The 
immune score of the IRR/HRR 
group was significantly higher 
than the other two groups, 
and the expression of PD-1, 
PD-L1, and CTLA4 was upreg-
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Figure 6. Validation of the immune radiosensitivity signature in the METABRIC dataset. A. The risk score and the 
survival time of radiotherapy patients; B, C. Kaplan-Meier survival curves of the IRS group and IRR group in radio-
therapy patients and nonradiotherapy patients, respectively; D. Multivariate analysis containing risk core and clini-
cal factors in radiotherapy patients and nonradiotherapy patients, respectively.

Figure 7. Validation of the hypoxia radiosensitivity signatures in the METABRIC dataset. A. The risk score and the 
survival time of radiotherapy patients; B, C. Kaplan-Meier survival curves of the HRS group and HRR group in ra-
diotherapy patients and nonradiotherapy patients, respectively; D. Multivariate analysis containing risk core and 
clinical factors in radiotherapy patients and nonradiotherapy patients, respectively.
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survival rate after radiotherapy. No significant 
beneficial effect of radiotherapy was observed 
among the radioresistant patients. We further 
constructed a combined model based on these 
two gene signatures. Compared with the single 
model, the combined model could improve the 
stratification accuracy of radiotherapy patients 
and identify the most radioresistant patients 
with the worst prognosis after radiotherapy.

Breast cancer is a heterogeneous disease. 
With the introduction of advanced technology, 
radiotherapy methods have been significantly 
improved, increasing the accuracy of radiother-
apy and thereby limiting damage to healthy tis-
sues. However, radiotherapy failure and su- 
bsequent tumor relapse and metastasis still 
exist, and the response of cancer patients to 
radiotherapy varies greatly [41]. It is the goal of 
personalized treatment to successfully treat 

can shrink many coefficients precisely to zero, 
but the advantage of spike and slab Lasso is to 
reduce the estimation bias of Lasso by produc-
ing weak contraction for important predictive 
variables and strong contraction for irrelevant 
predictive variables [45-47]. In this article, we 
used spike-and-slab Lasso Cox regression 
analysis to identify important predictors and 
develop a radiosensitivity predictive model. 
The proposed approach integrates Lasso and 
Bayesian spike-and-slab hierarchical modeling 
into one unifying framework, thus combining 
the significant features of both methods while 
diminishing their shortcomings [48]. Spike-and-
slab Lasso Cox regression was performed to 
determine a 3-gene (PAK6, PLXND1, SEMA7A) 
immune signature to predict the radiosensitivi-
ty of breast cancer patients in the TCGA datas-
et. Moreover, this signature was validated in 
three datasets (METABRIC, E-TABM-158, GS- 

Figure 8. Kaplan-Meier curves of OS for patients who had received radiother-
apy vs. patients who did not in the METABRIC dataset: A. Matched IRS group; 
B. Matched IRR group; C. Matched HRS group; D. Matched HRR group.

cancer by tailoring the best 
treatment method for each 
patient according to some 
“key” tumor characteristics 
[42]. High-throughput molecu-
lar profiling has become a 
useful tool for exploring the 
characteristics of individual  
radiosensitivity.

The methods of establishing 
prediction models mainly 
include traditional variable 
selection, principal compo-
nents methods, and penal-
ized regressions. The most 
commonly used model fitting 
methods are penalty models, 
including Lasso, Ridge, or 
Elastic-Net, which can be fit-
ted with fast algorithms and 
can predict survival and iden-
tify important predictors [27, 
43, 44]. Since the Lasso 
method uses a single penalty 
for all coefficients, it may 
include several uncorrelated 
predictors or overshrink large 
coefficients. Bayesian surviv-
al models and spike-and-slab 
variable selection methods 
have been used to establish 
molecular predictive model-
ing. Similar to the Lasso meth-
od, the Spike and-slab Lasso 
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E103746). Lasso Cox regression was also per-
formed to determine a 30-gene immune signa-
ture. However, this gene signature could not 
stratify the METABRIC dataset, where both 
groups had similar OS (Figure S14). Spi- 
ke-and-slab Cox regression was performed  
to determine the hypoxia signature. However, 
only one gene (SERPINE1) was found (Figure 
S15). Considering the limited predictive value 
of a single gene, we chose Lasso Cox regres-
sion to fit the hypoxia model. A signature of  
11 genes (BGN, CP, GBE1, GPC1, KDM3A, 
NAGK, S100A4, SERPINE1, SLC25A1, SRPX, 
TGFBI) was constructed in the TCGA dataset. 
This signature was also able to stra- 
tify patients into two groups with distinct OS 
rates.

Interestingly, studies have shown that these 
genes may be potential therapeutic targets for 

potential therapeutic targets for breast cancer 
patients.

The KM plot showed that both immune and 
hypoxia gene signatures had a significant inter-
action with radiotherapy, and both could pre-
dict the radiosensitivity of breast cancer 
patients. Furthermore, we tested the correla-
tion between the two gene signatures, and  
the Pearson correlation coefficient was only 
0.262 (P<0.001). Thus, these two signatures 
were relatively independent, and it is reason-
able to combine these two signatures for 
patient stratification. The results of the 10- 
year survival probability of patients after radio-
therapy showed that the OS rate of patients in 
the IRS (HRS) group was significantly higher 
than that of patients in the IRR (HRR) group. 
Moreover, the integration of the two signatures 
could identify the IRS/HRS group with better 

Figure 9. Classification of radiotherapy patients into subgroups according 
to the immune signature (IRS vs. IRR) and the hypoxia signature (HRS vs. 
HRR). A, C. TCGA dataset; B, D. METABRIC dataset.

breast cancer patients. PAK6 is 
a serine/threonine kinase be- 
longing to the p21-activated 
kinase (PAK) family. PAK6 is 
overexpressed in many cancer 
lines, especially breast and 
prostate cancer [49, 50]. Inhi- 
bition of PAK6 expression has 
been shown to improve radio-
therapy response and enhance 
chemotherapy sensitivity, lead-
ing to a significant decrease in 
the survival of prostate cancer 
cells [51, 52]. Increased expres-
sion of SEMA7A protein pro-
motes growth, motility, inva-
sion, and lymphangiogenesis of 
breast cancer cells [53, 54], 
and is also associated with drug 
resistance [55]. SERPINE1 is an 
oncogene that plays a role  
in PTX drug resistance in breast 
cancer [56]. Furthermore, sup-
pression of SERPINE1 markedly 
attenuated tumor growth in  
vivo [57]. High expression of 
S100A4 is related to the inva-
sion and metastasis of breast 
cancer [58, 59]. Higher expres-
sion of TGFBI is associated with 
poor prognosis and is associat-
ed with more aggressive breast 
cancer subtypes [60]. There- 
fore, these genes can predict 
progression or themselves are 
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prognosis and IRR/HRR patients with worse 
survival.

We found that the IRR/HRR group had the high-
est level of immune infiltration, and expression 
of CTLA-4 and PDL1 was upregulated in the 
IRR/HRR group. Dendritic cells (DCs) are cru-
cial determinants of tumor immunogenicity. 
DCs are immunogenic when activated but 

often used as endogenous markers of hypoxia. 
Studies have shown that enhanced HIF-1a 
expression is related to the resistance of tumor 
cells to chemotherapy and radiotherapy [68]. 
Studies showed that patients classified as 
‘more’ hypoxic had better outcomes after radio-
therapy than those classified as ‘less’ hypoxic 
tumors. Besides, only in the group classified as 
“more” hypoxic, those treated with hypoxia-

Table 1. 10-year survival probability of patients after radiotherapy in three radiosensitivity gene mod-
els

Immune Hypoxia Combined
TCGA-RT
    RS group 0.778 (0.676-0.895) 0.824 (0.723-0.939) 0.886 (0.803-0.976)
    RR group 0.189 (0.037-0.973) 0.477 (0.293-0.776) 0
METABRIC-RT
    RS group 0.640 (0.608-0.673) 0.652 (0.616-0.691) 0.666 (0.626-0.709)
    RR group 0.492 (0.428-0.567) 0.551 (0.506-0.600) 0.334 (0.245-0.455)
RS, radiosensitive; RR, radioresistant.

Figure 10. Gene functional annotation of the upregulated genes in the 
IRR/HRR group. BP, biological process; CC, cellular component; MF, mo-
lecular function.

tolerogenic when immature. In- 
creased CD4+ and CD8+ T  
cells numbers and activation 
could increase tumor immu- 
nogenicity [61]. Furthermore, 
breast cancer patients with 
higher levels of CD8 T cells 
have increased response rates  
to anti-PD-1 antibodies [62, 
63]. The well-known PD1 (PD- 
CD1)-PDL1 (CD274)/PDL2 (PD- 
CD1LG2) pathway was signifi-
cantly activated in the RR 
tumors. RR tumor cells exhibit-
ed high PD-L1 expression E. 
Patients with RR tumors and 
high expression of PD1 pathway 
might benefit more from com- 
bination therapy of radiation 
and checkpoint blockade [64].  
Radiotherapy combined with 
anti-PD1/anti-CTLA4 therapy 
may induce a synergistic antitu-
mor host immune response and 
improve the treatment respon- 
se [65-67]. IRR/HRR patients 
who received radiotherapy also 
had higher expression levels of 
HIF and CA9, but the difference 
was not significant. Carbonic 
anhydrase-9 (CA9) and hypoxia-
inducible factor-1a (HIF-1a) are 



A combined immune-hypoxia model for predicting BRCA radiosensitivity

1235 Am J Cancer Res 2022;12(3):1222-1240

Figure 11. Immune microenvironment of these three groups (IRS/
HRS, Mixed, IRR/HRR) in the TCGA dataset. A, B. ssGSEA showed the 
immune cell proportions of the three groups; C-F. Comparison of the 
immune score and PD-1, PDL-1, and CTLA-4 levels of the three groups 
in all patients; G, H. Comparison of HIF-a and CA9 expression levels of 
the three groups in radiotherapy patients.
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modifying in conjunction with radiotherapy car-
ried a significantly higher regional control rate 
when compared with those treated with hypox-
ia-modifying and radiotherapy [15, 28, 69]. 
Thus, modification strategies could be evaluat-
ed for IRR/HRR patients, e.g., by using hypoxic 
modification or immune checkpoint inhibitors.

The main biomarkers currently in clinical use 
for cancer are either prognostic or predictive. 
Prognostic biomarkers inform possible canc- 
er outcomes independent of the treatment re- 
ceived (e.g., disease recurrence, disease pro-
gression, death). Predictive biomarkers allow 
the identification of patients who are most  
likely to benefit or to suffer limited treatment-
related harm. The clinical value of a radiosensi-
tivity predictive signature is significant, as it 
could potentially lead to better selection of 
patients for radiotherapy protocols, an im- 
proved ability to predict prognosis, and thus 
reduce treatment-related side effects. A bio-
marker is predictive if the treatment effect 
(experimental compared with control) is differ-
ent for biomarker-positive patients compar- 
ed with biomarker-negative patients [37].  
We compared two existing gene signatures  
for predicting radiosensitivity, a 31-gene clust- 
er and RSI, in the TCGA, METABRIC, and 
E-TABM-158 datasets. Neither 31 genes nor 
RSI showed significant results for predicting 
radiotherapy benefit in the three datasets. In 
this study, both immune and hypoxia gene  
signatures could predict the radiosen- 
sitivity of breast cancer patients. These two  
signatures are prognostic and are important 
predictors of survival after radiotherapy for 
breast cancer independent of clinical variabl- 
es. These gene signatures are predictive in 
design because they were developed in pa- 
tients who all received radiotherapy, and an 
appropriately matched group of patients who 
did not receive radiotherapy was used. At the 
same time, to exclude the influence of other 
clinical factors, we matched patients in the 
radiotherapy group with patients in the nonra-
diotherapy group.

Like other studies, our research inevitably  
has some limitations. First, our research data 
came from public databases. These signatures 
have not been validated in clinical trials. 
Second, we did not conduct relevant experi-
ments to determine the functions of related 

genes. Thus, we still need to further study the 
predictive value of the radiosensitive signa-
tures. If these signatures are confirmed in 
future prospective randomized trials, these sig-
natures could be used to select patients who 
may benefit from radiotherapy or to identify 
patients who may not respond well to standard 
radiotherapy. Therefore, it can guide clinicians 
to adjust the treatment plan.

Conclusions

In general, our research has successfully devel-
oped and validated immune-related and hypox-
ia-related gene signatures, which can effective-
ly predict the radiosensitivity of breast cancer. 
We further combined these two signatures  
to effectively identify breast cancer patients 
who are most likely to benefit from radiothera-
py. The combined model is more accurate in 
identifying radioresistant patients than a single 
model and serves as a powerful supplement to 
the predictive factors of breast cancer patients 
with radiotherapy, but a prospective cohort is 
still needed to further verify its predictive value 
in breast cancer patients.
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Table S1. Clinicopathologic characteristics of breast cancer in the TCGA dataset

Characteristic
TCGA

RT (n=540) NRT (n=406) P value
Age
    <60 305 (56.48%) 203 (50%) 0.048
    ≥60 235 (43.52%) 203 (50%)
Histological type
    Lobular Carcinoma 110 (20.37%) 79 (19.46%) 0.218
    Ductal Carcinoma 387 (71.67%) 281 (69.21%)
    Mixed 16 (2.96%) 11 (2.71%)
    Others 27 (5%) 34 (8.37%)
    NA 0 1 (0.25%)
Pathological stage
    I/II 366 (67.78%) 329 (81.03%) <0.001
    III/IV 165 (30.56%) 67 (16.5%)
    NA 9 (1.67%) 10 (2.46%)
ER
    ER- 111 (20.56%) 91 (22.41%) 0.504
    ER+ 406 (75.19%) 299 (73.65%)
    NA 23 (4.26%) 16 (3.94%)
PR
    PR- 167 (30.93%) 125 (30.79%) 0.978
    PR+ 350 (64.81%) 263 (64.78%)
    NA 23 (4.26%) 18 (4.43%)
HER2
    HER2- 280 (51.85%) 197 (48.52%) 0.141
    HER2+/- 66 (12.22%) 68 (16.75%)
    HER2+ 105 (19.44%) 76 (18.72%)
    NA 89 (16.48%) 65 (16.01%)
Chemotherapy
    No 26 (4.81%) 62 (15.27%) <0.001
    Yes 486 (90%) 282 (69.46%)
    NA 28 (5.19%) 62 (15.27%)
Status
    alive 491 (90.93%) 348 (85.71%) 0.012
    death 49 (9.07%) 58 (14.29%)
SurvTime (month)* 32.49 (18.61, 63.25) 23.98 (13.47, 52.13) <0.001
*P50(P25, P75); RT, radiotherapy; NRT, non-radiotherapy; NA, data not available; ER, estrogen receptor; PR, progesterone 
receptor; HER2, human epidermal growth factor receptor 2.

Table S2. Clinicopathologic characteristics of breast cancer in the METABRIC dataset

Characteristic
METABRIC

RT (n=1137) NRT (n=764) P value
Age
    <60 555 (48.81%) 285 (37.3%) <0.001
    ≥60 582 (51.19%) 479 (62.7%)
Histological type
    Lobular Carcinoma 75 (6.6%) 67 (8.77%) 0.144
    Ductal Carcinoma 885 (77.84%) 566 (74.08%)
    Mixed 115 (10.11%) 92 (12.04%)
    Others 53 (4.66%) 33 (4.32%)
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    NA 9 (0.79%) 6 (0.79%)
Grade
    I 82 (7.21%) 82 (10.73%) <0.001
    II 402 (35.36%) 338 (44.24%)
    III 627 (55.15%) 299 (39.14%)
    NA 26 (2.29%) 45 (5.89%)
ER
    ER- 305 (26.82%) 138 (18.06%) <0.001
    ER+ 832 (73.18%) 626 (81.94%)
PR
    PR- 562 (49.43%) 331 (43.32%) 0.009
    PR+ 575 (50.57%) 433 (56.68%)
HER2
    HER2- 990 (87.07%) 675 (88.35%) 0.407
    HER2+ 147 (12.93%) 89 (11.65%)
Chemotherapy
    No 814 (71.59%) 691 (90.45%) <0.001
    Yes 323 (28.41%) 73 (9.55%)
Status
    alive 530 (46.61%) 269 (35.21%) <0.001
    death 607 (53.39%) 495 (64.79%)
SurvTime (month)* 116.63 (61.33, 182.93) 114.28 (60.89, 186.88) 0.818
*P50(P25, P75); RT, radiotherapy; NRT, non-radiotherapy; NA, data not available; ER, estrogen receptor; PR, progesterone 
receptor; HER2, human epidermal growth factor receptor 2.

Table S3. Clinicopathologic characteristics of breast cancer in the E-TABM-158 dataset

Characteristic
E-TABM-158

RT (n=59) NRT (n=56) P value
Age
    <60 42 (71.19%) 36 (64.29%) 0.429
    ≥60 17 (28.81%) 20 (35.71%)
Pathological stage
    I/II 48 (81.36%) 45 (80.36%) 0.936
    III/IV 10 (16.95%) 9 (16.07%)
    NA 1 (1.69%) 2 (3.57%)
ER
    ER- 24 (40.68%) 19 (33.93%) 0.455
    ER+ 35 (59.32%) 37 (66.07%)
PR
    PR- 26 (44.07%) 25 (44.64%) 0.984
    PR+ 32 (54.24%) 31 (55.36%)
    NA 1 (1.69%) 0
Chemotherapy
    No 25 (42.37%) 29 (51.79%) 0.312
    Yes 34 (57.63%) 27 (48.21%)
DSS
    alive 44 (74.58%) 44 (78.57%) 0.613
    death 15 (25.42%) 12 (21.43%)
SurvTime (month)* 81.12 (45.18, 117.90) 72.60 (36.06, 108.84) 0.339
*P50(P25, P75); RT, radiotherapy; NRT, non-radiotherapy; NA, data not available; ER, estrogen receptor; PR, progesterone 
receptor; DSS, disease-specific survival.



A combined immune-hypoxia model for predicting BRCA radiosensitivity

3 

Table S4. Clinicopathologic characteristics of breast cancer in the GSE103746 dataset

Characteristic
GSE103746

RT (n=118) NRT (n=54) P value
ER
    ER- 38 (32.20%) 12 (22.22%) 0.181
    ER+ 80 (67.80%) 42 (77.78%)
    NA
Reference
    no 68 (57.63%) 36 (66.67%) 0.261
    yes 50 (42.37%) 18 (33.33%)
Follow-up time (month)* 104.89 (46.46, 166.07) 132.44 (61.60, 180.70) 0.373
*P50(P25, P75); RT, radiotherapy; NRT, non-radiotherapy.

Figure S1. Definition of radiosensitivity and radiosensitivity gene signature.



A combined immune-hypoxia model for predicting BRCA radiosensitivity

4 

Figure S2. Venn diagram. The common immune-related genes (A) and hypoxia-related genes; (B) in the TCGA data-
set, METABRIC datasets.

Figure S3. The optional cutoff values were determined by maximally selected rank statistics. A. Immune signature; 
B. Hypoxia signature.

Table S5. Univariate Cox regression analysis of radiotherapy and non-radiotherapy patients in the 
TCGA dataset

Gene names
Radiotherapy for all patients Non-radiotherapy for all patients

HR (95% CI) P value HR (95% CI) P value
IRGs
    ACVRL1 1.371 (1.139-1.649) 0.001 0.913 (0.679-1.226) 0.543
    ADM 1.277 (1.115-1.462) <0.001 1.193 (0.835-1.703) 0.332
    ADRM1 1.225 (1.060-1.417) 0.006 1.146 (0.84-1.562) 0.39
    AIMP1 1.099 (1.034-1.169) 0.003 1.144 (0.415-3.155) 0.795
    AKT1 1.267 (1.020-1.573) 0.033 0.995 (0.754-1.314) 0.973
    ANGPTL6 1.231 (1.035-1.463) 0.019 1.081 (0.779-1.501) 0.64
    ARRB1 1.336 (1.041-1.715) 0.023 0.837 (0.479-1.464) 0.533
    BMP1 1.250 (1.121-1.395) <0.001 1.012 (0.658-1.555) 0.957
    BMPR1A 0.650 (0.457-0.924) 0.016 0.949 (0.735-1.227) 0.69
    BRAF 0.449 (0.277-0.729) 0.001 0.978 (0.734-1.304) 0.88
    CBL 0.723 (0.523-0.999) 0.049 1.163 (0.854-1.585) 0.337
    CCL26 1.359 (1.051-1.759) 0.019 0.893 (0.473-1.687) 0.727
    CD14 1.216 (1.089-1.357) <0.001 0.996 (0.738-1.343) 0.978
    CD320 1.199 (1.003-1.432) 0.046 0.996 (0.733-1.354) 0.98
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    CD81 1.368 (1.136-1.646) 0.001 0.984 (0.774-1.251) 0.895
    CMKLR1 1.288 (1.045-1.587) 0.018 0.77 (0.506-1.171) 0.221
    CMTM6 0.625 (0.426-0.916) 0.016 0.808 (0.621-1.053) 0.115
    CXCL1 1.353 (1.008-1.816) 0.044 0.391 (0.126-1.215) 0.105
    CXCL16 0.559 (0.348-0.897) 0.016 0.893 (0.66-1.21) 0.466
    DLL4 1.319 (1.105-1.576) 0.002 1.081 (0.838-1.393) 0.55
    EDN2 1.335 (1.077-1.655) 0.008 0.922 (0.705-1.207) 0.556
    ENG 1.383 (1.136-1.683) 0.001 0.825 (0.595-1.145) 0.25
    ESRRA 1.271 (1.001-1.612) 0.049 1.262 (0.968-1.644) 0.085
    F2RL1 1.293 (1.050-1.593) 0.016 1.103 (0.869-1.399) 0.42
    FAM3D 1.200 (1.088-1.323) <0.001 0.806 (0.432-1.503) 0.497
    FCGRT 1.263 (1.015-1.571) 0.036 0.941 (0.703-1.26) 0.685
    FIGNL2 1.359 (1.117-1.654) 0.002 0.982 (0.751-1.284) 0.895
    FLT4 1.235 (1.024-1.490) 0.027 0.834 (0.589-1.182) 0.308
    GDF11 1.283 (1.040-1.582) 0.02 0.924 (0.666-1.282) 0.637
    GDF3 1.213 (1.007-1.462) 0.042 1.185 (0.871-1.612) 0.279
    GFAP 1.257 (1.080-1.462) 0.003 0.689 (0.355-1.338) 0.271
    GRN 1.216 (1.014-1.458) 0.035 1.084 (0.792-1.482) 0.614
    HRAS 1.249 (1.000-1.559) 0.05 0.932 (0.652-1.333) 0.701
    IL1A 1.197 (1.099-1.303) <0.001 0.378 (0.052-2.767) 0.338
    IL31RA 1.240 (1.092-1.406) 0.001 1.135 (0.816-1.577) 0.452
    KLRC2 0.208 (0.047-0.920) 0.039 1.09 (0.876-1.355) 0.44
    KLRC3 0.118 (0.021-0.646) 0.014 1.018 (0.892-1.161) 0.793
    LGR4 1.226 (1.001-1.501) 0.049 0.876 (0.641-1.197) 0.405
    LMBR1L 1.371 (1.053-1.785) 0.019 0.999 (0.758-1.317) 0.996
    MAP2K2 1.267 (1.012-1.586) 0.039 0.942 (0.676-1.313) 0.726
    MMP9 1.160 (1.076-1.250) <0.001 0.27 (0.012-6.208) 0.413
    MUC4 14.333 (2.951-69.624) 0.001 0.941 (0.534-1.659) 0.833
    NCK1 0.550 (0.352-0.859) 0.009 0.998 (0.798-1.248) 0.984
    NFAT5 0.682 (0.475-0.980) 0.039 0.973 (0.729-1.299) 0.852
    NR1D1 1.168 (1.002-1.360) 0.047 1.046 (0.808-1.353) 0.734
    NR1H2 1.433 (1.121-1.832) 0.004 0.936 (0.718-1.22) 0.624
    NR2F1 1.155 (1.021-1.308) 0.023 0.783 (0.441-1.39) 0.404
    OGFR 1.330 (1.045-1.692) 0.021 0.827 (0.606-1.127) 0.228
    PAK6 1.475 (1.195-1.821) <0.001 1.166 (0.931-1.462) 0.181
    PDGFRB 1.402 (1.127-1.743) 0.002 1.094 (0.807-1.482) 0.564
    PGF 1.273 (1.147-1.412) <0.001 1.169 (0.865-1.58) 0.31
    PIK3CA 1.137 (1.063-1.215) <0.001 1.38 (0.616-3.094) 0.434
    PLAU 1.252 (1.064-1.473) 0.007 1.266 (0.939-1.708) 0.122
    PLTP 1.199 (1.072-1.340) 0.001 1.234 (0.94-1.619) 0.13
    PLXND1 1.726 (1.377-2.164) <0.001 1.138 (0.907-1.429) 0.263
    PPARA 0.541 (0.349-0.840) 0.006 1.047 (0.848-1.292) 0.668
    PSMC6 1.238 (1.033-1.485) 0.021 0.782 (0.528-1.159) 0.221
    PTGDS 1.152 (1.071-1.239) <0.001 0.228 (0.04-1.312) 0.098
    PTGER1 1.283 (1.089-1.510) 0.003 0.907 (0.562-1.464) 0.689
    QRFP 1.330 (1.106-1.599) 0.002 1.019 (0.754-1.378) 0.904
    RABEP2 1.284 (1.007-1.638) 0.044 0.954 (0.675-1.349) 0.791
    RAET1E 1.427 (1.104-1.843) 0.007 1.119 (0.74-1.693) 0.595
    RFX5 0.667 (0.459-0.971) 0.035 0.998 (0.779-1.28) 0.989
    RNASE7 1.177 (1.045-1.325) 0.007 0.557 (0.24-1.292) 0.173
    RXFP1 1.222 (1.005-1.486) 0.044 0.94 (0.621-1.423) 0.771
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    S100A3 1.297 (1.170-1.437) <0.001 0.881 (0.596-1.303) 0.526
    SEMA7A 1.514 (1.298-1.767) <0.001 0.886 (0.598-1.314) 0.547
    SOD1 1.284 (1.044-1.579) 0.018 1.08 (0.875-1.333) 0.473
    STAT3 0.681 (0.475-0.976) 0.036 0.94 (0.722-1.226) 0.649
    TGFB1 1.195 (1.018-1.402) 0.03 0.736 (0.502-1.079) 0.117
    TGFB2 0.459 (0.256-0.823) 0.009 1.053 (0.791-1.403) 0.722
    THPO 1.340 (1.037-1.731) 0.025 0.968 (0.804-1.164) 0.729
    TIE1 1.224 (1.020-1.470) 0.03 0.896 (0.646-1.241) 0.508
    TINAGL1 1.382 (1.080-1.768) 0.01 1.084 (0.86-1.366) 0.497
    TMSB10 1.325 (1.075-1.633) 0.008 0.96 (0.707-1.304) 0.794
    TNFRSF4 1.392 (1.154-1.678) 0.001 0.866 (0.62-1.209) 0.397
    TNFRSF6B 1.268 (1.107-1.452) 0.001 0.734 (0.475-1.134) 0.164
    TOR2A 1.347 (1.045-1.735) 0.021 0.932 (0.706-1.23) 0.618
    TRPC4AP 1.185 (1.026-1.368) 0.021 0.978 (0.626-1.526) 0.921
    UNC93B1 1.236 (1.052-1.452) 0.01 1.081 (0.833-1.404) 0.556
    VIP 1.215 (1.054-1.400) 0.007 0.73 (0.472-1.129) 0.157
HRGs
    BGN 1.205 (1.012-1.434) 0.036 1.005 (0.696-1.451) 0.978
    CDKN1A 1.283 (1.012-1.625) 0.039 0.822 (0.567-1.191) 0.301
    CP 1.253 (1.074-1.462) 0.004 1.096 (0.832-1.443) 0.516
    GBE1 0.648 (0.428-0.981) 0.04 1.06 (0.863-1.301) 0.579
    GPC1 1.195 (1.061-1.345) 0.003 1.008 (0.581-1.749) 0.978
    KDM3A 0.624 (0.404-0.964) 0.033 1.188 (0.982-1.436) 0.076
    MT2A 1.247 (1.035-1.503) 0.02 0.775 (0.504-1.192) 0.246
    NAGK 1.326 (1.030-1.706) 0.028 1.2 (0.98-1.47) 0.078
    PRDX5 1.288 (1.042-1.591) 0.019 1.046 (0.801-1.367) 0.741
    S100A4 1.162 (1.043-1.294) 0.007 1.045 (0.691-1.582) 0.833
    SERPINE1 1.311 (1.169-1.471) <0.001 0.817 (0.57-1.172) 0.273
    SLC25A1 1.332 (1.014-1.751) 0.039 1.05 (0.824-1.337) 0.694
    SRPX 1.355 (1.163-1.578) <0.001 0.92 (0.611-1.387) 0.692
    TGFBI 1.296 (1.143-1.470) <0.001 1.112 (0.768-1.61) 0.575

Table S6. Coefficients of spike-and-slab Lasso Cox and Lasso Cox models
Gene names Coefficients
IRGs
    PAK6 0.364613574
    PLXND1 0.435054147
    SEMA7A 0.251088237
HRGs
    BGN 0.020302494
    CP 0.207320903
    GBE1 -0.373751049
    GPC1 0.031078184
    KDM3A -0.032321533
    NAGK 0.005800813
    S100A4 0.083597029
    SERPINE1 0.199830708
    SLC25A1 0.117815068
    SRPX 0.108774567
    TGFBI 0.000371747
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Figure S4. Kaplan-Meier curves of OS for patients who had received radiation vs. those who did not: A. TCGA-IRS group; B. TCGA-IRR group; C. TCGA-HRS group; D. 
TCGA-HRR group; E. METABRIC-IRS group; F. METABRIC-IRR group; G. METABRIC-HRS group; H. METABRIC-HRR group.
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Figure S5. Disease-specific survival stratified by the immune signatures in the E-TABM-158 dataset.
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Figure S6. Recurrence-free survival stratified by the immune signatures in the GSE103746 dataset.
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Figure S7. Recurrence-free survival stratified by the hypoxia signatures in the E-TABM-158 dataset.
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Figure S8. Classification of nonradiotherapy patients into subgroups according to the immune signature (IRS vs. 
IRR) and the hypoxia signature (HRS vs. HRR). A, C. TCGA dataset; B, D. METABRIC dataset.
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Figure S9. Classification of patients into subgroups according to the immune signature (IRS vs. IRR) and the hypoxia 
signature (HRS vs. HRR) in the E-TABM-158 dataset.
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Figure S10. Overall survival stratified by the combination of immune and hypoxia gene signatures. A-C. TCGA data-
set; D-F. METABRIC dataset.
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Figure S11. Validation of 31-gene in the TCGA, METABRIC, E-TABM-158 datasets. A, D, G. Consensus clustering 
algorithm generated two clusters based on the expression profile of the 31-gene signature; B, C. Kaplan-Meier plot 
of OS for the two clusters in the TCGA dataset; E, F. Kaplan-Meier plot of OS for the two clusters in the METABRIC 
dataset; H, I. Kaplan-Meier plot of DSS for the two clusters in the E-TABM-158 dataset.
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Figure S12. Validation of RSI in the TCGA, METABRIC, E-TABM-158 datasets.
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Figure S13. Immune microenvironment of these three groups (IRS/HRS, Mixed, IRR/HRR) in the METABRIC dataset. A, B. ssGSEA analysis showed the immune cell 
proportions of three groups; C-F. Comparison of immune score, PD-1, PDL-1, CTLA-4 levels of three groups in all patients; G, H. Comparison of HIF-a, CA9 expression 
levels of three groups in radiotherapy patients.

Figure S14. A-C. Candidate immune genes selection by Lasso Cox analysis; D-G. Kaplan-Meier survival curves of the IRS group and IRR group in radiotherapy pa-
tients and non-radiotherapy patients, respectively.
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Figure S15. A-C. Candidate hypoxia genes selection by spike-and-slab Lasso Cox analysis.


