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Abstract: Skin cutaneous melanoma (SKCM) is one of the most malignant and aggressive forms of cancer. 
Investigating the mechanisms of carcinogenesis further could lead to the discovery of prognostic biomarkers that 
could be used to guide cancer treatment. In this study, we conducted integrative bioinformatics analyses of TCGA 
database, STRING, cBioPortal, TRRUST, The Human Protein Atlas, and DGIdb to determine which hub genes contrib-
uted to tumor progression and the cancer-associated immunology of SKCM. The results show that immune-related 
873 differential genes grouped SKCM samples into subtypes. The initial results showed that the optimal number 
of clusters was two subgroups. Further analysis showed that there were significant differences in survival rate and 
immune infiltration level between the two subgroups. Subsequently, obtaining the different genes between groups, 
construct PPI to screen 6 hub genes (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DRA, HLA-DRB1, HLA-DRB5). In total, 6 
MHC class II molecules were significantly related to overall survival. We then analyzed the expression of these genes 
along with their mutation landscapes, transcription factor regulation, and drug regulatory networks. In summary, 
our study identified 6 MHC class II molecules (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DRA, HLA-DRB1, HLA-DRB5) 
as important biomarkers in the occurrence and progression of SKCM tumors. Their expression levels are closely 
related to prognosis and immune infiltration and can help us better understand the tumorigenesis of SKCM. 
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Introduction

Skin cutaneous melanoma (SKCM) is one of  
the most malignant and aggressive cancers 
and is responsible for approximately 55,500 
deaths per year, worldwide [1, 2]. Advanced 
melanoma is very aggressive and is not sensi-
tive to radiotherapy or chemotherapy. Surgical 
resection is usually the first choice of treat- 
ment for patients with primary melanoma [3]. 
Previous studies have shown that high levels of 
immune cell infiltration are associated with a 
good prognosis [4], and targeted therapies for 
immune checkpoint molecules (such as anti-
PD-1, anti-PDL-1, anti-CTLA4, and MAGE-A3) 
can significantly improve the prognosis for pa- 
tients with metastatic melanoma [5]. However, 

50-60% of patients still show no significant 
improvement, even with these therapies [6]. 
Therefore, discovering new, highly specific and 
sensitive diagnostic and prognostic markers is 
vital for improving SKCM treatment.

In this study, the mRNA expression data of  
470 skin melanoma patients were downloaded 
from The Cancer Genome Atlas (TCGA) data-
base for analysis in order to obtain differential- 
ly expressed genes (DEGs). Normal tissue data 
from the GTEx database was used as a control. 
After the intersection of DEGs and immune-
related genes, the skin melanoma samples 
were sub-typed. The results showed that the 
best cluster number was two groups, and there 
were significant differences in the survival rate 
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and immune infiltration level between the two 
groups. After further analysis, the differential 
genes between the two subgroups were ob- 
tained, and the hub genes were screened by 
constructing a protein-protein interaction net-
work. In total, 6 HLA family genes were found  
to be significantly related to overall survival 
(OS) (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-
DRA, HLA-DRB1, HLA-DRB5). We then analy- 
zed the expression of these genes along with 
their mutation landscapes, transcription factor 
regulation, and drug regulatory networks. Our 
study identified 6 immune-related genes asso-
ciated with skin melanoma, clarified their diag-
nostic and prognostic value, and revealed their 
underlying gene regulatory network.

Materials and methods

Gene expression and clinical correlation analy-
sis

The mRNA expression data and clinical infor-
mation of 470 skin melanoma patients were 
downloaded from TCGA database [7]. The cor-
responding normal tissue data of 812 cases 
were obtained from the GTEx database as a 
control. We used R-3.6.3 for differential gene 
analysis (|LogFC|>1, Adjusted P<0.05) and 6 
genes (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-
DRA, HLA-DRB1, and HLA-DRB5) expression 
level and clinical correlation analysis in skin 
melanoma [8]. The pROC software package 
was used to draw the ROC curve, with the area 
under the ROC curve shown to be between  
0.5 and 1. The Survival software package was 
used to statistically analyze the survival data, 
with the prognosis type being OS. The log- 
ranch test was used to compare survival differ-
ences, with a p-value of <0.05 indicating statis-
tical significance. In the univariate Cox regres-
sion analysis, indexes with a p-value of <0.1 
were included in the multivariate Cox regres-
sion analysis. When p is <0.05, we can specu-
late that this variable may be an independent 
prognostic factor.

Immune infiltration analysis

We used the CIBERSORT algorithm in the 
Immundeconv package to analyze the differ-
ences between the immune cells in the two 
sets of samples and used a heat map to dis- 
play the results [9]. The horizontal axis is the 
subgroup type based on the differentially ex- 
pressed immune-related genes, while the verti-

cal axis is the immune cell type, which is where 
the difference is. The color represents the  
trend of expression in the different samples. 
We analyzed the expression values of the 8 
immune checkpoint-related genes (SIGLEC15, 
TIGIT, CD274, HAVCR2, PDCD1, CTLA4, LAG3, 
and PDCD1LG2) using ggplot2 and pheatmap 
and observed the expression of the immune 
checkpoint-related genes. The significance of 
the two sample groups was determined by the 
Wilcoxon signed-rank test.

Differential gene screening and enrichment 
analysis between groups

We used the Limma software package (version 
3.40.2) to study the differential expression be- 
tween the two subgroups (Tumor-G2/Tumor- 
G1). |LogFC|>1, adjusted P<0.05 is defined as 
the threshold for mRNA differential expression 
screening. We used volcano maps to display 
differential genes. The results of the feature 
enrichment were determined by the Cluster- 
Profiler package (version: 3.18.0). In the GO 
and KEGG enrichment analysis results, the 
color and size of the dots represent the enrich-
ment significance and enrichment degree of 
the corresponding items.

PPI network construction and hub gene 
screening

Taking the different genes between the two 
subgroups as the research object, we con-
structed the protein interaction network (PPI) 
using the STRING database [10], and the inter-
action score threshold was set to 0.70 (high 
confidence). The Cytohubba [11] plugin for 
Cytoscape [12] was used to screen the hub 
genes. Finally, we determined the top 8 key 
genes in the ranking based on the MCC algo-
rithm and analyzed the expression correlation 
of the hub genes.

cBioPortal database 

A comprehensive web resource, the cBioPortal 
database can visualize and interpret multimod-
al cancer genomics data [13]. cBioPortal pro-
vided the genetic changes of predictive genes.

TRRUST database

TRRUST is a useful tool for predicting trans- 
criptional regulatory networks in humans and 
mice [14]. The TRRUST database, which con-
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tains 8444 transcription factor (TF)-target reg-
ulatory linkages for 800 human TFs, can help 
researchers figure out how these interactions 
are regulated.

The drug-gene interaction database

DGIdb (version 2.0) is an open-source initiative 
that allows users to mine existing information 
and generate hypotheses about how therapeu-
tically targeted or prioritized genes are for drug 
development [15]. 

The human protein atlas

The Human Pathology Atlas Project incorpo-
rates immunohistochemistry (IHC) data obtain- 
ed through tissue microarray research, includ-
ing proteome analysis of 17 cancer types and 
44 normal tissue types [16]. Patient informa-
tion, staining intensity, location, and amount 
were available online along with staining inten-
sity, location, and quantity in various cancer 
types. We utilized the Human Pathology Atlas  
in this study to analyze the protein expression 
of hub genes in SKCM and normal skin tissue.

Statistical analysis

We utilized R-3.6.3 for the statistical analysis. 
Wilcoxon’s signed-rank sum test was used to 
analyze the expression of the hub gene in 
unpaired samples, the Kaplan-Meier method 
was used for survival analysis, and the log-
ranch test was used to compare survival dif- 
ferences. Additionally, Spearman’s correlation 
analysis was used to describe the correlation 
between quantitative variables that do not 
have a normal distribution. A p-value of <0.05 
indicates statistical significance (*P<0.05, 
**P<0.01, ***P<0.001).

Results

Differential gene screening and cluster analy-
sis

Using normal tissue data in the GTEx database 
as a control, the mRNA expression data of  
470 skin melanoma patients were downloaded 
from TCGA database for analysis in order to 
obtain the DEGs. It was found that there were 
2124 up-regulated genes and 2376 down-re- 
gulated genes (Figure 1A), and the screening 
threshold was |LogFC|>1 (adjusted P<0.05). 
The GO and KEGG enrichment analyses show- 

ed that the functions of differential genes are 
mainly related to the activation, proliferation, 
and differentiation of immune cells (Figure 1B). 
The overlap among DEGs and immune-related 
genes included 873 genes as shown in the 
Venn diagram (Figure 1C and Supplementary 
Table 1).

Construction of immune subgroups and analy-
sis of survival and immune infiltration between 
groups

The 873 immune-related differential genes 
were used to cluster the skin melanoma sam-
ples. The CDF curve and CDF Delta area curve 
(Supplementary Figure 1) showed that the best 
cluster was two groups (Figure 2A), and the sur-
vival analysis results showed a better progno-
sis for the G2 group (P<0.001, Figure 2B). The 
level of immune infiltration is an important fac-
tor affecting the prognosis of patients with skin 
melanoma [17]. The results of the immune infil-
tration analysis of the two subgroups showed 
that there were significant differences in the 
infiltration levels of multiple immune cells in  
the two subgroups. Among them, the infiltra- 
tion level of activated CD4+ memory T cells, γδ 
T cells, Th cells, M1 macrophages, CD8+ T 
cells, activated NK cells, mast cells and memo-
ry B cells in the G2 subgroup was significantly 
higher than those in the G1 group, while the 
infiltration level of M2 macrophages, M0 mac-
rophages and resting NK cells in the G2 sub-
group was significantly lower than those in the 
G1 group (P<0.01, Figure 2C). The mRNA ex- 
pression levels of the 8 immune checkpoint 
molecules (SIGLEC15, TIGIT, CD274, HAVCR2, 
PDCD1, CTLA4, LAG3, and PDCD1LG2) in the 
G2 group were significantly lower than those in 
the G1 group (P<0.001, Figure 2D).

Analysis of differential genes between immune 
subgroups and selection of hub genes after 
PPI network construction

Knowing that immune infiltration was better in 
the G2 subgroup, we screened the differential 
genes between the two groups and performed 
interaction analysis to reveal the key genes. 
Figure 3A shows the volcano map with the dif-
ferential genes obtained from the G2 sub- 
group/G1 subgroup comparison, including 61 
up-regulated genes and 829 down-regulated 
genes (|LogFC|>1, Adjusted P<0.05). STRING 
data construct a PPI network for differential 
genes and utilized Cytoscape to visualize and 
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Figure 1. GO and KEGG analysis of the DEGs in SKCM. A. Volcano plot of differential gene expression analysis. B. GO and KEGG enrichment analysis. C. VN map 
showing the overlap of differential genes and immune-related genes. 
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screen hub genes. The top 8 genes in the rank-
ing were HLA-DPA1, HLA-DPB1, HLA-DQA1, 
HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-DQB1, 
and HLA-DQB2 (Figure 3B).

Hub gene expression analysis and ROC curve 
drawing

Using the data from TCGA database, we con-
structed box plots to display the mRNA expres-
sion of the selected 8 hub genes in the skin 
melanoma patients and the controls. The re- 
sults showed that 8 genes were significantly 
expressed in tumors (P<0.001, Figure 4A), and 
the ROC curve of each hub gene is shown in 
Figure 4B. Taking AUC-0.8 as the threshold,  
the hub genes were further determined as  
HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DRA, 
HLA-DRB1, and HLA-DRB5. Based on the data 
from the HPA database, the protein expression 
levels of these 6 hub genes in SKCM are con-
sistent with their mRNAs, all showing high lev-
els of expression (Figure 5).

The prognostic and diagnostic value of hub 
genes in SKCM patients

Using the Kaplan-Meier method, we determin- 
ed the prognostic value of the hub genes in 
SKCM patients, with Figure 6 showing that 6 
hub genes are significantly related to OS. High 
expressions of HLA-DPA1 (HR=0.45, P<0.001), 
HLA-DPB1 (HR=0.50, P<0.001), HLA-DQA1 
(HR=0.48, P<0.001), HLA-DRQ (HR=0.49, P< 
0.001), HLA-DRB1 (HR=0.51, P<0.001), and 
HLA-DRB5 (HR=0.54, P<0.001) were signifi-
cantly associated with better OS rates. Uni- 
variate and multivariate Cox regression analy-
ses were performed in order to identify the 
prognostic independence of the 6-gene signa-
ture (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-
DRA, HLA-DRB1, and HLA-DRB5). The results 
showed that the 6 genes are associated with 
higher OS rates but do not have independent 
diagnostic value (Supplementary Table 2).

Genetic alteration and correlation analysis in 
patients with SKCM

Using the data from the cBioPortal database, 
we analyzed the genome mutation characteris-

tics of the hub genes. The results showed that 
nearly 3% of the HLA-DPB1 SKCM samples, 4% 
of the HLA-DPA1, HLA-DRB1, and HLA-DRB5 
SKCM samples, 6% of the HLA-DQA1 samples, 
and 7% of the HLA-DRA samples had genetic 
alteration. The most common genetic changes 
were mainly related to amplification (Figure 
7A). The expression correlation of these 6 prog-
nostic-related genes was further analyzed and 
was found to be positively correlated, which 
was consistent with expectations (Figure 7B). 
Among them, HLA-DPB1 and HLA-DRA had the 
highest positive correlation, with a Spearman’s 
rank correlation coefficient of 0.979.

Key transcription factors analyses of prognos-
tic genes and drug-gene interaction prediction

Using the TRRUST database, we explored 
potential transcription factor targets of the 6 
MHC class II molecules. The results showed 
that RFXANK, RFXAP (FDR=2.39E-19), RFX5 
(FDR=5.91E-19), CIITA (FDR=1.34E-10), ILF3 
(FDR=7.50E-10), and RFX1 (FDR=8.83E-06) 
were found to be the key transcription factors 
for HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-
DRA, HLA-DRB1, and HLA-DRB5 (Supplemen- 
tary Table 3). Using the data from TCGA data-
base, we verified the mRNA expression levels of 
these 6 transcription factors. Among them, 
RFXANK, RFX5, CIITA, and RFX1 were highly 
expressed in tumors (P<0.001), RFXAP is also 
expressed in tumors (P<0.001), and the expres-
sion level of ILF3 showed no significant differ-
ence between tumors and normal tissue 
(Figure 8A). The correlation analysis results of 
the transcription factors and hub genes show 
that CIITA is highly positively correlated with the 
expression of the 6 hub genes (Figure 8B). 
Based on the data from the HPA database, we 
confirmed that CIITA is highly expressed in 
SKCM (Figure 8C). Finally, using the DGIdb 
database, we obtained drug-gene interaction 
pairs (Figure 9 and Supplementary Table 4), 
which may help in developing new targets for 
SKCM therapy.

Discussion

Cutaneous melanoma is the most common 
form of skin cancer, and its incidence has 
increased rapidly in the past few decades. 

Figure 2. Immune subtypes of SKCM samples and immune infiltration analysis. A. Two cluster subgroups. B. Overall 
Survival (OS) subgroup analysis. C. Immune infiltration analyses of two subgroups. D. Correlation of two subgroups 
with immune checkpoint genes expression. *P<0.05, **P<0.01, ***P<0.001.
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Figure 3. Analysis of differential genes among two subgroups and screening of hub genes. A. Volcano plot of differential gene expression. B. PPI network and hub 
genes network of the DEGs using Cytoscape. (DEGs, differentially expressed genes; PPI, protein-protein interaction).
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Melanoma is one of the most immunogenic 
tumors, so it is most likely to respond posi- 
tively to immunotherapy. Researchers have 
expounded great effort in using immunothera-
py to treat SKCM [18]. Immune cell infiltration 
into the tumor is an important factor affecting 
the survival and prognosis of patients with skin 
melanoma. MHC-I molecules are expressed by 
most nucleated cells and mainly present en- 
dogenous peptide antigens to CD8+ T cells. 
MHC class II (MHC II) molecules are mainly 
expressed by professional antigen-presenting 
cells (pAPC), such as dendritic cells (DC), B 
cells, and macrophages, and mainly present 
exogenous peptide antigens to CD4+ T cells 
[19]. The exact role of MHC II molecules in  
melanoma progression is unknown. However, it 
has been suggested that they may assist mela-

noma cells in escaping immune surveillance by 
presenting tumor Ags that activate regulatory T 
cells (Tregs) and/or transmitting signals in mel-
anoma cells that protect against apoptosis 
[20].

Using normal tissue as a control, the enrich-
ment analysis results of DEGs in SKCM sam-
ples performed in this study suggest that its 
mediated function may be closely related to  
the immune system. When considering the 
impact of immune heterogeneity on the immu-
notherapy of patients with skin melanoma, the 
results of the intersection of DEGs and im- 
mune-related genes were used to group the 
subtypes of patients with skin melanoma and 
showed that the optimal number of clusters is 
two groups. Further analysis showed that there 

Figure 4. Six hub genes were identified (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DRA, HLA-DRB1, and HLA-DRB5). A. 
The mRNA expression levels of 8 hub genes in SKCM. B, C. ROC curve of 8 hub genes in SKCM.
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were significant differences in survival rate and 
immune infiltration level between the two sub-
groups. Subsequently, the differential genes 
between the two subgroups were obtained, the 
hub gene was screened by constructing a PPI 
network, and the gene range was reduced by 
setting an ROC diagnostic efficiency threshold. 
Finally, it was determined that 6 MHC class II 
molecules (HLA-DPA1, HLA-DPB1, HLA-DQA1, 
HLA-DRA, HLA-DRB1, and HLA-DRB5) were sig-
nificantly related to OS rates.

Studies have shown that HLA-DPA1 is one of 
the key genes associated with hypoxia in multi-
ple myeloma, and the down-regulation of HLA-
DPA1 in patients is associated with poor prog-
nosis [21]. The pseudogene HLA-DPB2 pro-
motes the expression of the parent gene HLA-
DPB1 through the ceRNA mechanism, promot-
ing tumor immune infiltration. A high rate of 
expression of HLA-DPB1 also leads to a better 

prognosis [22]. The HLA-DQA1 locus may be a 
potential risk factor for the onset of primary 
melanoma in the Spanish population [23]. In 
non-muscle-invasive bladder cancer (NMIBC), 
patients with a low expression of HLA-DRA 
have better progression-free survival rates 
than patients with high expression [24]. A stu- 
dy from China showed that the polymorphism 
of the HLA-DRB1 gene is associated with der-
matomyositis [25]. These research results 
show that MHC II molecules have important 
functions in tumors. However, due to the gen-
eral heterogeneity of tumors, their roles may  
be diverse or even contradictory. Therefore, in 
order to clarify the function and potential clini-
cal significance of these 6 MHC II molecules in 
skin melanoma, based on TCGA database and 
its accompanying clinical information, we ana-
lyzed the expression characteristics of HLA-
DPA1, HLA-DPB1, HLA-DQA1, HLA-DRA, HLA-
DRB1, HLA-DRB5 and the correlations bet- 

Figure 5. Validation of protein expression levels of hub genes in the HPA database.
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ween diagnosis and prognosis. The HPA data-
base confirmed its protein expression level. 

Additionally, and in order to fully comprehend 
the upstream regulatory molecules and poten-
tial drugs of these 6 genes, we predicted the 
transcription factors that may regulate them,  
by using the TRRUST database, and verified the 

expression correlation between the molecules. 
Using data from the DGIdb database, we con-
structed a drug-gene interaction that we hope 
will provide a reference point for the immune-
related treatment of SKCM patients.

In summary, our study showed that 6 MHC 
class II molecules (HLA-DPA1, HLA-DPB1, HLA-

Figure 6. Kaplan-Meier overall survival analysis of patients in the TCGA cohort.

Figure 7. Hub genes expression correlation and mutation analysis in SKCM (cBioPortal). A. Hub genes mutation 
analysis. B. Correction between different hub genes.
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DQA1, HLA-DRA, HLA-DRB1, HLA-DRB5) are 
important biomarkers associated with the 
occurrence and progression of SKCM tumors. 
Their expression levels are closely related to 
prognosis and immune infiltration and can help 
us to better understand the tumorigenesis of 
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Figure 8. Analysis of the expression of the indicated transcription factors. A. The mRNA expression levels of the 
indicated transcription factors in SKCM. B. Correlation between transcription factors and hub genes expression 
(cBioPortal). C. Validation of protein expression levels of the indicated transcription factors in the HPA database.

Figure 9. Drug-gene interaction diagram. The yellow circle indicates the re-
lated hub gene, and the pink square indicates the drug.

SKCM. However, it is impera-
tive that further functions  
be studied in order to verify 
these findings.
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Supplementary Figure 1. The results of CDF curve and CDF Delta area curve.
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Supplementary Table 2. Univariate and multivariate Cox regression analysis of OS in TCGA cohort

Characteristics Total (N)
Univariate analysis

 
Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value
T stage (T3&T4 vs. T1&T2) 361 2.085 (1.501-2.895) <0.001 1.929 (1.352-2.753) <0.001

N stage (N1&N2&N3 vs. N0) 402 1.752 (1.304-2.354) <0.001 1.946 (1.395-2.715) <0.001

M stage (M1 vs. M0) 430 1.897 (1.029-3.496) 0.040 2.632 (1.134-6.107) 0.024

HLA-DPA1 (High vs. Low) 456 0.454 (0.345-0.598) <0.001 0.469 (0.229-0.958) 0.038

HLA-DPB1 (High vs. Low) 456 0.503 (0.382-0.661) <0.001 0.840 (0.267-2.644) 0.766

HLA-DQA1 (High vs. Low) 456 0.481 (0.365-0.632) <0.001 1.071 (0.542-2.119) 0.843

HLA-DRA (High vs. Low) 456 0.493 (0.374-0.649) <0.001 0.942 (0.311-2.851) 0.916

HLA-DRB1 (High vs. Low) 456 0.514 (0.391-0.676) <0.001 1.115 (0.455-2.730) 0.812

HLA-DRB5 (High vs. Low) 456 0.542 (0.413-0.712) <0.001 1.026 (0.617-1.706) 0.922

Supplementary Table 3. Key transcriptional factors (TFs) of six HLA-genes in SKCM (TRRUST database)
Key TF Description P value Q value Regulated genes
RFXANK regulatory factor X-associated ankyrin-containing protein 7.97E-20 2.39E-19 HLA-DRA, HLA-DQA1, HLA-DRB5, HLA-DPB1,  

HLA-DPA1, HLA-DRB1

RFXAP regulatory factor X-associated protein 7.97E-20 2.39E-19 HLA-DPB1, HLA-DRB1, HLA-DRB5, HLA-DRA,  
HLA-DPA1, HLA-DQA1

RFX5 regulatory factor X, 5 (influences HLA class II expression) 2.96E-19 5.91E-19 HLA-DRB5, HLA-DRA, HLA-DRB1, HLA-DPA1,  
HLA-DPB1, HLA-DQA1

CIITA class II, major histocompatibility complex, transactivator 8.91E-11 1.34E-10 HLA-DPB1, HLA-DRB1, HLA-DRB5, HLA-DRA

ILF3 interleukin enhancer binding factor 3, 90 kDa 6.25E-10 7.50E-10 HLA-DRB1, HLA-DRA, HLA-DQA1

RFX1 regulatory factor X, 1 (influences HLA class II expression) 8.83E-06 8.83E-06 HLA-DRA, HLA-DPB1
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Supplementary Table 4. Drug-gene interaction pairs
search_term match_term match_type gene drug sources pmids
HLA-DPB1 HLA-DPB1 Definite HLA-DPB1 CLOZAPINE PharmGKB 11266078

HLA-DPB1 HLA-DPB1 Definite HLA-DPB1 ASPIRIN PharmGKB 15007363|15784113|19392989
|9179433

HLA-DQA1 HLA-DQA1 Definite HLA-DQA1 LUMIRACOXIB PharmGKB 20639878

HLA-DQA1 HLA-DQA1 Definite HLA-DQA1 AZATHIOPRINE PharmGKB 25217962

HLA-DQA1 HLA-DQA1 Definite HLA-DQA1 LAPATINIB PharmGKB|FDA 24687830|21245432

HLA-DQA1 HLA-DQA1 Definite HLA-DQA1 MERCAPTOPURINE PharmGKB 25217962

HLA-DRA HLA-DRA Definite HLA-DRA PEMBROLIZUMAB CIViC 26822383

HLA-DRA HLA-DRA Definite HLA-DRA AMOXICILLIN PharmGKB 30664875

HLA-DRA HLA-DRA Definite HLA-DRA ATEZOLIZUMAB CIViC 26822383

HLA-DRA HLA-DRA Definite HLA-DRA FLOXACILLIN PharmGKB 30664875

HLA-DRA HLA-DRA Definite HLA-DRA NIVOLUMAB CIViC 26822383

HLA-DRA HLA-DRA Definite HLA-DRA 1D09C3 DrugBank 16452241

HLA-DRA HLA-DRA Definite HLA-DRA CLAVULANIC ACID PharmGKB 30664875

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 FLUVASTATIN PharmGKB 27839692

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 AZATHIOPRINE PharmGKB 25217962

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 EFAVIRENZ PharmGKB 18301070

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 ASPARAGINASE PharmGKB 24970932|25987655

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 TICLOPIDINE PharmGKB 17339877

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 ETANERCEPT PharmGKB

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 OXCARBAZEPINE PharmGKB 27666425

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 ADALIMUMAB PharmGKB

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 INFLIXIMAB PharmGKB

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 LYM-1 ChemblInteractions|TTD

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 BUCILLAMINE PharmGKB

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 CARBIMAZOLE PharmGKB

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 ROSUVASTATIN PharmGKB 27839692

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 CARBAMAZEPINE PharmGKB 24399721|23830818

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 MERCAPTOPURINE PharmGKB 25217962

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 ASPIRIN PharmGKB 15784113|19392989

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 METHIMAZOLE PharmGKB

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 ATORVASTATIN PharmGKB 27839692

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 PRAVASTATIN PharmGKB 27839692

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 FLUPIRTINE PharmGKB 26959717

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 DAPSONE PharmGKB 29233746

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 DABRAFENIB PharmGKB 27023328

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 PROPYLTHIOURACIL PharmGKB

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 SIMVASTATIN PharmGKB 27839692

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 PITAVASTATIN PharmGKB 27839692

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 AMOXICILLIN PharmGKB 20800921|10535882|30664875

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 LUMIRACOXIB PharmGKB 20639878

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 LAPATINIB PharmGKB|FDA 24687830|28786423

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 CLAVULANIC ACID PharmGKB 20800921|10535882|30664875

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 LAMOTRIGINE PharmGKB 19668019

HLA-DRB1 HLA-DRB1 Definite HLA-DRB1 FLOXACILLIN PharmGKB 30664875

HLA-DRB5 HLA-DRB5 Definite HLA-DRB5 CLAVULANIC ACID PharmGKB 10535882

HLA-DRB5 HLA-DRB5 Definite HLA-DRB5 AMOXICILLIN PharmGKB 10535882

HLA-DRB5 HLA-DRB5 Definite HLA-DRB5 1D09C3 TdgClinicalTrial

HLA-DRB5 HLA-DRB5 Definite HLA-DRB5 CLOZAPINE PharmGKB 11146763


