
Am J Cancer Res 2022;12(4):1919-1933
www.ajcr.us /ISSN:2156-6976/ajcr0140875

Original Article
Characterizing the mutational  
landscape of MM and its precursor MGUS

Akanksha Farswan1, Anubha Gupta1, Lingaraja Jena2, Vivek Ruhela3, Gurvinder Kaur2, Ritu Gupta2 

1SBILab, Department of ECE, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 
110020, India; 2Laboratory Oncology Unit, Dr. B.R.A. IRCH, AIIMS, New Delhi 110029, India; 3Department of 
Computational Biology, IIIT-Delhi, New Delhi 110020, India

Received November 30, 2021; Accepted March 2, 2022; Epub April 15, 2022; Published April 30, 2022

Abstract: Mutational Signatures and Tumor mutational burden (TMB) have emerged as prognostic biomarkers in 
cancer genomics. However, the association of TMB with overall survival (OS) is still unknown in newly diagnosed 
multiple myeloma (NDMM) patients. Further, the change in the mutational spectrum involving both synonymous and 
non-synonymous mutations as MGUS progresses to MM is unexplored. This study addresses both these aspects 
via extensive evaluation of the mutations in MGUS and NDMM. WES data of 1018 NDMM patients and 61 MGUS 
patients collected from three different global regions were analyzed in this study. Single base substitutions, muta-
tional signatures and TMB were inferred from the variants identified in MGUS and MM patients. The cutoff value 
for TMB was estimated to divide patients into low TMB and high TMB (hypermutators) groups. This study finds a 
change in the mutational spectrum with a statistically significant increase from MGUS to MM. There was a statisti-
cally significant increase in the frequency of all the three categories of variants, non-synonymous (NS), synonymous 
(SYN), and others (OTH), from MGUS to MM (P<0.05). However, there was a statistically significant rise in the TMB 
values for TMB_NS and TMB_SYN only. We also observed that 3’ and 5’UTR mutations were more frequent in MM 
and might be responsible for driving MGUS to MM via regulatory binding sites. NDMM patients were also examined 
separately along with their survival outcomes. The frequency of hypermutators was low in MM with poor OS and PFS 
outcome. We observed a statistically significant rise in the frequency of C>A and C>T substitutions and a statistically 
significant decline in T>G substitutions in the MM patients with poor outcomes. Additionally, there was a statistically 
significant increase in the TMB of the patients with poor outcome compared to patients with a superior outcome. 
A statistically significant association between the APOBEC activity and poor overall survival in MM was discovered. 
These findings have potential clinical relevance and can assist in designing risk-adapted therapies to inhibit the 
progression of MGUS to MM and prolong the overall survival in high-risk MM patients.
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Introduction

Multiple Myeloma (MM) is a malignancy of 
abnormal plasma cells in the bone marrow 
where the progression of the disease is driven 
by numerous factors, including immune surveil-
lance, microenvironment, and therapeutic 
agents. Monoclonal gammopathy of undeter-
mined significance (MGUS) is a benign precur-
sor state of MM characterized by lack of end-
organ damage [1] and less than 10% of plasma 
cells in the bone marrow. MGUS may progress 
to asymptomatic or symptomatic multiple 
myeloma with a rate of nearly 1% per year [2], 

where MM is characterized by severe clinical 
problems such as bone fractures, anaemia, 
renal failure, and hypercalcemia. With the 
advent of Next Generation Sequencing technol-
ogy, it has become easier to study the DNA of a 
patient and unearth the genetic causes of the 
disease. Multiple studies involving exome and 
genome data of MM have been performed to 
understand the genomic abnormalities driving 
tumor progression in MM. It is well established 
that the primary events in MM are either hyper-
diploidy, i.e., trisomy of chromosomes 3, 5, 7,  
9, 11, 15, 19 and/or 21 or non-hyperdiploidy 
involving translocations affecting the genes 
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encoding immunoglobulin (Ig) heavy chains 
(IGH)-mainly t(4;14), t(6;14), t(11;14), t(14;16) 
and t(14;20) [3]. Primary events are then fol-
lowed by multiple secondary events promoting 
tumor progression. However, it has also been 
observed and validated that the genetic ab- 
errations peculiar to MM are also present dur-
ing the premalignant state of MGUS, where 
they do not show any clinical symptoms related 
to MM [4, 5]. It is, therefore, worthwhile to  
thoroughly investigate the mutational land-
scape of the genomic alterations affecting 
MGUS as well as MM. Though multiple studies 
have been performed to study the MGUS to  
MM progression [6-8], the landscape of the 
mutational patterns of the MGUS and MM 
largely remains unexplored. The study of the 
changing mutational spectrum of the MGUS as 
it advances to MM will provide more insight  
into the disease biology. Further, it will help 
identify the clinically relevant vital biomarkers 
that can assist in controlling the progression of 
MGUS to MM.

Mutational signatures have emerged as critical 
biomarkers in cancer genomics, with profound 
pathogenic, prognostic, and therapeutic impli-
cations. Multiple mutational events occur in a 
tumor, while only a few of these mutations are 
actual drivers of cancer. However, exploring  
the entire landscape of coding and non-coding 
mutations helps reveal the mutational signa-
tures characteristics of the specific cancer 
types. For example, CG>AT transversion is 
associated with lung cancer [9], and CG>TA is 
associated with skin cancer [10, 11]. Various 
mutational signatures have been discovered 
based on the 96 possible combinations of the 
single base substitutions and their trinucleo-
tide contexts. These signatures are linked with 
the defects of DNA repair mechanisms, ageing, 
UV exposure, and others, thereby validating  
the role of the mutational processes in shaping 
the genomic continuum of each cancer type 
[12-15]. Further, tumor mutational burden 
(TMB) has become a prominent biomarker of 
response to immunotherapy and is being 
explored for its association with overall surviv-
al, particularly in solid tumors. TMB is deter-
mined as the number of mutations identified 
per megabase. It has been observed that can-
cers with a high TMB load of greater than 10 
mut/Mb have a better chance of responding to 
drugs called immune checkpoint inhibitors 
(ICIs). The primary function of ICIs is to activate 

the immune system better to recognize cancer 
cells [16] and act upon them. As a result, a  
high tumor mutational burden (TMB) has been 
increasingly associated with superior overall 
survival in ICI-treated patients. Multiple studies 
are now being conducted to discover the can-
cers with high TMB that respond best to ICIs 
and, thus, prolong the survival of cancer 
patients. In addition, the association of TMB 
with survival in non-ICI-treated patients has 
also been explored. It has been observed that 
high TMB was associated with poor prognosis 
and overall survival in the absence of immuno-
therapy, as opposed to ICI-treated patients in 
whom high TMB was associated with prolonged 
survival [17].

Synonymous mutations, earlier designated as 
silent mutations, were mostly ignored in can- 
cer genomics due to their inability to alter the 
amino acid of the resultant protein [18]. 
However, they have the capability of changing 
the protein expression and function owing to 
their impact on RNA stability, RNA folding [19] 
or splicing [20], translation [21], or co-transla-
tional protein folding. Multiple studies have  
corroborated that natural selection is present 
in synonymous mutations [21-23], contrary to 
earlier studies that denied the role of selec- 
tive pressure in synonymous mutations [24]. 
Various genome-wide association studies con-
ducted in recent times have also confirmed the 
association of synonymous SNPs to human dis-
ease risk and other complex traits. Therefore, 
the role of synonymous mutations in the dis-
ease biology of MGUS and MM should be exam-
ined as it could lead to significant prognostic 
and clinical implications.

Motivated by the above discussion, an exhaus-
tive investigation of the mutations altered in 
MGUS and MM was carried out in the present 
study. We explored the change in the mutation-
al landscape as the disease progressed from 
the MGUS to MM. We found that the diffe- 
rence in the frequency of the single base sub-
stitution is significantly different in MGUS and 
MM. We have also analyzed the frequency of 
the different types of variants across MGUS 
and MM and found that few have changed sig-
nificantly as the disease progressed from 
MGUS to MM. Further, we categorized MM 
patients into low TMB and high TMB (hypermu-
tators) based on their overall survival data. We 
explored the impact of TMB on the frequency  
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of single base substitutions and the different 
variant types across the low and high TMB 
groups of MM patients. The association of TMB 
with overall survival is still unknown in newly 
diagnosed multiple myeloma (NDMM) patients; 
therefore, we have correlated TMB with survival 
data and found that high TMB is linked with 
poor overall survival in NDMM patients.

Methods and materials

Datasets used in the study

The present study is based on the data of  
1018 NDMM patients and 61 MGUS patients. 
Variant files generated from the exome data of 
936 NDMM patients out of the total 1018 
patients were obtained from the GDC portal  
via dbGaP authorized access (phs000748; 
phs000348). This data is a part of the MMRF 
CoMMpass study. Exome data of the remain- 
ing 82 NDMM patients were obtained from 
AIIMS, Delhi. In addition, exome data of 33 
MGUS patients out of 61 patients was obtain- 
ed from EGA (EGAD00001001901), and exo- 
me data of the remaining 28 patients was 
obtained from AIIMS, Delhi. Four variant  
callers, namely, MuSE [25], Mutect2 [26], 
VarScan2 [27], and Somatic-Sniper [28], was 
used for finding variants in patients from the 
MMRF CoMMpass study. Therefore, there were 
four vcf files corresponding to each variant call-

remove the benign variants. The rest of the fil-
tered variants were categorized into nonsynon-
ymous (NS) variants, synonymous (SYN) vari-
ants, and other (OTH) variants. Exonic, nonsyn-
onymous single nucleotide variants (snvs), 
ncRNA_exonic, stop gain, stop loss, start loss, 
splicing, frameshift insertion, and frameshift 
deletion were grouped in nonsynonymous vari-
ants. UTR3, synonymous single nucleotide  
variants (snvs), and UTR5 were grouped in syn-
onymous variants. Non-frameshift insertion, 
non-frameshift deletion, non-frameshift sub- 
stitution, intronic, intergenic ncRNA_intronic, 
upstream, downstream, unknown, and ncRNA_
splicing were grouped in other variants.

Assessment of single base substitution, muta-
tional signatures, and TMB

Variants identified by three or more callers were 
further processed to extract information on 
single base substitution and identify the  
mutational signatures present in the data. 
SigProfilerExtractor [31] was used to discover 
the single base substitutions and the muta- 
tional signatures in the MGUS and MM data. 
The etiology of the deduced signatures were 
found via the COSMIC v3.2 mutational signa-
ture database [32]. A total of six single base 
substitutions C>A, C>G, C>T, T>A, T>C, and T>G 
were identified. Tumor mutational burden (TMB) 
was calculated using the three different catego-

Figure 1. Workflow of the study and data analysis. Four different variant call-
ers were used to identify variants in the MM and MGUS patients. Variants 
were finalized using the majority voting scheme. Variants were then anno-
tated with Annovar for deducing TMB. Mutational signatures were inferred 
using Sigprofiler tool.

er for each patient. The work-
flow of the complete analysis 
is shown in Figure 1.

Analysis of exome data and 
the variants identified using 
the exome data

Exome data obtained from 
AIIMS and EGA was process- 
ed with a standard exome 
sequencing pipeline, and sin-
gle nucleotide variants (SNVs) 
were extracted using MuSE, 
Mutect2, VarScan2, and So- 
matic-Sniper variant callers. 
SNVs were annotated using 
ANNOVAR [29] to gather the 
genomic information of the 
mutations, such as their vari-
ant type and the deleterious-
ness of the mutation, etc. 
FATHMM-XF [30] was used to 
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ries of variants-nonsynonymous (NS) variants, 
synonymous (SYN) variants, and other (OTH) 
variants. TMB was determined as described in 
[33]. TMB_NS, TMB_SYN, and TMB_OTH were 
estimated using nonsynonymous (NS) variants, 
synonymous (SYN) variants, and other (OTH) 
variants, respectively. Survival data were avail-
able for 832 (753+79) patients out of a total of 
1018 NDMM patients, which were utilized to 
obtain the threshold values for TMB_NS, TMB_
SYN, and TMB_OTH using the K-adaptive parti-
tioning (KAP) algorithm [34] and Cutoff Finder 
[35].

Statistical analysis

Wilcoxon rank-sum test was used to determine 
if the change in the frequencies of the single 
base substitutions and the different types of 
variants is statistically significant between the 
MGUS and MM. Unpaired Wilcoxon rank-sum 
was applied because the data did not follow the 
normality distribution and was unpaired.

Results

Frequency of single base substitutions (SBS) 
increases significantly from MGUS to MM

There was an increase in the median and mean 
frequency of the single base substitutions from 
MGUS to MM. The change in the frequency was 
statistically significant with p-values less than 
0.05 for all the substitutions according to the 
Wilcoxon rank-sum test (Figure 2). C>T substi-
tution was observed with the highest frequency 

in MGUS and MM, increasing the median value 
from 30 to 59. T>C substitution was next, with 
an increase in the median value from 20 
(MGUS) to 35 (MM). T>A was observed with the 
lowest frequency in MGUS and MM, increasing 
the median value from 7 to 17.

Calculation of threshold values for the SBS 
and comparison between the high and low-
frequency MM groups

Due to the availability of survival data for 832 
MM patients, threshold values for the sub- 
stitutions were inferred. K-adaptive partitioning 
(KAP) algorithm and Cutoff Finder were used  
to deduce the thresholds. Table 1, Supple- 
mentary Table 3 and Supplementary Figures  
5 and 6 show the cut-off values estimated for 
the different types of substitutions for PFS and 
OS. Similar cut-offs were deduced by the two 
tools, i.e. KAP and Cutoff Finder. The higher of 
the two cut-offs obtained via KAP were select-
ed for C>T, T>C, C>G, C>A, T>G, and T>A substi-
tutions and were 99, 12, 37, 28, 6, and 32, 
respectively. The patients were then organized 
into two groups, one with SBS values less than 
the selected cut-offs and the other one with 
SBS values greater than the chosen cut-offs. 
Kaplan Meier (KM) curves corresponding to the 
two groups revealed that there was a signifi-
cant difference in the survival patterns of the 
two groups of patients for the substitutions, 
C>T, C>G, C>A, and T>A. However, cut-offs 
obtained for T>C and T>G substitutions yielded 
a significantly poor outcome for the group with 
values less than the selected cut-offs. 

Figure 2. Boxplot shows the difference in the frequency of the single base substitutions between MGUS and MM 
patients. Wilcoxon rank-sum test was applied to determine if the change is statistically significant or not. For all the 
substitutions, there is significant variation in the frequency with p-values less than 0.05 between the two groups. 
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Therefore, cut-offs were manually deduced for 
T>C and T>G substitutions where the KM curve 
has the maximum separability and was found 
to be 80 and 41, respectively. Univariate and 
multivariate hazard analysis was also done 
using the selected cut-offs via KAP, as shown  
in the Supplementary Table 5. The hazard ratio 
for all the substitutions was greater than 1 in 
the univariate analysis, demonstrating that an 
increase in the frequency of these substitu-
tions correlated with an enhanced risk in MM 
patients. Univariate analysis revealed that C>T 
substitution had the most significant impact 
(p-value <0.05) on the overall survival (OS) 
owing to the highest hazard ratio followed by 
T>C and C>A while T>G had the most signifi- 
cant impact (p-value <0.05) on PFS followed by 
C>T and C>A. However, only C>A was significant 
in multivariate analysis with p-values less than 
0.05 (0.04 for PFS and 0.03 for OS).  

Comparison of mutational signature profiles 
between MGUS and MM

A total of 29 and 61 SBS signatures were 
extracted from the mutation data of MGUS  
and NDMM patients, respectively. Union of 29 
and 61 signatures resulted in 66 unique  
signatures. Signatures SBS37, SBS49, and 
SBS55 were found only in MGUS. However, 
their frequency is low as they were found in a 
single sample in MGUS (1/61=1.6%). SBS49 
and SBS55 signatures are possible sequencing 
artifacts, and the proposed etiology of signa-
ture 37 is unknown according to the COSMIC 
v3.2 mutational signature database. Further, 
37 signatures were discovered only in MM. 
However, 7 out of 37 were mutated in more 
than 1% MM samples. They include SBS6, 

SBS7d, SBS9, SBS17b, SBS19, SBS40, and 
SBS42. The rest of the 30 signatures were 
found in less than 1% MM samples and in- 
clude SBS7c, SBS8, SBS10d, SBS14, SBS20, 
SBS21, SBS22, SBS23, SBS25, SBS26, SBS- 
27, SBS28, SBS30, SBS32, SBS33, SBS34, 
SBS35, SBS36, SBS39, SBS41, SBS43, SB- 
S46, SBS47, SBS50, SBS52, SBS53, SBS57, 
SBS86, SBS88, and SBS89. SBS27, SBS43, 
SBS46, SBS47, SBS50, SBS52, SBS53, and 
SBS57 are possible sequencing artifacts, as 
described previously. Clock-like signatures 
SBS1 and SBS5 were present in both MGUS 
and MM. Defective DNA mismatch repair sig- 
natures SBS15 and SBS44 were present in 
both MGUS and MM while SBS6, SBS14, 
SSB20, SBS21, SBS26 were present only in 
MM. SBS2 and SBS13 are associated with  
the activity of the AID/APOBEC family of cyti-
dine deaminases and were found in both  
MGUS and MM. MM patients with APOBEC sig-
natures were investigated further using surviv-
al data. APOBEC signature was present in 27 
out of 177 MM patients with poor OS outcome 
and 52 out of 655 MM patients with superior 
OS outcome. Fisher’s exact test revealed a  
statistically significant association between the 
APOBEC activity and poor overall survival in 
MM (p-value =0.0056). However, there was  
no significant association between APOBEC 
activity and progression-free survival (p-value 
=0.9). KM curves showed a significant differ-
ence (p-value =1.8e-4) in the overall survival 
pattern of MM patients with and without 
APOBEC activity (Supplementary Figure 2). 
SBS84 and SBS85 are related to indirect 
effects of activation-induced cytidine deami-
nase (AID) induced somatic mutagenesis in 

Table 1. The table shows the cut-offs obtained for the six different types of substitutions via KAP
SBS Min Median Max PFS cutoff OS cutoff Manual cut-off Frequency (≤, >) PFS p-value OS p-value
C>A 0 17 1251 26 28* - 712, 120 0.00025 5.13E-06
C>G 0 21 1575 37* 34 - 763, 69 0.026 2.20E-04
C>T 1 59 7315 79 99* - 750, 82 0.001 4.80E-06
T>A 0 17 684 5 32* - 784, 48 0.01 0.005
T>C 0 35 4498 12 11 80* 816, 16 0.19 0.01
T>G 0 19 915 6 6 41* 804, 28 0.018 0.007
Two cut-offs were obtained for each SBS, one using PFS and the other using OS. The higher of the two cut-offs and the patients 
were then organized into two groups, one with SBS values less than the selected cut-offs and the other one with SBS values 
greater than the selected cut-offs. KM analysis showed that there was a significant difference in the survival patterns of the 
two groups of patients for the substitutions, C>T, C>G, C>A, and T>A. However, cut-offs obtained for T>C and T>G substitutions 
did not yield a significant difference in the survival curves. Therefore, cutoffs were manually deduced for the two substitutions 
where the KM curve has the maximum separability. *Denotes selected cutoffs. 
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lymphoid cells and were found in both MGUS 
and MM. 

Frequency of the variants increases signifi-
cantly from MGUS to MM

According to the Wilcoxon rank-sum test, there 
was a statistically significant increase in all  
the three categories of variants from MGUS to 
MM (Figure 3). The median value of nonsy- 
nonymous variants increased from 19 to 36 
(p-value =5.2e-13) as the disease progressed 
from MGUS to MM. Median value of synony-
mous variants increased from 6 to 26 (p-value 
<2e-16) while that of other variants increased 
from 69 to 100 (p-value =0.007). Within the 
nonsynonymous category, there was a sta- 
tistically significant increase in the nonsynony-
mous snv (p-value =2.9e-13) from 14 to 30  
and stop-gain (p-value =0.016) variants from 0 
to 2 as the disease progressed from MGUS to 
MM (Figure 4A). Within the synonymous cate-
gory, there was a statistically significant 
increase in the UTR3 (p-value <2e-16) and 
UTR5 variants (p-value =2.7e-7) (Figure 4B). 
Within the other variant category, there was a 
statistically significant increase in the intronic, 
intergenic, and downstream variants (Supple- 
mentary Figure 1). The median value of UTR3 
variants increased from 4 to 21, while that of 
UTR5 increased from 1 to 4.

Comparison of TMB values between MGUS 
and MM

Tumor mutational burden (TMB) was calculated 
using the three different categories of variants-

rithm and Cutoff Finder. Both the tools inferr- 
ed almost the same cut-offs (Table 2, Supple- 
mentary Tables 1 and 2; Supplementary Figur- 
es 3 and 4). Table 2 and Supplementary Table 
1 reveal the different cut-offs obtained via KAP 
for progression-free survival (PFS) and overall 
survival (OS). For TMB_NS, 0.63 and 0.62 are 
the threshold values obtained via PFS and OS.

Similarly, for TMB_SYN, 0.55 and 0.52 are the 
threshold values obtained for PFS and OS. The 
patients were then organized into two groups, 
one with TMB values less than the selected  
cut-offs and the other one with TMB values 
greater than the chosen cut-offs. There was a 
significant difference (p-value <0.05) on the 
KM survival curves of the patients below 
0.63/0.62 and above 0.63/0.62. There is a  
significant difference (p-value <0.05) on the 
KM survival curves of the patients below 
0.55/0.52 and above 0.55/0.52. Univariate 
and multivariate hazard analysis was also  
done using the cut-offs via KAP, as shown in  
the Supplementary Table 4. Hazard ratios for 
TMB_NS, TMB_SYN and TMB_OTH were great-
er than 1 in both the univariate and multivari-
ate analysis and indicate the enhanced risk 
associated with an increase in the mutation 
burden. Multivariate analysis showed the com-
bined effect of the TMB values on the survival 
patterns where TMB_NS had the highest 
impact, followed by TMB_OTH and TMB_SYN, 
respectively. 

MM patients with very high TMB_NS load and 
very low TMB_NS load were analyzed separate-
ly. Cut-off of 35 and 0.1 was deduced using the 

Figure 3. Boxplot showing the variation in the frequency of the three dif-
ferent categories of variants-Nonsynonymous, Synonymous, and Others be-
tween MGUS and MM. Wilcoxon rank-sum test was applied to determine if 
the change is statistically significant or not. There was a statistically signifi-
cant variation in all the categories of variants with p-values less than 0.05.

nonsynonymous (NS), syno- 
nymous (SYN), and others 
(OTH). A statistically signifi-
cant increase was observed 
for TMB_NS and TMB_SYN 
with p-values less than 0.05 
(Figure 5). For TMB_OTH, the 
difference in the KM survival 
curve was not significant 
(Figure 5).

Calculation of TMB cut-offs 
and comparison between 
high and low TMB MM groups

Survival data were available 
for 832 MM patients. Hence, 
threshold values of TMB were 
calculated using the K-adap- 
tive partitioning (KAP) algo-
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maximum separability on the 
KM survival curves. There 
were 822 patients with TMB_
NS less than 35 and only  
10 with TMB_NS greater than 
35. There were 6 patients  
with TMB_NS less than 0.1 
and 826 patients with TMB_
NS greater than 0.1. A signifi-
cant difference in the survi- 
val patterns of patients with 
TMB_NS less than 35 and 
greater than 35 were ob- 
served. For PFS, the observed 
p-value was 0.045, and for  
OS, the observed p-value  
was 0.022 (Figure 6). The 

Figure 4. A. Boxplot showing the variation in the frequency of the variants under the nonsynonymous category. There 
was a statistically significant variation in the frequency of nonsynonymous_snv and stop_gain variants with p-values 
less than 0.05. B. Boxplot showing the variation in the frequency of the variants under the synonymous category. 
There was a statistically significant variation in the frequency of UTR3 and UTR5 variants with p-values less than 
0.05. Wilcoxon rank-sum test was applied to determine if the change is statistically significant or not.

Figure 5. Boxplot reveals that the difference in the low TMB and high TMB 
groups is statistically significant with p-values less than 0.05 for TMB_NS 
and TMB_SYN. Wilcoxon rank-sum test was applied to determine if the 
change is statistically significant or not.
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patients with TMB_NS greater than 35 are 
hypermutators, and the characteristics specific 
to these high-risk patients were examined 
thoroughly.

there was a considerable increase in the tumor 
mutational burden of the patients with poor 
outcome as compared to patients with a supe-
rior outcome.

Table 2. The table shows the cut-offs obtained for TMB_NS and TMB_SYN via KAP. Two cut-offs were 
obtained, one using PFS and the other using OS. The two cut-offs are close to each other and KM 
analysis was done using both the cut-offs

Min Median Max
KAP on PFS KAP on OS

Cut-off (≤, >) PFS OS Cut-off (≤, >) PFS OS
TMB_NS 0 0.496 154.2 0.63 (612, 220) 3.19E-07 3.52E-08 0.62 (611, 221) 3.90E-07 2.09E-08
TMB_SYN 0 0.3487 50.84 0.55 (703, 129) 4.12E-05 2.05E-08 0.52 (668, 164) 5.60E-04 3.50E-08
There was a significant difference (p-value <0.05) on the KM survival curves of the patients below and above the selected 
cut-offs.

Figure 6. High TMB is associated with poor overall survival in NDMM patients. The difference in the overall survival 
probability between low and high TMB_NS is statistically significant with p-values 0.045 and 0.022 for PFS and OS 
respectively.

Table 3. The table shows the median values of TMB 
and SBS for the two groups of MM patients, one 
where the death event was observed and the other 
where the death event was not observed

Median  
(OS event =0)

Median  
(OS event =1) p-value

SBS C>A 17 18 0.018
C>G 20 21 0.1205
C>T 59 64 0.038
T>A 17 16 0.07
T>C 36 33 0.08
T>G 19 17 0.02

TMB TMB_NS 0.4828 0.5766 4.26E-07
TMB_SYN 0.3487 0.4023 0.002
TMB_OTH 1.341 1.5288 3.08E-04

Wilcoxon rank-sum test was applied to determine if the change is 
statistically significant or not. For substitutions, C>A, C>T, and T>G, 
the frequency was statistically different between the two groups.

Comparison of TMB and SBS based on 
the overall survival event

Out of 832 MM patients for which survival 
data were available, 177 observed poor 
OS outcome while the rest of the 655  
MM patients observed superior OS out-
come. SBS and TMB values of the two 
groups were examined, and Wilcoxon  
rank-sum test was used to deduce if the 
change in the TMB and SBS values is  
statistically significant or not. The median 
SBS and TMB values for the two groups 
are shown in Table 3. There was a signifi-
cant change (p-value <0.05) for SBS T>G, 
C>A, and C>T. An increase was observed  
in the C>A and C>T substitution values, 
while a decrease was observed in T>G sub-
stitutions. Further, there is a statistically 
significant difference in the TMB values of 
TMB_NS, TMB_SYN, and TMB_OTH, i.e. 
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Discussion

The fundamental goal of the study was to inves-
tigate the entire spectrum of the mutations 
altered in MGUS and MM, thereby identifying 
the critical factors responsible for the progres-
sion of the disease from MGUS to MM. In this 
study, we have explored the nonsynonymous 
and synonymous variants due to their impact 
on protein expression and function. First of all, 
variants were identified using four different 
variant callers to reduce the false positives 
from the study. Our approach ensured that the 
variants discovered in our research are the 
closest possible estimation of the true va- 
riants present in the MM and MGUS patients. 
Variants were then categorized into three main 
categories-nonsynonymous (NS), synonymous 
(SYN), and other (OTH) variants. TMB was  
calculated for each of the three categories of 
variants. This study reveals changes in the 
mutational spectrum from MGUS to MM. There 
was a statistically significant rise in the single 
base substitutions as the disease progressed 
from MGUS to MM (Figure 2). The frequency 
pattern of the substitutions in MM is similar to 
what was observed in a previous study [36]. 
The highest rise in the frequency was observ- 
ed in C>T transitions, where the median almost 
doubled from 30 to 59. An increase in the C>T 
transitions in MM can be attributed to the over-
expression of A3B, an APOBEC cytidine deami-
nase, that has an essential part in immunity 
against diseases [37]. Aberrant expression of 
A3B is known to be correlated with drug resis-
tance, metastasis, and poor prognosis in  
breast cancer [38], lung cancer [39], and ovar-
ian cancer [40]. Yamazaki et al. [37] proposed 
that A3B may promote disease progression 
and drug resistance in MM, which validates  
our observation of the hike in C>T transitions 
from MGUS to MM. The association of the fre-
quency of substitutions in the MM patients and 
their survival outcome was further explored. 
Frequency of C>T, C>A, and T>G substitutions 
were significantly higher in MM patients with 
poor overall survival outcome as compared to 
MM patients with superior overall survival out-
come (Table 3). However, in multivariate Cox 
Hazard analysis (Supplementary Table 5), only 
C>A transitions have a statistically significant 
impact on the survival outcome of MM patients. 

In addition, SBS2 and SBS13 mutational signa-
tures are linked to APOBEC activity reported in 

MM in multiple studies [41, 42]. APOBEC signa-
tures were found in nearly 9.63% (98/1018)  
of the total MM patients, while they were pri-
marily absent in MGUS patients (present in  
only 1 out of 61 MGUS patients). This finding 
suggests that ABOPEC activity may be respon-
sible for the molecular mechanisms driving 
tumor progression from MGUS to MM. The 
association of ABOPEC activity with overall  
and progression-free survival in MM was also 
explored. There was a statistically significant 
association between the ABOPEC activity and 
poor overall survival in MM (p-value =0.0056). 
The KM survival analysis validated this, which 
yielded significant separation (p-value = 
1.8e-4) in the OS curves of MM patients with 
and without APOBEC activity. Contrary to the- 
se findings, no significant association was 
found between PFS and APOBEC activity. 
Further, signatures SBS6, SBS14, SSB20, 
SBS21, SBS26 were found only in MM and  
are associated with defective DNA mismatch 
repair and microsatellite instability (MSI) as 
described previously. MSI has been reported in 
Multiple Myeloma [43]. However, its frequency 
is low (~10%) [44]. MSI has been observed to 
be an effective indicator of response to immu-
notherapy in solid tumors [45], like colorectal 
carcinoma [46]. Therefore, it is vital to look for 
these signatures in MM to help identify the 
high-risk MM patients in need of immuno- 
therapy.

In the present study, synonymous mutations 
have been examined along with nonsynony-
mous mutations. Though synonymous muta-
tions do not change the amino acid sequence 
of the resulting protein, they have a profound 
influence on RNA stability, RNA folding [19] or 
splicing [20], translation [21], or co-translation-
al protein folding. Hence, their role in cancer 
progression cannot be ignored. There are  
three different variants categorized under syn-
onymous-synonymous snvs, 3’UTRs and 
5’UTRs. A statistically significant rise in the 
3’UTR (p-value =2e-16) and 5’UTR (p-value 
=2.7e-7) mutations were observed from MGUS 
and MM. 3’ untranslated region (UTR) are a 
part of mRNA containing regulatory binding 
sites that post-transcriptionally influence gene 
expression and may lead to disruption in criti-
cal pathways associated with different types of 
cancers. Multiple studies have demonstrated 
that 3’UTR variants are linked to the risk of 
developing tumor or tumor progression. Zhang 
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et al. [47] discovered that a polymorphism 
detected in the IL-1α 3’UTR of the miRNA-
122-binding site was associated with the risk 
of epithelial ovarian cancer. A unique variant 
located in the 3’UTR was identified in the gene 
PCM1, which was significantly associated with 
ovarian cancer [48]. Recently, Melaiu et al. [49] 
evaluated the significance of germline genetic 
variants located within the 3’-untranslated 
region (polymorphic 3’UTR, i.e., p3UTR) of can-
didate genes involved in multiple myeloma. 
Their findings suggested that IL10-rs3024496 
was associated with an increased risk of  
developing MM and worse overall survival in 
MM patients. They also observed that IL10-
rs3024496 SNP might regulate the IL10 mRNA 
expression and hence, could help in the stratifi-
cation of MM patients in terms of risk progres-
sion and prognosis.

5’UTR regions are a part of mRNA, which regu-
lates the protein expression by controlling the 
translation initiation. Hence, single nucleotide 
polymorphisms (SNPs) located at 5’UTR re- 
gions may alter the protein levels by regulating 
the mRNA translation efficiency, thereby dis-
turbing consequential biological pathways. The 
role of 5’UTR variants in multiple cancers has 
been explored in previous studies. A 5’UTR  
variant was the driving factor leading to familial 
breast and ovarian cancer in two independent 
families [50]. 5’UTR SNP in the PLA2G2A gene 
was associated with PC metastasis [51]. Thus, 
it can be concluded that 3’ and 5’UTR muta-
tions are more frequent in MM and drive MGUS 
to MM via regulatory binding sites. 

TMB has become a prominent biomarker of 
enhanced responsiveness to immunotherapy 
and better outcomes. High TMB is often as- 
sociated with longer survival after treatment 
with immune checkpoint inhibitors (ICIs) [16]. 
However, in non-ICI-treated patients, high TMB 
was associated with poor prognosis and over- 
all survival in many cancer types [17]. 
Correlation of high TMB with response to tar-
geted immunotherapies has been established 
in solid tumors [52, 53]. High somatic mutation 
and neoantigen loads have been correlated 
with reduced PFS in MM [54]. However, the 
association of TMB with overall survival is still 
unknown in newly diagnosed multiple myeloma 
(NDMM) patients. Patients with very high TMB_
NS values were further analyzed to examine the 
relation of TMB with OS. These are known as 

hypermutators and are high-risk patients. Hy- 
permutators demonstrated a significant poor 
overall survival (p-value =0.022) and poor pro-
gression-free survival (p-value =0.045) as  
compared to non-hypermutators (TMB_NS≤ 
35) (Figure 6). The median overall survival of 
hypermutators was 220 weeks compared to 
316 weeks of non-hypermutators, while the 
median progression-free survival of hypermu-
tators was 105 weeks compared to 143.3 
weeks non-hypermutators. Mutational signa-
tures SBS1, SBS5, and SBS54 were observed 
in hypermutators and death events in 7 out  
of 10 hypermutators. DBS4, DBS5, DBS9, 
DBS10, and DBS11 are the mutational signa-
tures reflective of double base substitutions 
(DBS) and were found to be present in hyper-
mutators. On the contrary, no DBS signatures 
were found in low TMB patients (TMB_NS< 
0.1; n=6). SBS1 and SBS5 were present in  
low TMB patients, including SBS7a, SBS17b, 
SBS27, SBS51, and SBS86. Our study estab-
lishes that the frequency of hypermutators is 
low in the MM population, and hypermutators 
are associated with poor OS and poor PFS out-
come. Since TMB is a predictor of enhanc- 
ed responsiveness to immunotherapy, hyper-
mutators may be treated with immunotherapy 
drugs such as Daratumumab/Elotuzumab [55], 
Isatuximab [56], and Belantamab Mafodotin 
[57] to improve their overall survival.

In conclusion, the present study reveals the 
factors responsible for disease progression 
from MGUS to MM and poor survival outcome 
in MM via a detailed investigation of the muta-
tions present in MGUS and MM. The entire 
landscape of the mutational spectrum involv-
ing both synonymous and nonsynonymous 
mutations was examined. This study finds a 
change in the mutational spectrum with a sta-
tistically significant increase from MGUS to 
MM. There was a statistically significant in- 
crease in the frequency of all the three catego-
ries of variants-non-synonymous, synonymous, 
and others from MGUS to MM (P<0.05). 
However, there was a statistically significant 
rise in the TMB values for TMB_NS and TMB_
SYN only. We also observed that 3’ and 5’UTR 
mutations were more frequent in MM and  
might be responsible for driving MGUS to MM 
via regulatory binding sites. In addition, NDMM 
patients were also examined separately along 
with their survival outcome. 10 out of 832 
NDMM patients had TMB_NS values greater 
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than 35 and were designated as hypermuta-
tors. It could be concluded that the frequency 
of hypermutators was low in MM with poor OS 
and PFS outcome. We also observed a sta- 
tistically significant rise in the frequency of  
C>A and C>T substitutions and a statistically 
significant decline in T>G substitutions. There 
was a statistically significant increase in the 
tumor mutational burden of the patients with 
poor outcome as compared to patients with a 
superior outcome. Further, a statistically signifi-
cant association between the APOBEC activity 
and poor overall survival in MM was discov-
ered. A limitation of the current study is that  
the number of MGUS patients is significantly 
less than the number of MM patients. 
Comparison with a larger dataset of MGUS 
patients can substantiate the study findings of 
the significant increase in the mutational fre-
quencies from MGUS to MM. A coherent analy-
sis of evolving mutational landscapes and can-
cer signatures could assist in designing thera-
pies to impede the transformation of benign 
MGUS to malignant MM. Additionally, a system-
atized comparison of high-risk MM patients 
with low-risk MM patients can aid in identifying 
the risk factors responsible for disease pro-
gression and ultimately guide towards a per-
sonalized cure, thereby improving the overall 
survival of MM patients. A significant rise in 3’ 
and 5’UTR mutations from MGUS to MM was 
observed in our study. A detailed investigation 
of these mutations might help understand the 
mechanism of the progression of MGUS to 
internecine MM and may be explored in future 
studies.

Availability of data and materials

Mutation data of 936 MM patients was 
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phs000748; phs000348), while the remaining 
82 patients’ exome data was obtained from 
AIIMS. Exome data of 33 MGUS patients out of 
61 patients was obtained from EGA (EGAD- 
00001001901), and data of the remaining 28 
patients was obtained from AIIMS. Variant files 
of MM patients from the MMRF CoMMpass 
study were downloaded from the GDC portal via 
dbGaP authorized access.
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Supplementary Table 1. The table shows the cut-offs obtained for TMB_OTH via KAP
Min Median Max Cut-off (≤, >) PFS OS

TMB_OTH 0.1114 1.3742 193.673 1.84 (666, 166) 4.90E-06 9.16E-09
The same cut-off was obtained using PFS and OS. KM analysis was done using the proposed cut-offs. There was a significant 
difference (p-value <0.05) on the KM survival curves of the patients below and above the selected cut-offs of TMB_OTH.

Supplementary Table 2. The table shows the cut-offs obtained for TMB_NS, TMB_SYN and TMB_OTH 
via Cutoff Finder

Cut-off via PFS p-value Cut-off via OS p-value
TMB_NS 0.6282 3.2E-07 0.6216 2.1E-08
TMB_SYN 0.5565 4.1E-05 0.5265 2.3E-09
TMB_OTH 1.84 4.9E-06 1.84 9.2E-09
Similar cut-offs were obtained using PFS and OS. KM analysis revealed a significant difference (p-value <0.05) on the survival 
curves of the patients below and above the selected cut-offs.

Supplementary Table 3. The table shows the cut-offs obtained for the six different types of substitu-
tions via Cutoff Finder
SBS Min Median Max PFS cutoff OS cutoff PFS p-value OS p-value
C>A 0 17 1251 26.5 28.5 1.9E-5 5.1E-06
C>G 0 21 1575 3.5 34.5 0.027 8.6E-05
C>T 1 59 7315 79.5 110 0.00055 5.8E-07
T>A 0 17 684 5.5 2.5 0.0046 0.0024
T>C 0 35 4498 12.5 11.5 0.00019 0.0027
T>G 0 19 915 6.5 6.5 0.0013 0.0029

Supplementary Figure 1. Boxplot showing the variation in the frequency of the variants under the other variants 
category. There was a statistically significant rise in the frequency of intronic, intergenic, and downstream variants 
with p-values less than 0.05.
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Supplementary Figure 2. KM curves reveal that APOBEC activity is associated with poor overall survival in NDMM 
patients. The difference in the overall survival probability between low and high TMB_NS is statistically significant 
with p-values 1.8e-4. However, there is no statistically significant difference between progression-free survival and 
APOBEC activity.
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Supplementary Figure 3. KM curves reveal significant differences in the PFS survival patterns of (A) TMB_NS, (B) 
TMB_SYN and (C) TMB_OTH at the thresholds obtained via Cutoff Finder.
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Supplementary Figure 4. KM curves reveal significant differences in the OS survival patterns of (A) TMB_NS, (B) 
TMB_SYN and (C) TMB_OTH at the thresholds obtained via Cutoff Finder.
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Supplementary Figure 5. KM curves reveal differences in the PFS survival patterns of substitutions (A) C>A, (B) C>G, (C) C>T, (D) T>A, (E) T>C and (F) T>G at the 
thresholds obtained via Cutoff Finder. Separation in the survival curves is significant if p-values <0.05.
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Supplementary Figure 6. KM curves reveal differences in the OS survival patterns of substitutions (A) C>A, (B) C>G, (C) C>T, (D) T>A, (E) T>C and (F) T>G at the 
thresholds obtained via Cutoff Finder. Separation in the survival curves is significant if p-values <0.05.
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Supplementary Table 4. The table shows the univariate hazard analysis and multivariate hazard 
analysis obtained on TMB_NS, TMB_SYN and TMB_OTH

pfs os
HR CI p-value C-index HR CI p-value C-index

Univariate
TMB_NS 1.71 1.39-2.12 <0.005 0.56 2.26 1.68-3.05 <0.005 0.58
TMB_SYN 1.68 1.31-2.15 <0.005 0.54 2.46 1.78-3.40 <0.005 0.56
TMB_OTH 1.71 1.35-2.16 <0.005 0.55 2.43 1.78-3.32 <0.005 0.58

Multivariate
TMB_NS 1.45 1.11-1.90 0.01 0.57 1.55 1.04-2.31 0.03 0.6
TMB_SYN 1.13 0.81-1.58 0.48 1.41 0.89-2.24 0.14
TMB_OTH 1.26 0.92-1.74 0.16 1.48 0.94-2.34 0.09

Supplementary Table 5. The table shows the univariate hazard analysis and multivariate hazard 
analysis on the six different substitutions 

PFS OS
HR CI p-value C-index HR CI p-value C-index

Univariate
C>A 1.63 1.26-2.11 <0.005 0.54 2.16 1.54-3.03 <0.005 0.55
C>G 1.46 1.04-2.04 0.03 0.52 2.11 1.41-3.16 <0.005 0.53
C>T 1.65 1.22-2.24 <0.005 0.53 2.36 1.61-3.45 <0.005 0.55
T>A 1.61 1.11-2.32 0.01 0.51 1.93 1.20-3.11 0.01 0.52
T>C 1.47 0.83-2.61 0.19 0.50 2.27 1.19-4.32 0.01 0.51
T>G 1.73 1.09-2.75 0.02 0.51 2.14 1.21-3.77 0.01 0.51

Multivariate
C>A 1.43 1.02-1.99 0.04 0.55 1.67 1.06-2.63 0.03 0.58
C>G 0.84 0.49-1.43 0.52 0.97 0.49-1.93 0.93
C>T 1.38 0.86-2.22 0.18 1.71 0.91-3.22 0.10
T>A 1.19 0.71-1.97 0.65 1.22 0.61-2.44 0.58
T>G 1.03 0.52-2.05 0.94 0.82 0.34-1.99 0.66
T>C was removed from multivariate analysis as it was not significant for PFS in univariate analysis.


